JPS5868533A - Balancing method for elastic rotor - Google Patents

Balancing method for elastic rotor

Info

Publication number
JPS5868533A
JPS5868533A JP16718681A JP16718681A JPS5868533A JP S5868533 A JPS5868533 A JP S5868533A JP 16718681 A JP16718681 A JP 16718681A JP 16718681 A JP16718681 A JP 16718681A JP S5868533 A JPS5868533 A JP S5868533A
Authority
JP
Japan
Prior art keywords
rotor
substance
elastic
liquid
direction opposite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16718681A
Other languages
Japanese (ja)
Inventor
Katsuaki Kikuchi
勝昭 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16718681A priority Critical patent/JPS5868533A/en
Publication of JPS5868533A publication Critical patent/JPS5868533A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/32Correcting- or balancing-weights or equivalent means for balancing rotating bodies, e.g. vehicle wheels
    • F16F15/322Correcting- or balancing-weights or equivalent means for balancing rotating bodies, e.g. vehicle wheels the rotating body being a shaft

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Testing Of Balance (AREA)

Abstract

PURPOSE:To reduce imbalance generated in the rotor automatically by receiving a liquefied substance, which is liquefied at a fixed temperature or higher and solidified at a fixed temperature or lower, into a hollow section formed to the rotor, sufficiently distributing the liquefied substance into the hollow section and solidifying said substance. CONSTITUTION:The elastic rotor consists of a rotor proper 8 and a journal 9, and is supported by bearings 10. The hollow section 11 is shaped to said rotor proper 8, and the liqueified substance 12, which is liqueified at a fixed temperature or higher and solidified at a fixed temperature or lower, is received into the hollow section. When the elastic rotor is turned and exceeds critical speed, the rotor is deflected in the direction opposite to imbalance force A, and the center Os is displaced in the direction opposite to imbalance force A. In this case, the liquefied substance 12 is also distributed thickly in the direction opposite to imbalance force A, centrifugal force B by the liquefied substance 12 works in the direction opposite to imbalance force A, and imbalance force A is reduced. Accordingly, the liquefied substance 12 is solidified, resonant amplitude is decreased at critical speed, and the rotor is balanced.

Description

【発明の詳細な説明】 本発明は、危険速度を越えて運転される弾性ロータのバ
ランス法に係り、ロータに残留する不つりあいを自動的
に低減することにより、不つりあい振動を小さくして、
ロータを安定に運転させる弾性ロータのビランス法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of balancing an elastic rotor that is operated over a critical speed, and automatically reduces unbalance remaining in the rotor to reduce unbalance vibration.
The present invention relates to a virance method for an elastic rotor that allows the rotor to operate stably.

鍾近の回転機械は性能上の要求から、小形、軽量化を図
るすう勢にある。このことは、回転機械のロータの高速
化を意味する。第1図に示すように、ロータはロータ本
体1とジャーナル2で構成され、軸受3で支持されて回
転するのが一般的である。ロータ本体lには翼2羽根車
、電機子などの回転体(図示せず)が取付けられている
が、加工ff度9組立精度によって少なからず不っシお
い4が残っている。この不つシあい4が存在するため、
ロータ本体1を高速回転すると、不つルあい振動が発生
する。その振動振幅は回転数Nに対して、第2図に示す
ように変化する。振幅がピークとなる点は危険速度N 
a rと呼ばれる共振である。
Due to performance requirements, there is a trend toward smaller and lighter rotating machines in Zhongcheng. This means that the speed of the rotor of a rotating machine increases. As shown in FIG. 1, the rotor is generally composed of a rotor body 1 and a journal 2, and is supported by bearings 3 for rotation. Rotating bodies (not shown) such as two blades, an impeller, and an armature are attached to the rotor body 1, but due to the processing accuracy of ff9 and assembly accuracy, there are some deficiencies. Because this difference 4 exists,
When the rotor body 1 is rotated at high speed, friction vibration occurs. The vibration amplitude changes with respect to the rotational speed N as shown in FIG. The point where the amplitude peaks is the critical speed N
This is a resonance called a r.

高速回転するロータは、この危険速度N、、を通過して
運転されるので、危険速度での振幅は十分許容値内に納
まるようにしなければならない。
Since the rotor rotating at high speed is operated passing through this critical speed N, the amplitude at the critical speed must be kept sufficiently within an allowable value.

振動を小さくするには、不つりおい4を極力小さくすれ
ばよい。通常は不つりあい4が減らすため、第3図に示
すように修正おもり5を付加したシ、あるいは不つシあ
いそのものを削除したシする。この場合の修正菫の大き
さと位置は弾性ロータのノ〈27シング法と呼ばれる特
殊な方法で決定される。
In order to reduce the vibration, the unbalance 4 should be made as small as possible. Usually, in order to reduce the unbalance 4, a correction weight 5 is added as shown in FIG. 3, or the unbalance itself is deleted. The size and position of the correction violet in this case are determined by a special method called the elastic rotor nosing method.

従来の方法では、ロータの振動をいくつかの点で測定し
、そのデータをもとに、ある特別な計算を行い、修正菫
の大きさと位置を算定する。このために、特別な計測装
置や電子計算機システムを必要とする上、弾性ロータの
バランスと9作業は一般に大がかシであり大変なのが現
状である。
Traditional methods measure rotor vibrations at several points and use that data to perform special calculations to determine the size and location of the correction violet. For this purpose, special measuring equipment and electronic computer systems are required, and the work of balancing the elastic rotor is generally large-scale and difficult.

一方、ロータの不つシあい振動は回転数Nとともに第2
図に示すように応答するが、その際ロータ本体lは、第
4図に示すように、両端の軸受3の中心を結ぶ線上O−
0に対して、弓なシにたわんでふれまわシ、ロータ本体
lの中心線は0−0m−0のようKなる。ロータ本体1
の中心0■は、第2図の(a)、Φ)に示すように、危
険速度N0、の手前と後とでは、不クシめいの方向Aと
の位置関係が異なる。危険速度N、tよシ低い回転数で
はロータは不つシあい人の方向にたわんでふれまわり、
危険速度N、tを越えると不クシあいAとけ反一方、回
転する中空容器に入れられた液体は回転中心に同心にな
ろうとする性質がある。第5図(a)において、中空容
器6のなかに液体7金入れ、0点のまわりに中空容器6
をまわすと、液体7は0点から等半径の自由表面をつく
る。
On the other hand, the unbalanced vibration of the rotor increases with the rotational speed N.
The rotor body l responds as shown in the figure, but at that time the rotor main body l moves along the line O-
With respect to 0, the center line of the rotor body l bends and swings in an arched manner, and the center line of the rotor body l becomes K such as 0-0m-0. Rotor body 1
As shown in (a) and Φ in FIG. 2, the center 0■ of the critical speed N0 has a different positional relationship with the non-comb direction A before and after the critical speed N0. At rotation speeds lower than critical speeds N and t, the rotor bends and swings around in the direction of the unbalanced person.
If the critical speed N, t is exceeded, the skew A will break and the liquid contained in the rotating hollow container will tend to become concentric with the center of rotation. In FIG. 5(a), liquid 7 gold is placed in the hollow container 6, and the hollow container 6 is placed around the 0 point.
When , the liquid 7 creates a free surface of equal radius from the zero point.

第25!Jの(ロ)のように、ロータ中心が不っりあい
Aと反対向の場合に、もしロータ内部に液体があつ次と
すると第5図世)のような状態が作られる。
25th! If the center of the rotor is misaligned and is in the opposite direction to A, as shown in (b) of J, and there is liquid inside the rotor, a situation like that shown in Figure 5) will be created.

液体は軸受を結ぶ線上O−0のまわシに同心になろうと
するから図に示したように不つりあい人と反対の側で厚
く分布する。この結果、液体による不つルおいはBの方
向に発生し、不つジあいAを打消すように働らく。
Since the liquid tries to be concentric with the rotation line O-0 on the line connecting the bearings, it is distributed thickly on the side opposite to the unbalanced one as shown in the figure. As a result, the flaw caused by the liquid occurs in the direction B, which acts to cancel the flaw A.

本発明は、この現象を利用し、従来の弾性ロータのパラ
7ス法よ〕も簡便で確実なバランス法を提供することを
目的とする。
It is an object of the present invention to utilize this phenomenon to provide a balancing method that is simpler and more reliable than the conventional parallax method for an elastic rotor.

本発明は、弾性ロータの危険速度M後のふれまわり特性
とくに危険速度通過後の特性と回転中空容器内の液体の
挙動とを組合せたものである。
The present invention combines the whirling characteristics of the elastic rotor after the critical speed M, particularly the characteristics after passing the critical speed, and the behavior of the liquid in the rotating hollow container.

以下、本発明の一実施例を第6図によシ説明する。図に
おいてロータはロータ本体8.ジャーナル9で構成され
、軸受10で支持されており、第1図のロータと同じで
ある。中空部11は、ロータ本体8の任意の位置、任意
の大きさ、任意の長さで形成され、その外径面は、ロー
タの回転中心0−Oと同心である。液状物質12は自由
面が存在するように中空部11に入れである。
An embodiment of the present invention will be described below with reference to FIG. In the figure, the rotor is the rotor body 8. It is composed of a journal 9 and supported by a bearing 10, and is the same as the rotor shown in FIG. The hollow portion 11 is formed at an arbitrary position, an arbitrary size, and an arbitrary length in the rotor main body 8, and its outer diameter surface is concentric with the rotation center 0-O of the rotor. The liquid substance 12 is placed in the hollow part 11 so that a free surface exists.

このロータを回転すると、回転とともに振動は第7図の
曲@bのように変化する。第7図において、曲@aは、
中空部11に液状物質12を入れない場合の、不クシあ
い13による振動応答である。危険速度の手前の回転数
では、第5図(a)に示すように、ロータは不つりあい
人の方向にたわみ、その中心01は回転中心Oから不つ
ジあい例にずれる。このとき、液状物質12は遠心力の
ために回転中心Oまわフに等半径になるように中空部1
1の内面に分布する。液状物質12は不つC6い例Aに
厚く分布するので、これによって発生する遠心力Bは第
5図(a)のように不つシあい方向Aと同じ向きになる
。したがって不つりあいが増えたことKなるので、ロー
タの振動は液状物質12が無い場合に比べて増える。
When this rotor is rotated, the vibration changes as shown in the curve @b in FIG. 7 as the rotor rotates. In Figure 7, the song @a is
This is the vibration response caused by the gap 13 when the liquid substance 12 is not put into the hollow part 11. At a rotation speed just before the critical speed, the rotor deflects in the direction of the unbalanced rotor, as shown in FIG. 5(a), and its center 01 deviates from the rotation center O in the unbalanced direction. At this time, the liquid substance 12 is moved into the hollow part 1 so that it has an equal radius around the rotation center O due to centrifugal force.
Distributed on the inner surface of 1. Since the liquid substance 12 is thickly distributed in the uneven C6 case A, the centrifugal force B generated thereby is in the same direction as the uneven direction A, as shown in FIG. 5(a). Therefore, since the unbalance is increased, the vibration of the rotor increases compared to the case where there is no liquid substance 12.

しかし危険速度を越すと、第5図(b)に示すように、
ロータは不クシあい八と反対向きにたわみ、ロータ0中
心O1は不つりあいAと反対向きにずれる。このとく液
状物質12も不っシあいAと反対向きに厚く分布する。
However, if the critical speed is exceeded, as shown in Figure 5 (b),
The rotor deflects in the opposite direction to the unbalance A, and the rotor 0 center O1 shifts in the opposite direction to the unbalance A. In particular, the liquid substance 12 is also distributed thickly in the direction opposite to the mismatch A.

つまシ液状物質12による遠心力Bは不つシおい万人と
反対向きになシ、不つりあいAを減らすように作用する
。このときの不つシあい振動は第7図の曲、@bのよう
に、液状物質12が無い場合の曲、iiaよジも下にく
る。
The centrifugal force B caused by the liquid material 12 acts in the opposite direction to the unbalanced force, and thus acts to reduce the unbalance A. The unbalanced vibration at this time, as shown in the song @b in Fig. 7, is also lower than the song iia yo ji when there is no liquid substance 12.

この状態になつ穴ときの液状物質12の形状を何らかの
方法で凍結する。
The shape of the liquid substance 12 when the hole is in this state is frozen by some method.

この状態で、回転数を下げると、実質的な不クシあいは
低減しているから、曲mCのような振動応答となシ、危
険速度での共振振幅は小さくなる。
In this state, when the rotational speed is lowered, the actual inconsistency is reduced, so the vibration response like that in song mC is not generated, and the resonance amplitude at the critical speed is reduced.

つまシ、弾性ロータのバランスが達成されたことになる
This means that the balance between the knob and the elastic rotor has been achieved.

このような目的の丸めに、液状物質12としては、バラ
ンス作業時にのみ流体であり、実際のロータ運転時に固
体化するものが必要である。このような物質としては、
例えばゲラステックに熱を加えて液体化したもの、硬化
する接着剤、溶融金属などがあり、溶融金属としては、
低融点金属がある。
For this purpose, the liquid substance 12 needs to be fluid only during the balancing operation and solidify during actual rotor operation. Such substances include
For example, there are gelastec that is heated and liquefied, hardening adhesives, and molten metals.
There are low melting point metals.

中空部に封入する、この種の物質としては、ロータの密
度と同じ密度をもつのが好ましい。この場合には、殆ん
ど振動が発生しないかなりのバランス効果が期待できる
It is preferable that this kind of substance sealed in the hollow part has the same density as the rotor. In this case, a considerable balance effect can be expected with almost no vibration occurring.

例えば、鉄製のロータの場合には、Sn(密度7.3g
/cm”、融点232C)をベースとじpbやJ3iな
どを適当に配合し密度を合わせた低融点合金を用いるこ
とができる。この融点は50Cでちゃ、これを中空部1
1に封入しておき、危険速度を十分に越えた回転数でロ
ータを回しておき、外部又は内部から熱を加えて、液体
化する。この物質が中空部内面に十分分布してから、加
熱をや第8図は本発明へ実施例でおる。14はロータ部
に液状物質12を封入したものである。
For example, in the case of a steel rotor, Sn (density 7.3g
/cm", melting point 232C) can be used as a base, and a low melting point alloy can be used, which is made by suitably blending PB, J3i, etc. and matching the density.The melting point is 50C, so this can be used as a base material for hollow part 1.
1, the rotor is rotated at a rotation speed well above the dangerous speed, and heat is applied from the outside or inside to liquefy it. After this substance is sufficiently distributed on the inner surface of the hollow portion, heating is performed. FIG. 8 shows an example of the present invention. 14 is a rotor portion in which a liquid substance 12 is sealed.

本発明によれば従来のバランスのように振動の計測を必
要としないで、バランスとシが自動的にできる。
According to the present invention, balance and balance can be automatically performed without requiring vibration measurement unlike conventional balances.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はロータの正面図、第2図は、弾性ロータの振動
応答線図で、(a)、Φ)は危険速度前後での不つりあ
い方向とロータたわみ方向を示す断面図、第3図は従来
法のバランス法を施し九ロータの正面図、第4図は不つ
すあい撮動時のロータのたわみを示す正面図、第5図は
中空容器内の液体の分布を示す断面図、第6図は本発明
の弾性ロータのバランス法の実施例を示す正面断面図、
第7図は本発明を実施した場合のバランス効果を示すロ
ータ振動応答線図、第8図は本発明の弾性ロータのバラ
ンス法の他の実施例を示す正面断面図である。 8・・・ロータ本体、9・・・ジャーナル、lO・・・
軸受、11・・・中空部、12・・・液状物質、13・
・・不つりあい、14・・・中空容器。 不1図 ncr    回転数〃 ¥i  3  図 亨4図 第 5 図 (久)                      
(b)篤乙図 罰 7 目 【1申云I史(N) 刀 S  図
Fig. 1 is a front view of the rotor, Fig. 2 is a vibration response diagram of the elastic rotor, (a) and Φ) are cross-sectional views showing the unbalance direction and rotor deflection direction before and after the critical speed, and Fig. 3 Figure 4 is a front view of the nine rotors using the conventional balancing method, Figure 4 is a front view showing the deflection of the rotor during unsteady imaging, Figure 5 is a cross-sectional view showing the distribution of liquid in the hollow container, FIG. 6 is a front sectional view showing an embodiment of the elastic rotor balancing method of the present invention;
FIG. 7 is a rotor vibration response diagram showing the balancing effect when the present invention is implemented, and FIG. 8 is a front sectional view showing another embodiment of the elastic rotor balancing method of the present invention. 8...Rotor body, 9...Journal, lO...
Bearing, 11...Hollow part, 12...Liquid substance, 13.
...Unbalance, 14...Hollow container. Number of revolutions〃¥i 3 Figure 4 Figure 5 (Ku)
(b) Atsushizuzu Punishment 7th Eye [1 Shinyun Ishi (N) Sword S Figure

Claims (1)

【特許請求の範囲】[Claims] ロータ本体の内部に中空部をその内面が回転中心に同心
となるように設けるか、またはロータ本体の外側に同様
の構造を有する中空容器を設け、これらの中空部内に、
ある温度以上では液体になりこの温度以下では固体化す
る液状物質を封入し、該ロータの危険速度を十分越えた
回転数でロータを回し、加熱などによって液状物質を液
体にし、液状物質を中空部内面に十分分布させ、しかる
のちに温度を下げ、液状物質を固化させ、ロータを停止
させることを%徴とする弾性ロータのバランス法。
A hollow part is provided inside the rotor body so that its inner surface is concentric with the center of rotation, or a hollow container having a similar structure is provided outside the rotor main body, and inside these hollow parts,
A liquid substance that becomes liquid above a certain temperature and becomes solid below this temperature is sealed, the rotor is rotated at a rotation speed that sufficiently exceeds the dangerous speed of the rotor, the liquid substance is turned into a liquid by heating, etc., and the liquid substance is transferred to the hollow part. A method of balancing an elastic rotor in which the characteristics are sufficiently distributed on the inner surface, then the temperature is lowered, the liquid substance solidifies, and the rotor is stopped.
JP16718681A 1981-10-21 1981-10-21 Balancing method for elastic rotor Pending JPS5868533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16718681A JPS5868533A (en) 1981-10-21 1981-10-21 Balancing method for elastic rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16718681A JPS5868533A (en) 1981-10-21 1981-10-21 Balancing method for elastic rotor

Publications (1)

Publication Number Publication Date
JPS5868533A true JPS5868533A (en) 1983-04-23

Family

ID=15845016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16718681A Pending JPS5868533A (en) 1981-10-21 1981-10-21 Balancing method for elastic rotor

Country Status (1)

Country Link
JP (1) JPS5868533A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781077A (en) * 1986-12-19 1988-11-01 Massachusetts Institute Of Technology Stable intershaft squeeze film damper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781077A (en) * 1986-12-19 1988-11-01 Massachusetts Institute Of Technology Stable intershaft squeeze film damper

Similar Documents

Publication Publication Date Title
US2822225A (en) Ball bearing assembly
JP3214962B2 (en) Measuring device for mass flow
Nicholas et al. The influence of tilting pad bearing characteristics on the stability of high speed rotor-bearing systems
JPS6250189B2 (en)
US2437983A (en) Vibrator
JPS5868533A (en) Balancing method for elastic rotor
FR2435310A1 (en) METHOD AND MACHINE FOR FILLING A CAPSULE WITH POWDER
US2842966A (en) Balancer for water wheels
JPS62135743A (en) Balancing method
Holmes Vibration and its control in rotating systems
JPH0746739Y2 (en) Rotor shaft of medium bearing exhaust turbine turbocharger
JPS60151530A (en) Rotation balancing method of fluid machinery
Foiles et al. Balancing with phase only (single-plane and multiplane)
Wood Nonlinear vibration damping functions for fluid film bearings
JPH03149412A (en) Bearing for damping
JPS58190598A (en) Assembly construction of rotor
US3225609A (en) Two-axis gyroscope
Gunter et al. Balancing of rigid and flexible rotors
Czołczyński et al. Instabilities of the elastically supported laval rotor subjected to a longitudinal force
SU1112130A1 (en) Method for making drum and disc turbine rotor
JPS61503044A (en) Improved damping of rotor radial vibrations
Black Paper 4: synchronous whirling of a shaft within a radially flexible annulus having small radial clearance
SU1247709A1 (en) Method of checking conditions of bearing unit
SU876174A1 (en) Mechanic aerator of flotation machine
JPS5829291Y2 (en) magnetic bearing device