JPS5868911A - Cooling method for electromagnet - Google Patents

Cooling method for electromagnet

Info

Publication number
JPS5868911A
JPS5868911A JP16642781A JP16642781A JPS5868911A JP S5868911 A JPS5868911 A JP S5868911A JP 16642781 A JP16642781 A JP 16642781A JP 16642781 A JP16642781 A JP 16642781A JP S5868911 A JPS5868911 A JP S5868911A
Authority
JP
Japan
Prior art keywords
ferrite
coil
electromagnet
ferromagnetic particles
magnetic fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16642781A
Other languages
Japanese (ja)
Inventor
Eiji Horikoshi
堀越 英二
Yuichi Suzuki
悠一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16642781A priority Critical patent/JPS5868911A/en
Publication of JPS5868911A publication Critical patent/JPS5868911A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnets (AREA)

Abstract

PURPOSE:To raise the cooling efficiency of a coil and reduce the same in volume, by filling the space between the turns of an excitation coil with a magnetic fluid obtained by dispersing ferromagnetic particles into a solvent so as to be colloidal. CONSTITUTION:Ferromagnetic particles, such as magnetite, manganese ferrite, nickel ferrite, cobalt ferrite, manganese-zinc ferrite, nickel-zinc ferrite, barium ferrite and so forth, having a particle diameter of 100-200Angstrom are coated with a long-chain unsaturated fatty acid surface-active agent, such as oleic acid and linolic acid. The coated ferromagnetic particles are dispersed into a solvent, such as a fatty hydrocarbon, aromatic hydrocarbon and water, by employing an anionic or nonionic surface-active agent, thereby to prepare a colloidal solution. The solution is filled in the space 8 in a coil 7 wound on a bobbin 6. This permits the heat generated inside the coil to be easily conducted to the surface thereof, so that it becomes unnecessary to provide any cooling plate.

Description

【発明の詳細な説明】 本発明は電磁石の冷却方法に関する。[Detailed description of the invention] The present invention relates to a method for cooling an electromagnet.

従来の電磁石の冷却方決は、第1図に示すようにポール
ピース1上のボビン2に巻回されたコイル30間に適宜
の間隔をとうて鋼製の放熱板4を挿入しておくか、また
はこの放熱板を水冷する方式を採用している。ととろが
これらの冷却方法はボビン内部の容積がかさばb、tた
水冷の九めの配管なども必要となるという欠点がある。
The conventional method for cooling an electromagnet is to insert a steel heat sink 4 at an appropriate interval between the coils 30 wound around the bobbin 2 on the pole piece 1, as shown in FIG. , or a method is adopted in which this heat sink is water-cooled. However, these cooling methods have the disadvantage that the volume inside the bobbin is bulky and water cooling piping is required.

本発明はこの欠点を解消するために案出され九ものであ
るO このため本発明の電磁石の冷却方法においては、鉄心に
励磁用コイル巻回してなる電磁石において、励磁用コイ
ルの巻線間の空間に強磁性体粒子を溶媒に分散させてコ
四イド体とした磁性流体を充填し、該励磁コイルの冷却
効率を向上せしめることを特徴とするものである。
The present invention has been devised to eliminate this drawback. Therefore, in the electromagnet cooling method of the present invention, in an electromagnet formed by winding an excitation coil around an iron core, This is characterized in that the space is filled with a magnetic fluid in which ferromagnetic particles are dispersed in a solvent to form a cotetraid body, thereby improving the cooling efficiency of the excitation coil.

以下、添付図面に基づいて本発明の実施例につき詳細く
説明する。
Hereinafter, embodiments of the present invention will be described in detail based on the accompanying drawings.

第2図に実施例を示す。図によシ説明すると符号5は電
磁石のポールピース、6は励磁用コイルのボビン、7は
励磁用コイルの巻線である。そして本発明の要点はコイ
ルの巻線7間の空間に磁性流体8を充填したことである
。この磁性流体には、例えば100〜200ムのiグネ
タイト、iンガンフェツイト、ニッケルフェライト、コ
バルトフェライト、iンガン電鉛フェライト、ニッケル
亜鉛フェライト、バリウムフェツイトなどの強磁性体粒
子をオレイン―やリノール学のような長鎖下□飽和詣肪
噛系界面活性剤で被覆し、これに陰イオンあるいは非イ
オン型界面活性剤を使って脂肪族炭化水素、芳香族炭化
水素、水などの溶媒中に分散させた;ロイド溶液が用い
られる。このようなコ四イド溶液は通常の懸濁液と違っ
て分散性がすぐれ、重力や磁場などKよって沈降あるい
は凝集などの固−液分畷を起こすことがない。
An example is shown in FIG. To explain with reference to the figure, numeral 5 is a pole piece of an electromagnet, 6 is a bobbin of an excitation coil, and 7 is a winding of an excitation coil. The key point of the present invention is that the space between the windings 7 of the coil is filled with magnetic fluid 8. In this magnetic fluid, ferromagnetic particles such as 100 to 200 μm of i-gnetite, i-ganfetzite, nickel ferrite, cobalt ferrite, i-magnetic lead ferrite, nickel-zinc ferrite, barium fetuite, etc. are added to the magnetic fluid. The long-chain structure is coated with a saturated fatty acid surfactant, and then dispersed in a solvent such as aliphatic hydrocarbon, aromatic hydrocarbon, or water using an anionic or nonionic surfactant. Lloyd's solution is used. Unlike ordinary suspensions, such cotetraid solutions have excellent dispersibility and do not cause solid-liquid separation such as sedimentation or aggregation due to K such as gravity or magnetic fields.

以上の如く構成された本実施例は磁性流体8の熱伝導度
が1Q−’W/as・dり程度であシ、空気の場合の1
0  W/Q11−1!リ に比して1桁大きいため、
コイル内部で発生した熱を表面に伝導し易くして熱の放
散を良好にすることができる。このためコイル間に従来
の如き冷却板を入れる必要がなく、コイル部の容積は数
%〜10数%小さくすることができる。
In this embodiment configured as described above, the thermal conductivity of the magnetic fluid 8 is about 1Q-'W/as・d, and it is 1Q-'W/as・d.
0 W/Q11-1! Since it is one order of magnitude larger than
The heat generated inside the coil can be easily conducted to the surface, thereby improving heat dissipation. Therefore, there is no need to insert a conventional cooling plate between the coils, and the volume of the coil portion can be reduced by several to ten-odd percent.

なおコイルに充填した磁性流体の保持は、巻線への毛細
管現象による付着力及びポールピースO残留磁気によっ
て保持される。
Note that the magnetic fluid filled in the coil is held by the adhesion force due to capillary action to the winding and the residual magnetism of the pole piece O.

次に実際例としてts3図に示す電磁石において磁性流
体を充填した場合と充填しない場合の冷却性能を第4図
に示した。なおli3図の各コイルは1000ターンで
あり励磁電流は10Aとした。
Next, as an actual example, FIG. 4 shows the cooling performance of the electromagnet shown in FIG. TS3 when it is filled with magnetic fluid and when it is not filled with magnetic fluid. Note that each coil in Figure li3 had 1000 turns, and the excitation current was 10A.

シ、磁性流体を充填した場合の温度上昇を曲線人により
示し、磁性流体を充填しない場1合の1度上昇を曲線B
Kよシ示した。1図よシ磁性流体を充填した場合は、し
ない場合に比して15C程度低くなりエシク、その効果
がわかる。また第5図は第3図で示す電磁石で、磁性流
体を充填した場合と充填しない場合の磁場の違いを測定
した結果を示したもので、曲IIAによシ磁性流体を充
填した場合を示し、曲118によシ磁性流体を充填しな
い場合を示した。図に示すようKai性流体流体填して
もポールピース関にできる磁場の大きさには殆んど影響
を与え゛ない。ただ中心付近で磁場の均一性がやや増加
する傾向を示しているが、これは均一磁場のできる面積
を大きくすることができるので好ましいととである。
C. Curve B shows the temperature rise when filled with magnetic fluid, and curve B shows the 1 degree rise when no magnetic fluid is filled.
K showed me. As shown in Figure 1, when the magnetic fluid is filled, the temperature is about 15C lower than when it is not filled, and the effect can be seen. Figure 5 shows the results of measuring the difference in magnetic field when the electromagnet shown in Figure 3 is filled with magnetic fluid and when it is not filled. , song 118 shows the case where the magnetic fluid is not filled. As shown in the figure, filling the Kai fluid has almost no effect on the magnitude of the magnetic field generated in relation to the pole piece. However, there is a tendency for the uniformity of the magnetic field to increase slightly near the center, but this is preferable because the area where a uniform magnetic field can be formed can be increased.

以上説明した如く本発明の電磁石の冷却方法はコイルの
巻線間の空間に磁性流体を充填することによシ効率良く
コイルを冷却すると1−とを1可能とし、従来に比しコ
イル容積の縮小も可能と6し丸ものである。
As explained above, the method for cooling an electromagnet of the present invention is to efficiently cool the coil by filling the space between the windings of the coil with magnetic fluid. It can also be reduced to a 6-round shape.

【図面の簡単な説明】[Brief explanation of drawings]

@1図は電磁石の従来の冷却方法を説明する説明図、第
2図は本発明にかかる冷却方法を実施した電磁石の断面
図、第6図は特性比較に用いた電磁石の説明図、第4図
及び第5図はdX3図の電磁石において磁性流体の充填
の有無による特性を比較し要因であシ、#!4図は冷却
特性図、I!I5図は磁場特性図である。 5・・・ポールピース、6・・・ボビン、7・・・コイ
ル巻線、8・・・磁性流体。 特許出嫌人 富士通株式会社 特許出願代理人 弁理士 青 木   朗 弁理士西舘和之 弁理士 内 1)拳 男 弁理士山口昭之 第1図 第 2図
@ Figure 1 is an explanatory diagram explaining the conventional cooling method for electromagnets, Figure 2 is a cross-sectional diagram of an electromagnet using the cooling method according to the present invention, Figure 6 is an explanatory diagram of the electromagnet used for characteristic comparison, and Figure 4 Figure 5 and Figure 5 compare the characteristics of the electromagnet shown in dX3 diagram with and without filling with magnetic fluid. Figure 4 is a cooling characteristic diagram, I! Diagram I5 is a magnetic field characteristic diagram. 5... Pole piece, 6... Bobbin, 7... Coil winding, 8... Magnetic fluid. Fujitsu Limited Patent Attorney Akira Aoki Patent Attorney Kazuyuki Nishidate Patent Attorney 1) Male Patent Attorney Akiyuki Yamaguchi Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] t 鉄心に励磁用コイルを巻回してなる電磁石において
、励磁用コイルO巻線間の空間に強磁性体粒子を溶媒に
分散させて′:Iwイド状とした磁性流体を充填し、該
励磁#4;イルの冷却効率を向上せしめることを特徴と
する電磁石の冷却方決。
t In an electromagnet formed by winding an excitation coil around an iron core, the space between the excitation coil O windings is filled with a magnetic fluid in which ferromagnetic particles are dispersed in a solvent to form a ':Iw oid shape, and the excitation # 4; An electromagnet cooling method characterized by improving the cooling efficiency of the electromagnet.
JP16642781A 1981-10-20 1981-10-20 Cooling method for electromagnet Pending JPS5868911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16642781A JPS5868911A (en) 1981-10-20 1981-10-20 Cooling method for electromagnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16642781A JPS5868911A (en) 1981-10-20 1981-10-20 Cooling method for electromagnet

Publications (1)

Publication Number Publication Date
JPS5868911A true JPS5868911A (en) 1983-04-25

Family

ID=15831213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16642781A Pending JPS5868911A (en) 1981-10-20 1981-10-20 Cooling method for electromagnet

Country Status (1)

Country Link
JP (1) JPS5868911A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0408230A2 (en) * 1989-07-10 1991-01-16 Westinghouse Electric Corporation Semi-compacted litz-wire cable strands spaced for coolant flow about individual insulated strands

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0408230A2 (en) * 1989-07-10 1991-01-16 Westinghouse Electric Corporation Semi-compacted litz-wire cable strands spaced for coolant flow about individual insulated strands

Similar Documents

Publication Publication Date Title
US10964469B2 (en) Cooling magnetic cores with ferrofluid and magnetic cores so cooled
US5462685A (en) Ferrofluid-cooled electromagnetic device and improved cooling method
US20130342297A1 (en) Magnetic exchange coupled core-shell nanomagnets
JP2012099739A (en) Core segment, annular coil core and annular coil
JP2008147404A (en) Soft magnetic composite material
WO2024051084A1 (en) Magnetic core taking skin effect of magnetic flux into consideration and design method therefor
JP2013179264A (en) Reactor, converter and power conversion device
US10910153B2 (en) Superparamagnetic iron cobalt alloy and silica nanoparticles of high magnetic saturation and a magnetic core containing the nanoparticles
JP2015141976A (en) reactor
JP2011124245A (en) Reactor device
US4528096A (en) Device for high gradient magnetic separation
Ishikawa et al. Design of high power electromagnets
JPS5868911A (en) Cooling method for electromagnet
Sugimoto History and future of soft and hard magnetic materials
US1494070A (en) Core for electromagnetic apparatus
JP4897608B2 (en) Superconducting magnet
Harris et al. Magnetic materials
JP2015130540A (en) Annular coil
JPS61203605A (en) Magnet having highly uniform magnetic field
WO2017122439A1 (en) Magnetic circuit component
JP2022115117A (en) Transformer oil, transformer equipped with transformer oil, and manufacturing method of transformer oil
TW508595B (en) Magnetic core insulation
Lupi 10‐kHz amorphous core power transformer
US20140375403A1 (en) Superparamagnetic iron cobalt ternary alloy and silica nanoparticles of high magnetic saturation and a magnetic core containing the nanoparticles
JP2002175918A (en) Inductor