JPS586827A - Constant flow control unit for high pressure powder/gas pipe transport system - Google Patents

Constant flow control unit for high pressure powder/gas pipe transport system

Info

Publication number
JPS586827A
JPS586827A JP10275581A JP10275581A JPS586827A JP S586827 A JPS586827 A JP S586827A JP 10275581 A JP10275581 A JP 10275581A JP 10275581 A JP10275581 A JP 10275581A JP S586827 A JPS586827 A JP S586827A
Authority
JP
Japan
Prior art keywords
flow rate
powder
pressurized
pressure
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10275581A
Other languages
Japanese (ja)
Other versions
JPH0158085B2 (en
Inventor
Takashi Moriyama
森山 峻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Consultant and Engineering Co Ltd
Original Assignee
Denka Consultant and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Consultant and Engineering Co Ltd filed Critical Denka Consultant and Engineering Co Ltd
Priority to JP10275581A priority Critical patent/JPS586827A/en
Publication of JPS586827A publication Critical patent/JPS586827A/en
Publication of JPH0158085B2 publication Critical patent/JPH0158085B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Air Transport Of Granular Materials (AREA)

Abstract

PURPOSE:To ensure constant conveyance by detecting the pressure difference between at the sending portion of powders and at the inlet portion to a furnace and by controlling a gas flow, solid/gas ratio, and the pressure difference between both portions at constant values. CONSTITUTION:The compressed air introduced from a compressed air source 10 is guided into the flow portion 3 of a fluidized bed pressurized tank 1 in which powders such as pulverized coal are filled, then the powders are fluidized, are conveyed through a transport pipe 6, and are fed by pressure to a receiving unit 8 such as an inlet port of a blast furnace or a blast port of a converter. According to this constitution, pressures, solid/gas ratio, and flows at the flow portion, receiving portion, and other portions are detected and sent to the control unit 28 so that the flow is controlled by use of a bypass passage 14, etc. and the pulverized coal fed to the receiving unit can be controlled at a constant value.

Description

【発明の詳細な説明】 この発明は、粉粒体を加圧気体によって輸送する高圧粉
粒体気体管路輸送装置の定流量制御装置に関し、ll#
に粉粒体を充填した流動床式加圧タンクに加圧流量*m
弁を有する加圧ラインから加圧気体が流動床を通じて供
給され、上記加圧タンクに賭、された輸送ラインに粉粒
体を定流量送出して受給装置K輸送する高圧粉粒体気体
管路輸送装置に適用して好適なものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a constant flow rate control device for a high-pressure powder and granule gas pipe transport device that transports powder and granules using pressurized gas.
The pressurized flow rate*m is applied to a fluidized bed pressurized tank filled with powder and granules.
Pressurized gas is supplied from a pressurization line having a valve through a fluidized bed, and a constant flow of powder and granules is sent to a transport line connected to the pressurized tank and transported to a receiving device K. It is suitable for application to transportation equipment.

との聰輸送装置は、例えば微粉炭等の粉粒体を高炉羽目
、転炉吹込口、取鍋脱硫ランス等の受給装置に高圧定量
輸送する場合に使用するものであるが、この場合粉粒体
を定流量で輸送することは勿論、高炉等の燃m装置の必
要支燃性ガスや取鍋ヘの不活性ガスを粉粒体と共に輸送
することが好ましい、この意味で固気比又は総加圧気体
流量を一定値に保持した状態で粉粒体を定流量輸送する
ことが家まれでいる。
This transportation device is used to transport powder and granules, such as pulverized coal, to receiving devices such as blast furnace linings, converter inlets, ladle desulfurization lances, etc. under high pressure. In addition to transporting the powder at a constant flow rate, it is also preferable to transport necessary combustion-supporting gas for combustion equipment such as a blast furnace and inert gas to the ladle together with the powder.In this sense, the solid-gas ratio or total It is rare to transport granular materials at a constant flow rate while maintaining the pressurized gas flow rate at a constant value.

又粉粒体供給側即ち加圧タンクの圧力が変動する場合は
加圧タンク内圧力と受給装置内圧力との差を一定値に保
持した状態で粉粒体を定流量輸送することが望まれてい
る。
In addition, when the pressure on the powder supply side, that is, the pressurized tank, fluctuates, it is desirable to transport the powder at a constant flow rate while maintaining the difference between the pressure inside the pressurized tank and the pressure inside the receiving device at a constant value. ing.

本発明は前記*iを確実に満足し得る新規な高圧粉粒体
気体管路輸送装置の定流量制御装置を提供せんとするも
ので、以下図面について本発明の詳細な説明する。
The present invention aims to provide a new constant flow rate control device for a high-pressure powder gas pipe transport device that can reliably satisfy the above-mentioned *i.The present invention will be described in detail below with reference to the drawings.

第1図は高圧粉粒体気体管路輸送装置を示す系統図であ
って、(1)は微粉炭等の粉粒体が投入弁(2)を介し
て充填される流動床式加圧タンク、(3)は流動体、(
4)は排気弁である。
FIG. 1 is a system diagram showing a high-pressure powder gas pipe transport system, in which (1) is a fluidized bed pressurized tank into which powder such as pulverized coal is filled via an input valve (2). , (3) is a fluid, (
4) is an exhaust valve.

(6)は加圧タンク(1)に接続された輸送管であって
、その先端が排出ノズル(5)としてタンク内に延長さ
れて流動床(3)と対向している。
(6) is a transport pipe connected to the pressurized tank (1), the tip of which extends into the tank as a discharge nozzle (5) and faces the fluidized bed (3).

(8)は所要圧力(P、)を有する受給装置であって、
輸送管(6)の他端Kli!続されて−る。受給装置(
8)としては、高炉の羽口、転炉の秋込口、0−タリー
キルン等の燃焼装置の他、脱硫用取鍋、ホッパー等であ
っても良い。
(8) is a receiving device having a required pressure (P, ),
The other end of the transport pipe (6) Kli! It is continued. Receiving device (
8) may be a combustion device such as a tuyere of a blast furnace, an inlet of a converter, or an O-tally kiln, as well as a ladle for desulfurization, a hopper, or the like.

α1は空気等の支燃性ガス、不活性ガス等の加圧(3)
K供給されると共に、流量IItlj弁03を介装した
バイパスラインQ4を介して輸送管(6)K供給される
4(161は加圧タンク(1)の1量を測定するp−ド
セル等の重量検me、aηは加圧タンクの流動床圧力(
Pl)を検出する圧力検出器(2)は加圧気体供給源−
かもの総供給気体流量を検出するオリアイス等の流量検
出器、(2I)はバイパスラインa4)に介装されたオ
リアイス等の流量検出器である。この場合第2図につい
て後述するようにバイパスラインIの加圧気体流量を可
蛮することにより加圧タンク(1)からの)゛。
α1 is pressurization of combustion-supporting gas such as air, inert gas, etc. (3)
K is supplied to the transport pipe (6) through the bypass line Q4 with the flow rate IItlj valve 03 interposed. Weight inspection me, aη is the fluidized bed pressure in the pressurized tank (
The pressure detector (2) for detecting Pl) is connected to the pressurized gas supply source -
A flow rate detector such as an Olyice or the like which detects the total gas supply flow rate of the spider, (2I) is a flow rate detector such as an Olyice or the like interposed in the bypass line a4). In this case, by increasing the flow rate of pressurized gas in bypass line I, as will be explained later with reference to FIG.

粉粒体切出量を@御できる。The amount of powder material cut out can be controlled.

(財)は加圧タンクの流動床圧力と輸送管(6)のタン
ク外位置圧力と0差圧を検出して圧力損失から排出ノズ
ルの粉粒体切出量を推算するための差圧検出器、(2)
は受給装置(8)の圧力を検出する圧力検出器である。
(Foundation) detects the pressure difference between the fluidized bed pressure in the pressurized tank and the pressure at the outside of the tank in the transport pipe (6), and estimates the amount of powder and granules cut out by the discharge nozzle from the pressure loss. Vessel, (2)
is a pressure detector that detects the pressure of the receiving device (8).

(ホ)はキーボード等のV常備入力装置であって、所望
とするタンク重□量変化率(”/dt)、固気比−1加
圧気体の總流量(QT)及びバイパスラインの加圧気体
流量(QB)等を入力する。
(e) is a V constant input device such as a keyboard, which includes the desired tank weight change rate (''/dt), solid-air ratio -1 pressurized gas flow rate (QT), and bypass line pressurization. Input the gas flow rate (QB), etc.

(ハ)は制御装置であって、前記各検出器(Ie、aη
(1)Qυc12(財)及び(ハ)の検出出力と、設定
値人力装M(ハ)の出力とが供給され、これらに基づき
所定の流量調節弁αυ03の制御l出力が得られる。こ
の制御装置(至)の1iilIIIU内容は、以下に述
べる如くである。jaIち第1図の装置に於て各部の寸
法を輸送管(6)の相当管長L e=140m、輸送管
の呼び径Di=25A、微粉炭粒度d P=200メツ
シュ残Fi=20%、加圧タンク容積V = l m”
 トし、受給装置圧力をP、 =2 、 or;g7e
iarとして実験した結果、第2図に示す特性曲線E及
びFが得られた。第2図において縦軸はタンク重量変化
率dw/dt (砕7b )、横軸はバイパスライン気
体流11QB(NW!/h)及び総供給気体流量QT(
N!I//h)である0曲lIEはcksr/dL=−
AQB+B+C(P% Pt)−−(1)  (但しA
、B及びCは定数)で表わされた特性曲線であって、曲
a m、 、El 、Es及びE、は夫夫加圧タンク圧
力(Pl)を夫々4.4.5.5及び5.5r4/♂G
K設定した場合に得られた特性曲線+メ名−叉曲線Fは
dw/d t=m −r G −Q、 (但しr、は加
圧気体の比重量)で表わされた特性曲線であって、曲I
f Fs 、Ft 、Fs、F4及びF、は夫々[%J
tmを夫々5.1O115,20及び25に設定した場
合に得られる特性曲線である。
(C) is a control device, and each of the detectors (Ie, aη
(1) The detection outputs of Qυc12 and (c) and the output of the set value manual device M (c) are supplied, and based on these, a predetermined control l output of the flow rate regulating valve αυ03 is obtained. The contents of this control device (to) are as described below. In the apparatus shown in Figure 1, the dimensions of each part are as follows: equivalent pipe length of the transport pipe (6) L e = 140 m, nominal diameter of the transport pipe Di = 25 A, pulverized coal particle size d P = 200, mesh residue Fi = 20%, Pressurized tank volume V = l m”
and the receiver pressure is P, =2, or;g7e
As a result of experiments using iar, characteristic curves E and F shown in FIG. 2 were obtained. In Fig. 2, the vertical axis is the tank weight change rate dw/dt (7b), and the horizontal axis is the bypass line gas flow 11QB (NW!/h) and the total supply gas flow rate QT (
N! 0 song lIE which is I//h) is cksr/dL=-
AQB+B+C(P% Pt) --(1) (However, A
, B and C are constants), and the curves a m, , El , Es and E represent the pressurized tank pressure (Pl) of 4.4.5.5 and 5, respectively. .5r4/♂G
The characteristic curve + menu name - fork curve F obtained when K is set is a characteristic curve expressed as dw/d t = m - r G - Q, (where r is the specific weight of the pressurized gas). There, song I
f Fs , Ft , Fs, F4 and F are respectively [%J
These are characteristic curves obtained when tm is set to 5.1O115, 20, and 25, respectively.

この図から明らかなように、 (1)、)加圧気体量を一定にして粉粒体を輸送する場
合には、横軸から所望の総加工流量Q1 を選択しQT
が一定となる直線Xと曲線E中の選択された1つ例えば
曲mE1との交点kを選び、曲11EIK基づき加圧タ
ンク内圧力(P、I)と受給装置内圧力6、(P、゛)
  との差圧(Pl・−P、・)を選定する。従って図
においては総加圧気体流量を5ONm//hとするとき
差圧(P、! −P、 )==4−2=2即/、d(、
に維持すればタンク重量炭化率dw/dt=8004/
hで総気体流量を一定として定流量輸送が可能となる。
As is clear from this figure, (1),) When transporting powder with a constant pressurized gas amount, select the desired total processing flow rate Q1 from the horizontal axis and QT
Select the intersection point k between the straight line X and a selected curve E, for example, the curve mE1, where )
Select the differential pressure (Pl・−P,・). Therefore, in the figure, when the total pressurized gas flow rate is 5ONm//h, the differential pressure (P,! -P, )==4-2=2I/,d(,
If the tank weight carbonization rate is maintained at dw/dt=8004/
At h, constant flow rate transportation is possible with the total gas flow rate constant.

(匂 前記差圧(Pg  Pt)を一定にして粉粒体を
輸送すれ場合には、前記(1)式に辰砂る(PtP*)
が定数となるから(1)式はdw/di”、之Q−十B
’となり第2図に於いて*、is図示の1本の直IJG
となん従って所望の粉粒体輸送量(d w /d t)
を得るには横軸のバイパス気体流量を可変調整して直1
1Gとの一交点における縦軸のdw/dtを選択するこ
とによって差圧(Pg  Pt)を一定として定流量輸
送が可能となる。
(Smell) When transporting powder while keeping the differential pressure (Pg Pt) constant, cinnabar (PtP*) is calculated using the formula (1) above.
Since is a constant, equation (1) is dw/di'', so Q-1B
'Next to Figure 2, *, is one straight IJG shown.
Therefore, the desired powder transport amount (d w /d t)
To obtain this, the bypass gas flow rate on the horizontal axis is variably adjusted to
By selecting dw/dt on the vertical axis at one intersection with 1G, constant flow rate transport is possible with the differential pressure (Pg Pt) constant.

(3)  固気比mを一定にして粉粒体を輸送する場合
は、所望の固気比を選定し、その固気比に対応する直線
F、〜F、を選択し、所望の粉粒体輸送蓋(dw/dt
)に相等する曲ML〜E4との交点からバイパス気体流
ff1QB及び加圧タンク内圧力(P、)を選定するか
又はバイパス気体流JIQ、及び差圧(P、 −Pt 
)  を選定することによって固気比を一定として粉粒
体を定流量輸送することが可能となる・ 以上の結果から、前記特性面@E、F及びGを予め制御
装置@に記憶させ且つこの1!l制御装置(至)K前記
各検出* asan GW)(財)(2)(財)の出方
を供給すると共に設定値入力装置(2)から所望のタン
ク重量変化率(dw/dt)、固気比−又は総加工気体
流量(Q、りを設定、し、バ、イバス気体流量(QB)
及び加圧圧力(P、)の設定値を夫々自動的KI[ll
1ft置(至)で演算設定して供給することKよって、
制御装置(至)から流量脚節弁収υa3を操作する操作
制御出力を得ることができ、前記した総加工気体流量(
Qア)、差圧(Pg  Pt)及び固気比−の何れ番を
一定とする粉粒体定流量輸送を行なうことができる。
(3) When transporting powder while keeping the solid-air ratio m constant, select the desired solid-air ratio, select the straight line F, ~F, corresponding to the solid-air ratio, and transport the desired powder Body transport lid (dw/dt
), or select the bypass gas flow ff1QB and the pressurized tank internal pressure (P, ) from the intersection with the curve ML~E4, which is equivalent to
) By selecting , it is possible to transport powder and granular material at a constant flow rate with a constant solid-air ratio. From the above results, the above characteristic surfaces @E, F, and G are stored in advance in the control device @, and this 1! l Control device (to) K Each of the above detections Solid-gas ratio - or total processing gas flow rate (Q)
and pressurization pressure (P, ) are automatically set to KI [ll
By setting and supplying the calculation at 1 ft increments,
An operation control output for operating the flow rate leg valve control υa3 can be obtained from the control device (to), and the total processed gas flow rate (
It is possible to carry out constant flow rate transportation of powder or granular material by keeping any of Qa), differential pressure (Pg Pt), and solid-gas ratio constant.

尚輸送管(6)内の粉粒体のみの質量流量は、重量検出
1i!Qeの出力に代え以下述べるように測定すること
ができる。即ち輸送管(6)の離れた2点間の圧力損失
ΔPTは△P?=Δp、 +K1mQ、、=−に、Q4
+に、mQ。
The mass flow rate of only the powder in the transport pipe (6) is determined by weight detection 1i! Instead of the output of Qe, it can be measured as described below. That is, the pressure loss ΔPT between two distant points on the transport pipe (6) is ΔP? =Δp, +K1mQ,, =-, Q4
+, mQ.

−−(1)で表わされる。但しΔP、は粉粒体が零のと
きの加圧気体(Q、r)のみによる圧力損失、mは固気
比、K、 、K、は比例常数である。  、     
     i、−又粉粒体の質量流量簿はW=mQT−
−(2)で表わされ、(1)(り式よ) W=(△PT  ’tQ7)/に*−−(3)となり、
結局粉粒体流量は定数に、及びKK、  を予め算出し
ておき、損失圧力と加圧気体流量とを検出することによ
シ測定することができる。
--Represented by (1). However, ΔP is the pressure loss due only to the pressurized gas (Q, r) when the particle size is zero, m is the solid-gas ratio, and K, , K are proportional constants. ,
i, - Also, the mass flow rate table of powder and granular material is W = mQT-
- (2), (1) (from the formula) W = (△PT 'tQ7)/ becomes *-- (3),
After all, the flow rate of the powder or granular material can be determined by calculating a constant value, KK, in advance, and detecting the loss pressure and the pressurized gas flow rate.

一方加圧気体流量(QT)をオリアイス差圧△POで求
める場合にはQ T ==Ks ム丙(但しに1は比例
定数)で表わされ、従って両辺を二乗するとQQ T 
” Ks△POとなり、これを(3)式に代入すると、
W=に4(△PT−に、△Po) −−(4)但しに4
−に:/にいに、 :に、 KSとなる。なお、排出ノ
ズルの圧力損失の場合は(1)(2)(3)弐に於ける
QTを(QT−QB)K!It換えれば良−0但し△P
、の値は無視し得る程度に小さいので(4)式はWφに
4ΔPTとなる。
On the other hand, when the pressurized gas flow rate (QT) is determined by the Oriais differential pressure △PO, it is expressed as Q T ==Ks MU (where 1 is a proportionality constant), and therefore, by squaring both sides, QQ T
” Ks△PO, and by substituting this into equation (3), we get
W = 4 (△PT-, △Po) --(4) However, 4
-ni:/niini, :ni, becomes KS. In addition, in the case of pressure loss in the discharge nozzle, QT at (1), (2), and (3) 2 is (QT-QB)K! It's fine if you change it - 0 but △P
Since the value of , is negligibly small, equation (4) yields 4ΔPT for Wφ.

従って、差圧検出器(2)又は他の輸送管(6)の離れ
た2点間の差圧を検出する差圧検出器(至)の出力と・
  流量検出器(2)の出力とにより粉粒体のみの質量
流量を測定することができる。
Therefore, the output of the differential pressure detector (2) or the differential pressure detector (to) that detects the differential pressure between two distant points of the other transport pipe (6).
The mass flow rate of only the powder can be measured based on the output of the flow rate detector (2).

以上のように本発明によると、総加工気体流量、加圧タ
ンク圧力と受給装置圧力との差圧及び固気比の何れか1
−2を一定とLl吠腺で粉粒体を定流量輸送することが
できる大なる特徴を有し、圧力ヲ有スるプロセス、イン
ジエクシ曹ン、高固気比燃料供給、高炉羽目分配等に使
用可能な粉粒体輸送装置を提供することができる。
As described above, according to the present invention, any one of the total processing gas flow rate, the differential pressure between the pressurized tank pressure and the receiving device pressure, and the solid-air ratio
It has the great feature of being able to transport powder and granules at a constant rate at a constant level of -2, and is suitable for processes with pressure, injection carbon, high solid-gas ratio fuel supply, blast furnace bed distribution, etc. A usable powder transport device can be provided.

又バイパス気体流量を間欠的に変化させることKよりパ
ルス燃焼・プラグ輸送等を行なうことが可能となる・ 尚上鍔に於いては加圧タンク(1)からの粉粒体の輸送
をバッチ的に行なう場合について説明したが、加圧タン
ク(1)の粉粒体が所定のレベル以下となったとき加圧
タンク(至)内圧力を加圧タンク(1)内圧力と均圧K
した状態で加圧タンク(至)の粉粒体を加圧タンク(1
)に移送し、このとき重量検出器αeの出力を重量検出
器缶の出力で減算して加圧タンク(1)の重量増加分を
相殺するようにすれば1.粉粒体を連続的に定流量輸送
することができる。
In addition, by intermittently changing the bypass gas flow rate, it becomes possible to perform pulse combustion, plug transportation, etc. In addition, in the above-mentioned tsuba, powder and granular material from the pressurized tank (1) can be transported in batches. As described above, when the powder and granular material in the pressurized tank (1) falls below a predetermined level, the pressure inside the pressurized tank (to) is equalized with the pressure inside the pressurized tank (1).
In this state, the powder and granules in the pressurized tank (to) are transferred to the pressurized tank (1
), and at this time, the output of the weight detector αe is subtracted by the output of the weight detector can to offset the increase in weight of the pressurized tank (1).1. Powder can be transported continuously at a constant flow rate.

父上例に於いては11111装置CI8が記憶演算機能
を有する場合について説明し念が、第4図に示すように
アナログ的に総気体流量又は/及び加圧タンク・受給装
置差圧又は加圧タンク圧力を一定として制御するように
しても良い。即ち(4υは加圧タンク圧力検出器aηの
出力P、及び受給装置圧力検出器Qωのt11力P、カ
供給されそれらの差圧(RP*)  を得る差圧演算器
である。(4カは検出器0ηの出力P1及び差圧演算器
同の出力を受けてそれらの何れか一つを選択する選択切
換回路である。
In this example, we will explain the case where the 11111 device CI8 has a memory calculation function, but as shown in Figure 4, the total gas flow rate or/and pressure tank/receiving device differential pressure or pressure tank The pressure may be controlled to be constant. That is, (4υ is a differential pressure calculator that is supplied with the output P of the pressurized tank pressure detector aη and the t11 force P of the receiving device pressure detector Qω, and obtains the differential pressure (RP*) between them. is a selection switching circuit which receives the output P1 of the detector 0η and the output of the differential pressure calculator and selects one of them.

(41は糺供給気体流量検出器翰の出力QT及び輸送管
差圧検出器(ト)の出カムPTが供給されこれらに基づ
き粉粒体のみの質に流量を演算する質量流量演算器、(
4aはタンク重量検出器αQの出力を時間微分器(至)
で微分した出力dw/dt、ノズル差圧検出器c!優の
出力を定数乗算器(40で定数Kを乗算して出力△PT
に比例するものとして求められた質量流量dw/dt及
び質量流量演算器(43の出力dw/diのうちの何れ
か一つを遣釈する選択切換回路である。
(41 is a mass flow rate calculator which is supplied with the output QT of the glue supply gas flow rate detector (H) and the output cam PT of the transport pipe differential pressure detector (G), and calculates the flow rate based on these based on the quality of only the powder and granules; (
4a is a time differentiator for the output of tank weight detector αQ (to)
Output dw/dt differentiated by, nozzle differential pressure detector c! The output of Yu is multiplied by a constant K by 40 and output △PT
This is a selection switching circuit that interprets either the mass flow rate dw/dt determined as being proportional to the mass flow rate dw/dt and the output dw/di of the mass flow rate calculator (43).

((Sは選択切換回路−の出力と所望の質量流量設定値
とを比較して1lfI5出力が得られる質量流量調節計
、■は選択切換回路、G47)(喝は夫々質量流量調節
計(ハ)の出力が選択切換回路咽を通じて第2図におけ
る特性面lIE及びGに応じた出力が得られるようにさ
れた圧力設定用ゲイン調整器及びバイパス流量設定用ゲ
イン調整器である。
((S is a mass flow controller that obtains 1lfI5 output by comparing the output of the selection switching circuit - and the desired mass flow rate set value, ■ is a selection switching circuit, G47) ) is a pressure setting gain adjuster and a bypass flow rate setting gain adjuster whose outputs correspond to the characteristic surfaces IIE and G in FIG. 2 through the selection switching circuit.

(49はゲイン調整器(47)の圧力設定用出力及び選
択切換回路(4邊の出力が供給された圧力H筒針であっ
て、この調節計(4!1fIhら加圧流量供給ラインa
りに介装された加圧流量調節弁αN)の操作出力が得ら
れ&文選択切換回路■の出力側間に介挿された切換回路
611を開じれは質量流量調節針の出力信号に基づき圧
力調節計と流量Mfti計とを同時にカスケード制御す
ることも可能である。
(49 is the pressure H barrel needle to which the output of the gain regulator (47) and selection switching circuit (4 points) is supplied, and this regulator (4!1fIh to pressurized flow rate supply line a
The switching circuit 611 inserted between the output side of the pressurized flow rate control valve αN) inserted between the control valve and the output side of the sentence selection switch circuit ■ is opened based on the output signal of the mass flow rate control needle. It is also possible to perform cascade control of the pressure regulator and the flow rate Mfti meter at the same time.

備はゲイン調整器−の流量設定用出力及びバイパス流量
検出器Qυの出力QBが供給された減量調節計であって
、このiwmtimからパイパスラインQ4に介装され
た流量1M節節介謙の操作出力が得られ  ゝ□る。
The device is a weight loss controller to which the output for setting the flow rate of the gain regulator and the output QB of the bypass flow rate detector Qυ are supplied, and from this iwmtim the flow rate 1M node connected to the bypass line Q4 is operated. Output is obtained.

而して選択切換回路りを差圧演算巻重の出力が圧力調節
針(至)K供給されるよう操作すると共に選択切換回路
(44)を操作して検出器al19c14の出力及び調
節計(43の出力の何れか1つを選択し、さらに選択切
換回路に)をゲイン調整器(46@に切換え、且つゲイ
ン調整器Giηを特性曲線Eに基づいて調整することK
よって総供給流量を一定として粉粒体を定流量輸送する
ことができ、又同様に選択切換回路(至)をゲイン調整
1H4111K切換えゲイン調整器(至)を第2図の特
性面!i!Gに対応させて調整する仁とKより加圧タン
ク・受給装置差圧(p、−p、)を一定として粉粒体を
定流量輸送することができる・尚上記各実施例に於−て
は粉粒体の質量流量をタンク重量変化牢、輸送管ノズル
圧力損失又は輸送管の離れた2点間の圧力損失及び総供
給気体流鷲によって検出するようにした場合について説
明したが、これらはその何れ−bh1つを検出するよう
にす艶ば良い。
Then, the selection switching circuit is operated so that the output of the differential pressure calculation winding is supplied to the pressure adjustment needle (to) K, and the selection switching circuit (44) is operated to change the output of the detector al19c14 and the controller (43). Select one of the outputs of , further switch the selection switching circuit) to the gain adjuster (46@), and adjust the gain adjuster Giη based on the characteristic curve E.
Therefore, it is possible to transport powder and granular materials at a constant flow rate while keeping the total supply flow rate constant, and in the same way, the selection switching circuit (to) is used for gain adjustment 1H4111K switching gain regulator (to) is set to the characteristics shown in Figure 2! i! Powder and granular material can be transported at a constant flow rate by keeping the pressure tank/receiving device differential pressure (p, -p,) constant by adjusting the pressure in accordance with G and K. In each of the above embodiments, explained the case in which the mass flow rate of powder or granular material is detected by the tank weight change chamber, the pressure loss at the transport pipe nozzle, the pressure loss between two distant points in the transport pipe, and the total supply gas flow rate. It is only necessary to detect one of them.

又排出ノズルの差圧の検出は、流動床下部とノズル出口
との差圧、排出ノズル人・出口差圧、流動床下部及びバ
イパス配管合流部入口間差圧を検出するようにしても良
い、特に後者の場合は検出部が粉粒体を含まな一気相部
であるのでガスバージを行なう必要がな−。
The differential pressure at the discharge nozzle may be detected by detecting the differential pressure between the lower part of the fluidized bed and the nozzle outlet, the differential pressure between the discharge nozzle and the outlet, and the differential pressure between the lower part of the fluidized bed and the inlet of the bypass pipe confluence. In particular, in the latter case, there is no need to perform a gas purge because the detection part is a gas phase part that does not contain powder or granules.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一例を示す系統図、第2図は本発
明の説明に供する峙性曲!IrIA%第3図は本発明装
置の他の例を示す系統図、W、4図は制御装置の他の例
を示すプ麺ツク図である。 (1)は加圧タンク、(3)は流動床、(6)は輸送管
、(8)は受給装置vQlは加圧気体供給源、al)は
流量調節弁、a湯は加圧フィン、0は流量N節介、α尋
はバイパスライン、翰はタンク重量検出器、αηは加圧
タンク圧力検出器、−シυは流量検出器、(財)は差圧
検出器、(ハ)は受給装置圧力検出器、(2)は設定値
入力装置、(至)は制御装置。
Fig. 1 is a system diagram showing an example of the device of the present invention, and Fig. 2 is a system diagram for explaining the present invention. IrIA% Figure 3 is a system diagram showing another example of the device of the present invention, and Figures W and 4 are diagrams showing other examples of the control device. (1) is a pressurized tank, (3) is a fluidized bed, (6) is a transport pipe, (8) is a receiving device vQl is a pressurized gas supply source, al) is a flow rate control valve, hot water is a pressurizing fin, 0 is the flow rate N connection, αhiro is the bypass line, 翺 is the tank weight detector, αη is the pressurized tank pressure detector, -shiυ is the flow rate detector, (Foundation) is the differential pressure detector, (c) is Receiving device pressure detector, (2) is set value input device, (to) is control device.

Claims (1)

【特許請求の範囲】[Claims] 粉粒体を充填した流動床式加圧タンクに加圧流量調節弁
を有する加圧流量供給ツインから加圧気体が流動床を通
じて供給され、上記加圧タンクK11I続された輸送ラ
インに粉粒体を定流量送出して受給装置に輸送する高圧
粉粒体気体管路輸送装置において、上記輸送ラインに上
記加圧流量供給ツインと並列に接続されたバイパス流証
調節弁を有し粉粒体排出量を流体力学的に制御するパイ
パスラインと、上記加圧タンク内圧力を検出する加圧圧
力検出器と、上記加圧流量供給ライン及びパイパスライ
ンの1次@に介装された総供給気体流量検出器と、上記
パイパスラインに介装されたバイパスmtt検?Jl器
と、上記受給装置内圧力を検出する受給圧力検出器と身
粒体排出量検出器と、粉粒体排出量、向気比及び加圧気
体流量を設定する設定器と、該設定器及び上記各検出器
の出力が供給され上記加圧流量関節弁及びバイパス流量
関節弁を制御する制御装置とを具備し、所望の粉粒体排
値に制御するようKしたことを特徴とする高圧粉粒体気
体管路輸送装置の定流量制御装置。
Pressurized gas is supplied through the fluidized bed from a pressurized flow rate supply twin having a pressurization flow control valve to a fluidized bed type pressurized tank filled with powder and granules, and the powder and granules are fed to a transportation line connected to the pressurized tank K11I. In a high-pressure powder/granule gas pipe transport device that sends a constant flow of powder and granules to a receiving device, the transport line has a bypass flow control valve connected in parallel with the pressurized flow supply twin, and the powder and granules are discharged. A bypass line that fluid-dynamically controls the amount of gas, a pressurized pressure detector that detects the pressure inside the pressurized tank, and a total supply gas flow rate interposed in the pressurized flow rate supply line and the primary @ of the bypass line. Detector and bypass MTT test installed in the above bypass line? Jl device, a receiving pressure detector for detecting the internal pressure of the above-mentioned receiving device, a granular material discharge amount detector, a setting device for setting the powder and granular material discharge amount, air direction ratio, and pressurized gas flow rate, and the setting device. and a control device to which the outputs of the respective detectors are supplied and which controls the pressurized flow rate joint valve and the bypass flow rate joint valve, and is controlled to a desired powder and granule discharge value. Constant flow control device for powder and granular gas pipe transport equipment.
JP10275581A 1981-07-01 1981-07-01 Constant flow control unit for high pressure powder/gas pipe transport system Granted JPS586827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10275581A JPS586827A (en) 1981-07-01 1981-07-01 Constant flow control unit for high pressure powder/gas pipe transport system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10275581A JPS586827A (en) 1981-07-01 1981-07-01 Constant flow control unit for high pressure powder/gas pipe transport system

Publications (2)

Publication Number Publication Date
JPS586827A true JPS586827A (en) 1983-01-14
JPH0158085B2 JPH0158085B2 (en) 1989-12-08

Family

ID=14336015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10275581A Granted JPS586827A (en) 1981-07-01 1981-07-01 Constant flow control unit for high pressure powder/gas pipe transport system

Country Status (1)

Country Link
JP (1) JPS586827A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2549580A1 (en) * 1983-07-19 1985-01-25 Wurth Paul Sa METHOD AND DEVICE FOR THE INJECTION OF PULVERIZED CHARCOAL IN AN INDUSTRIAL FURNACE
JPS63171819A (en) * 1987-01-09 1988-07-15 Sumitomo Metal Ind Ltd Control apparatus for optimum blowing quantity of molten iron treating agent
JPH01133816A (en) * 1987-11-19 1989-05-25 Kawasaki Heavy Ind Ltd Granule fixed quantity cut transporting method
KR20160063171A (en) * 2014-11-26 2016-06-03 현대자동차주식회사 Equipment for transferring iron-based powders

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52126331A (en) * 1976-04-15 1977-10-24 Shinseiki Kankou Yuugen Simultaneous ball discharging device for ball hitting game machine
JPS52126881A (en) * 1976-04-19 1977-10-25 Denka Engineering Preventive method of clogging of transportation pipe in pulverulent and granular body transportation device and its device
JPS541296A (en) * 1977-06-06 1979-01-08 Sumitomo Metal Ind Ltd Method of producing water slag from converter slag
JPS54129685A (en) * 1978-03-31 1979-10-08 Nippon Carbide Kogyo Kk Method of quantitatively extracting gas fluidized pulverulent body and its device
JPS5661227A (en) * 1979-10-17 1981-05-26 Denka Consult & Eng Co Ltd Constant flow rate transporting system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52126331A (en) * 1976-04-15 1977-10-24 Shinseiki Kankou Yuugen Simultaneous ball discharging device for ball hitting game machine
JPS52126881A (en) * 1976-04-19 1977-10-25 Denka Engineering Preventive method of clogging of transportation pipe in pulverulent and granular body transportation device and its device
JPS541296A (en) * 1977-06-06 1979-01-08 Sumitomo Metal Ind Ltd Method of producing water slag from converter slag
JPS54129685A (en) * 1978-03-31 1979-10-08 Nippon Carbide Kogyo Kk Method of quantitatively extracting gas fluidized pulverulent body and its device
JPS5661227A (en) * 1979-10-17 1981-05-26 Denka Consult & Eng Co Ltd Constant flow rate transporting system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2549580A1 (en) * 1983-07-19 1985-01-25 Wurth Paul Sa METHOD AND DEVICE FOR THE INJECTION OF PULVERIZED CHARCOAL IN AN INDUSTRIAL FURNACE
JPS63171819A (en) * 1987-01-09 1988-07-15 Sumitomo Metal Ind Ltd Control apparatus for optimum blowing quantity of molten iron treating agent
JPH0437126B2 (en) * 1987-01-09 1992-06-18 Sumitomo Metal Ind
JPH01133816A (en) * 1987-11-19 1989-05-25 Kawasaki Heavy Ind Ltd Granule fixed quantity cut transporting method
KR20160063171A (en) * 2014-11-26 2016-06-03 현대자동차주식회사 Equipment for transferring iron-based powders

Also Published As

Publication number Publication date
JPH0158085B2 (en) 1989-12-08

Similar Documents

Publication Publication Date Title
US4529336A (en) Method of distributing and transporting powdered or granular material
EP0081622B1 (en) Method and apparatus for distributing powdered particles
JP3083593B2 (en) Pulverized coal emission control device
WO2012115062A1 (en) Powder supply apparatus and powder supply method
WO2012115061A1 (en) Powder supply apparatus and powder supply method
JPS586827A (en) Constant flow control unit for high pressure powder/gas pipe transport system
EP0060137A1 (en) Conveying systems
CN108795503A (en) Pressurization of dry pulverized coal dense-phase transporting system and method
JP2004035913A (en) Method and device for controlling blowing of granular powder
US4613113A (en) Apparatus for blowing powdery refining agent into refining vessel
KR20180039168A (en) Increased pressurization of bulk material in lock hopper
JPH0733530B2 (en) Powder injection method
JP6906868B2 (en) Powder blowing system
KR100862773B1 (en) Apparatus for controling pressure and air flow of feed hopper for feeding pulverizer coal
JPH0711313A (en) Control method for blowing of pulverized coal
JPH048337B2 (en)
GB2100145A (en) Apparatus for detonation coating
JP2742000B2 (en) Pulverized coal injection control method
JPS5822216A (en) Conveying device for high pressure gas containing pulverous material
JP2001220016A (en) Control method for transporting speed of powder and grain and transporting device
JPS5974822A (en) Powdered material supplying method
WO2012115060A1 (en) Powder supply apparatus and powder supply method
JP2001063823A (en) Blowing method and device for powder and grain
JPS6229929Y2 (en)
JPS58125526A (en) Forcible feeder of powdery material