JPS5867836A - Decomposition of bastnaesite ore - Google Patents

Decomposition of bastnaesite ore

Info

Publication number
JPS5867836A
JPS5867836A JP56164659A JP16465981A JPS5867836A JP S5867836 A JPS5867836 A JP S5867836A JP 56164659 A JP56164659 A JP 56164659A JP 16465981 A JP16465981 A JP 16465981A JP S5867836 A JPS5867836 A JP S5867836A
Authority
JP
Japan
Prior art keywords
ore
bastnaesite
roasted
moisture
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56164659A
Other languages
Japanese (ja)
Other versions
JPS6160905B2 (en
Inventor
Akira Tanaka
昭 田中
Kishio Tayama
田山 喜志雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP56164659A priority Critical patent/JPS5867836A/en
Publication of JPS5867836A publication Critical patent/JPS5867836A/en
Publication of JPS6160905B2 publication Critical patent/JPS6160905B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To recover F and rare earth elements, by a method wherein bastnaesite ore is roasted in the presence of moisture to gasify CO2 and F as hydride from fluorinated carbonate and, while the formed gaseous products are scrubbed with an aqueous alkali medium, a caustic alkali liquid is added to the roasted ore to extract the same with a mineral acid under heating. CONSTITUTION:When bastnaesite ore is heated to 400 deg.C or more in the presence of moisture, CO2 and F are gasified as a hydride from fluorinated carbonate by hydrothermal reaction. When said gas components are surubbed with an aqueous KOH or NaOH solution, F is fixed as CaF2 and recovered as a water insoluble precipitate. On the other hand, a conc. caustic alkali aqueous solution is added to the roasted ore to be heated to 120 deg.C or more and said roasted ore is subsequently extracted with warm water to elute phosphorus. In addition, when the residue is extracted with a mineral acid, especially, conc. hydrochloric acid, 90% or more of rare earth elements are recovered as rare earth metal chlorides solution.

Description

【発明の詳細な説明】 本発明は、バストネサイト鉱から希土類元素を抽出する
無公害プロセスに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-polluting process for extracting rare earth elements from bastnaesite ore.

バストネサイトは弗化炭酸塩(RF COs ”)−ニ
示されるように精鉱でto〜7θ%の希土類を含み、さ
らに弗素を約グ〜t%含んでいる。
Bastnaesite is a fluorinated carbonate (RF COs), which in concentrate contains up to 70% of rare earths, and further contains about 100% to 100% of fluorine.

また、モナザイトを含有して産出されるバストネサイト
鉱もあり、モナザイトは一般に(Ce  。
There is also bastnasite ore that is produced containing monazite, and monazite is generally (Ce).

La t y t Th) f’o、で示されるように
燐酸塩鉱物であるため燐を含む。
La ty t Th) f'o, it is a phosphate mineral and therefore contains phosphorus.

従ってバストネサイト鉱中には弗素、燐等が含まれ、こ
れらを完全かつ無公害に処理する必要がある。
Therefore, bastnaesite ore contains fluorine, phosphorus, etc., and these must be treated completely and without pollution.

従来、バストネサイト鉱の処理については硫酸による焙
焼即ち硫酸化焙焼により200℃程度で白煙処理し、弗
素を弗化水素ガス態として除く方法があるが、この方法
では弗素ガスとともに硫酸ガス(SOS)の発生なども
あり、ガス処理に新たな付帯的処理工程を要し、経済性
に難点がある上に完全な処理が難かしい等公害問題も重
なり、工業的規模で採用するのは難かしいのが現状であ
る。
Conventionally, bastnaesite ore is treated by roasting with sulfuric acid, i.e., by sulfuric roasting, to treat it with white smoke at around 200°C to remove fluorine in the form of hydrogen fluoride gas. Gas (SOS) is generated, and a new incidental treatment process is required for gas treatment, which is not only economically disadvantageous, but also poses pollution problems such as the difficulty of complete treatment, making it difficult to adopt it on an industrial scale. The current situation is that it is difficult.

一方、アルカリ水溶液を用いる方法もあるが、弗素のほ
かモナザイトを含有するパストネサイト鉱においては弗
素と燐がアルカリ水溶液中に存在し、その後の液処理が
困難となる。
On the other hand, there is a method using an alkaline aqueous solution, but in pastonesite ore containing monazite in addition to fluorine, fluorine and phosphorus are present in the alkaline aqueous solution, making subsequent liquid treatment difficult.

また、直接塩酸あるいは硝酸などを用いる方法も考えら
れるが、塩素ガスや弗素ガスに対する材質の問題やガス
処理さらにはコストの面で採用は難かしい。
Alternatively, a method of directly using hydrochloric acid or nitric acid may be considered, but this is difficult to adopt due to problems with the materials used for chlorine gas or fluorine gas, gas processing, and cost.

本発明者らはバストネサイト鉱及びモナザイト含有バス
トネサイト鉱を水分の存在下で焙焼することにより、炭
酸及び弗素をガス化し、水性アルカリ媒体でスクラビン
グすることで弗素を完全に回収し、一方焙焼物は苛性ア
ルカリ水溶液で分解して燐をアルカリ水溶液中に固定し
、生成した水酸化舌上は鉱酸を添加して舌上を抽出する
ことにより公害問題を解決し、こ゛れまで困難とされて
いたバストネサイト鉱の分解に新規な方法を見い出した
The present inventors gasified carbon dioxide and fluorine by roasting bastnaesite ore and monazite-containing bastnasite ore in the presence of moisture, completely recovered fluorine by scrubbing with an aqueous alkaline medium, On the other hand, roasted products are decomposed with a caustic alkaline aqueous solution to fix the phosphorus in the alkaline aqueous solution, and the resulting hydroxylated tongue is extracted by adding mineral acid to solve the pollution problem, which has been difficult until now. We have discovered a new method for decomposing bastnaesite ore, which was thought to be a mineral.

即ち、本発明はバストネサイト鉱(モナザイトを含有す
る場合を含む)を水分の存在下で焙焼させるわけである
が、バストネサイト中の炭酸は温度弘OO℃以上で二酸
化炭素を放出して分解し、次のようなRFOの組成のも
のとなる。
That is, in the present invention, bastnaesite ore (including cases containing monazite) is roasted in the presence of moisture, but the carbonic acid in bastnaesite releases carbon dioxide at temperatures above 00°C. It decomposes into RFO with the following composition.

RFCO,−+RFO+COs  −−−−−−−−−
(1)バストネサイトの熱分解の一例を示差熱(DTA
)曲線及び熱重量変化(TGA)曲線を用いて表わした
結果を第1図に示す。
RFCO, −+RFO+COs −−−−−−−−−
(1) An example of thermal decomposition of bastnaesite was analyzed using differential thermal analysis (DTA).
) curve and thermogravimetric change (TGA) curve are shown in FIG.

第1図より下軸に示す温度を除々に上げると約ttoo
℃(点m>のところでTGA曲線は急激な減量を示し、
またDTA曲線は吸熱を示している。
If you gradually increase the temperature shown on the lower axis from Figure 1, it will be about ttoo.
℃ (at point m> the TGA curve shows a rapid weight loss,
The DTA curve also shows endotherm.

この場合の減量値は約7.2%であるが、試料がすべて
バストネサイトがらなっているならば、希土類元素の平
均原子量/≠0を用いたときのRFCO。
The weight loss value in this case is about 7.2%, but if the sample consists entirely of bastnaesite, the RFCO when using the average atomic weight of the rare earth element/≠0.

からRFOへの変化の際の減量率の計算値は20゜5%
である。この≠oo℃においてRFOの組成のものにな
るが、この際のFの揮散率は10〜/j%である。従っ
て、バストネサイトを焙焼によって分解するには最低t
ioo℃以上の温度が必要である。
The calculated weight loss rate when changing from to RFO is 20°5%.
It is. At ≠oo°C, the composition becomes RFO, and the F volatilization rate at this time is 10 to /j%. Therefore, to decompose bastnaesite by roasting, the minimum is t.
A temperature of ioo°C or higher is required.

次に、水分の存在下で焙焼した場合、弗素は次のように
水と反応し、弗化水素ガスとしてガス化し分解する。
Next, when roasted in the presence of moisture, fluorine reacts with water as follows, gasifies and decomposes as hydrogen fluoride gas.

RFO+H20→几、03 +、2HF  ・ ・ ・
 ・ ・ ・ ・(2)この水分はあらかじめバストネ
サイト鉱に30%以上の水分を含ませておくか、好まし
くは絶対湿度109/−以上の水蒸気を直接焙焼炉に、
2〜3t / min以上の流量で連続して吹込むこと
により達成させる。
RFO+H20→几、03+、2HF ・ ・ ・
・ ・ ・ ・(2) This moisture can be obtained by pre-impregnating bastnaesite ore with a moisture content of 30% or more, or preferably by directly introducing steam with an absolute humidity of 109/- or more into a roasting furnace.
This is achieved by continuously blowing at a flow rate of 2 to 3 t/min or more.

直接焙焼炉内に水蒸気を吹込んだ時の温度と絶対湿度の
変化におけ脱弗素率を第2図に示す。
Figure 2 shows the fluorine removal rate as a result of changes in temperature and absolute humidity when steam is directly blown into the roasting furnace.

第2図より温度が脱炭酸のttoo℃より次第に上昇し
、また絶対湿度が109/−以上になるに従って脱弗素
率が100%に近づく。好ましくは100℃、絶対湿度
301−/n/ノ水に気ヲ2〜3t/m1n連続して吹
込み3時間焙焼することにより、りど%以上の脱弗素率
を示しているが、この値に限定されるものではない。ま
た、水分の過剰はエネルギーロスとなって好ましくない
し、温度7000℃以上となるとバストネサイトが固化
する傾向にあって後処理に影響を及ぼすため、すOO℃
±IOθ℃程度に押える必要がある。
As shown in FIG. 2, as the temperature gradually rises above ttoo DEG C. for decarbonation and as the absolute humidity becomes 109/- or more, the defluorination rate approaches 100%. Preferably, by continuously blowing 2 to 3 tons/ml of water into water at a temperature of 100°C and an absolute humidity of 301/n/m and roasting for 3 hours, a fluorination removal rate of more than 1% is shown. It is not limited to the value. In addition, excessive moisture is undesirable as it causes energy loss, and if the temperature exceeds 7000°C, bastnaesite tends to solidify, which affects post-processing.
It is necessary to keep the temperature within ±IOθ℃.

次に、L記(2)式に示すように水熱分解で弗化炭酸を
含まない酸化物と弗化水素ガスに分解するが、得られた
二酸化炭素及び弗化水素ガスはアルカリ金属水酸化物で
スクラビングする。
Next, as shown in equation (2) of L, the hydrothermal decomposition is performed to produce oxides that do not contain fluorocarbonic acid and hydrogen fluoride gas, but the obtained carbon dioxide and hydrogen fluoride gas are Scrub with something.

アルカリ金属水酸化物としては、水酸化ナトリウムまた
は水酸化カリウムの水溶液あるいは水酸化カルシウムの
懸濁液あるいはそれらの混合液が用いられ、これらでス
クラビングすることによりCar、として固定でき、水
不溶性の沈殿として回収できる。
As the alkali metal hydroxide, an aqueous solution of sodium hydroxide or potassium hydroxide, a suspension of calcium hydroxide, or a mixture thereof is used, and by scrubbing with these, it can be fixed as Car, and a water-insoluble precipitate can be formed. It can be recovered as

このような方法でバストネサイト中の脱炭酸。Decarboxylation of bastnaesite in this way.

脱弗素がほぼ100%可能となり、結果として舌上酸化
物が得られる。また、バストネサイト中にモナザイトが
含まれる場合は燐の酸化物も入ってくるため、ざらに脱
燐を必要とする。本発明はさらにこの脱燐をも行ない、
高収率で舌上を回収するバストネサイトの分解法を提供
するものである。
Almost 100% defluorination is possible, resulting in an oxide on the tongue. Furthermore, if bastnaesite contains monazite, phosphorus oxides will also be present, requiring extensive dephosphorization. The present invention further performs this dephosphorization,
The present invention provides a method for decomposing bastnaesite that can be recovered on the tongue with high yield.

即ち、得られた焙焼希土酸化物に濃厚苛性アルカリ水溶
液を加えて720℃以上に加熱して反応させ、温水抽出
することにより燐を燐醗ソーダとして溶液中に固定して
回収し、−力水酸化舌上は鉱酸を用いて70℃以上で加
温浸出することにより回収する。
That is, a concentrated aqueous caustic alkali solution is added to the roasted rare earth oxide obtained, and the mixture is heated to 720°C or higher to cause a reaction. By hot water extraction, phosphorus is fixed in the solution as phosphorus soda and recovered. The hydroxylated tongue is recovered by leaching at 70°C or higher using mineral acid.

焙焼希土酸化物と反応させる苛性アルカリ水溶液は、濃
度jOW/V%以上の苛性ソーダ溶液が良く、温度も1
20℃以上と高い方が好ましい。
The caustic alkali aqueous solution to be reacted with the roasted rare earth oxide is preferably a caustic soda solution with a concentration of jOW/V% or higher, and the temperature is 1.
A higher temperature of 20°C or higher is preferable.

次に、渇水を用いて舌上を抽出し、生成した水酸化舌上
をE別して燐を燐酸ソーダの溶液として固定し、水酸化
舌上は鉱酸好ましくは濃塩酸を添加して7θ℃以上で加
湿浸出することによりり0%以上の舌上を塩化洋上溶液
として回収することができる。
Next, extract the tongue using dry water, separate the generated hydroxylated tongue and fix phosphorus as a solution of sodium phosphate. By humidifying and leaching it, more than 0% of the tongue can be recovered as a chloride offshore solution.

なお、希酸を添加してセリウム以外の舌上を溶解する方
法もあるが、浸出率が悪くて完全に分離することが鑓か
しく、さらにセリウムと燐を分離することが必要となる
ので良い方法とは言えない。
There is also a method of adding dilute acid to dissolve everything other than cerium on the tongue, but the leaching rate is poor and complete separation is difficult, and it is necessary to further separate cerium and phosphorus, so this is a good method. It can not be said.

本発明法はバストネサイトを焙焼することにより、バス
トネサイト中に含まれる鉄の溶出を極力防止できるのも
利点であり、さらに鉄については塩化洋上溶液をpH調
整することにより除去可能となる。
The method of the present invention has the advantage that by roasting bastnaesite, the elution of iron contained in bastnaesite can be prevented as much as possible, and furthermore, iron can be removed by adjusting the pH of the offshore chloride solution. Become.

バスト、ネサイトから製造する舌上の用途としては、ま
ず研摩材があげられるが、研摩材は特に舌上酸化物中の
弗素、燐、鉄などを極カ嫌うため、工程における完全な
除去が必要であり、単体舌上分離のための溶媒抽出工程
においてもできるだけ純度の高い方が有利であるが、本
発明は上述のようにバストネサイトから弗素、燐、鉄な
どを順次分別し、純度の高い塩化洋上溶液を得るこ、と
本“でき、経済的かつ無公害な分解法である。
The first use on the tongue made from Bast and Nesite is as an abrasive, but since abrasives are extremely averse to fluorine, phosphorus, iron, etc. in oxides on the tongue, they must be completely removed during the process. Therefore, it is advantageous to have as high a purity as possible in the solvent extraction process for separating single substances on the tongue. However, as described above, the present invention sequentially separates fluorine, phosphorus, iron, etc. from bastnaesite, and improves the purity. It is an economical and non-polluting decomposition method to obtain a high chloride offshore solution.

本発明をさらに実施例によって説明する。The present invention will be further explained by examples.

実施例 第1表に示す組成を有するバストネサイト/θOy−を
燃焼ボートに入れて100℃で2時間焙焼した。その際
絶対湿度30f/n/の水魚・気を2〜Jt/minの
流量で直接炉内に吹込み、ガスは炉の出口にKOHとC
a (OH)2  の混合液を入れた洗浄ビンに吸収さ
せた。得られた焙焼酸化物の組成を第2表に示す。
Example Bastnasite/θOy- having the composition shown in Table 1 was placed in a combustion boat and roasted at 100°C for 2 hours. At that time, water fish and air with an absolute humidity of 30 f/n/ are directly blown into the furnace at a flow rate of 2 to Jt/min, and the gas is delivered to the outlet of the furnace in the form of KOH and C.
It was absorbed into a washing bottle containing a mixture of a(OH)2. The composition of the obtained roasted oxide is shown in Table 2.

次に、この焙焼酸化物5oy−に2倍量の濃厚苛性ソー
ダ液を加え/30±10℃で7時間反応させた後、温水
で抽出し沖過した。
Next, twice the amount of concentrated caustic soda solution was added to 5 y of this roasted oxide and reacted at 30±10° C. for 7 hours, followed by extraction with warm water and filtration.

さらに沈殿物に濃塩酸を加えlr0℃で7時間浸出後、
r過洗浄したときのP液の分析値を第3表に示す。
Furthermore, after adding concentrated hydrochloric acid to the precipitate and leaching it at lr0℃ for 7 hours,
Table 3 shows the analysis values of the P solution when over-cleaning was carried out.

第  ′  表          (単位%)第  
2  表          (単位%)第  3  
表 (単位?/1 )
Table ′ (Unit: %)
2 Table (Unit: %) 3rd
Table (unit?/1)

【図面の簡単な説明】 第1−図はバストネサイトの熱分解における示差熱曲線
及び熱重量変化曲線との関係グラフ、第2図は水分の存
在下でバストネサイトを■焼した場合の温度と水分量及
び■焼時間との関係グラフ、第3図は本発明の工程図で
ある。 特許出願人同和鉱業株式会社 第1図 温 度(’C) 第2図 加熱温度(0C) 第8図 □アノ ニ]] 角土 ラロ □剣 二】] 液 178− レカリ ;酸
[Brief explanation of the drawings] Figure 1 is a graph of the relationship between the differential thermal curve and thermogravimetric change curve in the thermal decomposition of bastnaesite, and Figure 2 is a graph of the relationship between the differential thermal curve and thermogravimetric change curve in the thermal decomposition of bastnaesite. FIG. 3 is a graph showing the relationship between temperature, moisture content, and baking time, and is a process diagram of the present invention. Patent Applicant Dowa Mining Co., Ltd. Figure 1 Temperature ('C) Figure 2 Heating Temperature (0C) Figure 8 □Anoni]] Kakudo Ralo □Kenji]] Liquid 178- Recari; Acid

Claims (2)

【特許請求の範囲】[Claims] (1)  バストネサイト鉱を水分の存在下で焙焼して
弗化炭酸塩から炭酸ガスおよび弗素を水素化物としてガ
ス化し、該ガス体を水性アルカリ媒体でスクラビングす
ることを特徴とするバストネサイト鉱の分解方法。
(1) Bastnasite ore is roasted in the presence of moisture to gasify carbon dioxide and fluorine from fluorinated carbonates as hydrides, and the gaseous body is scrubbed with an aqueous alkaline medium. How to decompose site ore.
(2)  バストネサイト鉱を水分の存在下で焙焼して
弗化炭酸塩から炭酸ガスおよび弗素を水素化物としてガ
ス化し、該ガス体を水性アルカリ媒体でスクラビングす
ると共に、上記媒焼物に苛性アルカリ溶液を添加して加
熱したのち生成した水酸化舌上に鉱酸を加えて舌上を抽
出することを特徴とするバストネサイト鉱の分解方法。
(2) Bastnaesite ore is roasted in the presence of moisture to gasify carbon dioxide and fluorine from the fluorinated carbonates as hydrides, and the gaseous body is scrubbed with an aqueous alkaline medium, and the above-mentioned mortarized material is treated with caustic A method for decomposing bastnaesite ore, which is characterized by adding mineral acid to the hydroxylated tongue produced after adding an alkaline solution and heating it to extract the tongue.
JP56164659A 1981-10-15 1981-10-15 Decomposition of bastnaesite ore Granted JPS5867836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56164659A JPS5867836A (en) 1981-10-15 1981-10-15 Decomposition of bastnaesite ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56164659A JPS5867836A (en) 1981-10-15 1981-10-15 Decomposition of bastnaesite ore

Publications (2)

Publication Number Publication Date
JPS5867836A true JPS5867836A (en) 1983-04-22
JPS6160905B2 JPS6160905B2 (en) 1986-12-23

Family

ID=15797363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56164659A Granted JPS5867836A (en) 1981-10-15 1981-10-15 Decomposition of bastnaesite ore

Country Status (1)

Country Link
JP (1) JPS5867836A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2600081A1 (en) * 1986-03-19 1987-12-18 Rhone Poulenc Chimie PROCESS FOR SEPARATING RARE EARTHS
EP0624551A1 (en) * 1993-05-07 1994-11-17 Lucky Metals Corporation Method for the re-treatment of residue generated from the removal of fluorine dissolved in waste water
CN101956078A (en) * 2010-10-13 2011-01-26 赣州鑫磊稀土新材料有限公司 Method for separating and recycling rare-earth elements from molten salt electrolysis wastes of rare-earth metals
CN103131875A (en) * 2013-03-13 2013-06-05 龙南县中利再生资源开发有限公司 Preparation process for extracting high-purity rare earth oxides from waste rare earth luminescent materials
CN104694736A (en) * 2015-03-23 2015-06-10 东北大学 Calcium roasting floatation separation method for bastnaesite
CN112725642A (en) * 2020-12-18 2021-04-30 四川省乐山锐丰冶金有限公司 Method for recycling sodium hydroxide and co-producing sodium fluoride from fluorine carbon cerium alkali conversion process
CN113564343A (en) * 2021-07-27 2021-10-29 四川师范大学 Green chemical alkali conversion defluorination method for roasting fluorine-rare earth ore and solid slag
CN115340116A (en) * 2022-07-01 2022-11-15 四川省冕宁县方兴稀土有限公司 Method for recovering sodium and fluorine in alkali-to-wastewater

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2600081A1 (en) * 1986-03-19 1987-12-18 Rhone Poulenc Chimie PROCESS FOR SEPARATING RARE EARTHS
AU600705B2 (en) * 1986-03-19 1990-08-23 Rhone-Poulenc Chimie Method for the separation of rare earths
EP0624551A1 (en) * 1993-05-07 1994-11-17 Lucky Metals Corporation Method for the re-treatment of residue generated from the removal of fluorine dissolved in waste water
CN101956078A (en) * 2010-10-13 2011-01-26 赣州鑫磊稀土新材料有限公司 Method for separating and recycling rare-earth elements from molten salt electrolysis wastes of rare-earth metals
CN103131875A (en) * 2013-03-13 2013-06-05 龙南县中利再生资源开发有限公司 Preparation process for extracting high-purity rare earth oxides from waste rare earth luminescent materials
CN104694736A (en) * 2015-03-23 2015-06-10 东北大学 Calcium roasting floatation separation method for bastnaesite
CN112725642A (en) * 2020-12-18 2021-04-30 四川省乐山锐丰冶金有限公司 Method for recycling sodium hydroxide and co-producing sodium fluoride from fluorine carbon cerium alkali conversion process
CN113564343A (en) * 2021-07-27 2021-10-29 四川师范大学 Green chemical alkali conversion defluorination method for roasting fluorine-rare earth ore and solid slag
CN115340116A (en) * 2022-07-01 2022-11-15 四川省冕宁县方兴稀土有限公司 Method for recovering sodium and fluorine in alkali-to-wastewater
CN115340116B (en) * 2022-07-01 2023-09-08 四川省冕宁县方兴稀土有限公司 Method for recycling sodium and fluorine in alkali conversion wastewater

Also Published As

Publication number Publication date
JPS6160905B2 (en) 1986-12-23

Similar Documents

Publication Publication Date Title
CN111170325A (en) Method for synchronously preparing zeolite by aluminum ash denitrification and fluorine fixation
US3226192A (en) Process of treating waste gas containing sulfur oxide
JPH034481B2 (en)
JPS5867836A (en) Decomposition of bastnaesite ore
EP0099962A2 (en) Molten salt hazardous waste disposal process utilizing gas/liquid contact for salt recovery
JP5086021B2 (en) Recovery method of rare earth elements
US2848398A (en) Recovery of gallium compounds from the combustion gases of coal
GB793700A (en) Improvements in or relating to the thermal decomposition of certain chlorides and sulphates
JPS6219494B2 (en)
US1955326A (en) Process for the manufacture of chromates and dichromates
US3950492A (en) Process for removal of ammonia, hydrogen sulfide and hydrogen cyanide from gases containing these substances
JPH06506436A (en) Hydrochloric acid regeneration
US3298781A (en) Production of sulfites from red mud
GB1593742A (en) Removal of contaminant oxides from gas mixtures
US4355008A (en) Chlorination process
AU696509B2 (en) Process for removing SO2 from gases which contain it, with direct production of elemental sulfur
US3547579A (en) Removal of sulfates from brines
US2923600A (en) Method of producing lithium sulphate from beta spodumene
US3031262A (en) Recovery of oxides of sulfur and fluorides from gas mixtures
US3754072A (en) Process for recovering vanadium oxide
US2040548A (en) Treatment of nitrate-bearing material
US3132921A (en) Process for production of cryolite from fluorinated compounds in gases
US1269441A (en) Method of treating waste pickle liquor.
JPS63194720A (en) Method for purifying waste gas
US2039653A (en) Manufacture of the oxide and the chloride of magnesium