JPS5866528A - Ground-fault protecting relay unit - Google Patents

Ground-fault protecting relay unit

Info

Publication number
JPS5866528A
JPS5866528A JP16421281A JP16421281A JPS5866528A JP S5866528 A JPS5866528 A JP S5866528A JP 16421281 A JP16421281 A JP 16421281A JP 16421281 A JP16421281 A JP 16421281A JP S5866528 A JPS5866528 A JP S5866528A
Authority
JP
Japan
Prior art keywords
zero
line
current
sequence
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16421281A
Other languages
Japanese (ja)
Other versions
JPH0116089B2 (en
Inventor
田中 信一郎
次男 篠原
岩谷 二三夫
久保 隆生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Electric Power Co Inc
Hitachi Ltd
Original Assignee
Shikoku Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Electric Power Co Inc, Hitachi Ltd filed Critical Shikoku Electric Power Co Inc
Priority to JP16421281A priority Critical patent/JPS5866528A/en
Publication of JPS5866528A publication Critical patent/JPS5866528A/en
Publication of JPH0116089B2 publication Critical patent/JPH0116089B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 、本発明は地絡保護継電装置に係り、特に、抵抗接地系
の多回線併架送電線で零相循環電流の発生する場合の地
絡保護に好適な地絡保護継電装置に関する。
[Detailed Description of the Invention] The present invention relates to a ground fault protection relay device, and in particular, to a ground fault protection relay device suitable for ground fault protection when zero-sequence circulating current occurs in a multicircuit parallel transmission line of a resistance grounding system. Regarding protective relay devices.

一般に重要送電線においては、電力の供給信頼性を向上
させるため、第1図に示すような、2回線以上の多回線
送電線を構成する例が多い。
In general, important power transmission lines are often configured as multi-circuit power transmission lines with two or more circuits as shown in FIG. 1 in order to improve the reliability of power supply.

第1図において、抵抗接地系の多回線送電線り。In Figure 1, a multi-circuit power transmission line with resistance grounding system is shown.

〜L4は、電源系統1の母線10にしゃ断器SB、。~L4 is a breaker SB on the bus bar 10 of the power supply system 1.

〜sB、4を介してそれぞれ接続されるとともに、負荷
系統2の母線20にしゃ断器SB2.〜5B24を介し
てそれぞれ接続されて構成されている。電源系統1は母
線10を変圧器11を介して発電機などの電源12に接
続するとともに、前記変圧器11の中性点を抵抗13を
介して接地して構成されている。また、負荷系統2は、
m線20を変圧器21を介して負荷22に接続して構成
されている。
~sB, 4, and are connected to the bus 20 of the load system 2 via breakers SB2. ~5B24, are connected to each other. The power supply system 1 is constructed by connecting a bus bar 10 to a power source 12 such as a generator via a transformer 11, and grounding the neutral point of the transformer 11 via a resistor 13. In addition, the load system 2 is
The m-line 20 is connected to a load 22 via a transformer 21.

このように構成された多回線送電線系において、線 抵抗接地系の多回線送電AT、1〜L4は、1つの鉄塔
に併架させる場合が多く、回線相互の誘導に起因する零
相循環電流が発生することが知られている。
In a multi-line power transmission line system configured in this way, the multi-line power transmission ATs 1 to L4 of the line resistance grounding system are often installed together on one tower, and the zero-sequence circulating current due to mutual induction between the lines is known to occur.

第2図には4回線併架送電線の一例が示されている。こ
の図において、各回線り、〜L4に負荷ある。このよう
な状態において、送電線L1〜TJ4のいずれか一回線
に1線地絡事故が発生した場合に、抵抗接地系の送電線
では、事故電流は、変圧器11の中性点の接地抵抗13
によって制限されて小さいため、第2図で説明した零相
循環電流Icol〜I CO4と識別が困難であり、単
なる地絡方向継電器では内部・外部の事故判定出来ない
場合が多かった。第3図には、−線地絡時の様相を、第
2図と同様な4回線平行の併架送電線の例で示したもの
である。すなわち、地絡事故発生時において、第3図の
母線10側の各回線L1〜L4の零相電流Io1〜Io
4は、事故電#1.(中性点接地抵抗13に流れる電流
) IF、〜IF4と、零相循環電流Ico 、〜■c
o4との合計となり、I O4= I Fl + Ic
ol          −・・−・Q)102−T 
F2 + Ico2−88.(2)103−I F3 
+JCO3−−(3)T 04 = T F4 +Tc
o、+            −・−・・・(/l)
ど々る。本来の地絡事故判定は、零相電圧V。と、事故
電流IFI〜IF4の大きさ及び位相を識別して行なう
ものであるが、既に述べたように、事故電流と比較して
、零相循環電流1cO5〜]co4が無視出来ない場合
には、これら電流J’col〜l CO4の影響を受け
てし捷い、電流IFI〜1F4の大きさ及び位相が変化
することになって、正規の事故判定をすることが出来な
いことがあった。このよう外現象に対して種々の対策が
従来より4>+y案されている。その−例としては、事
故発生前後における零相電流が変化することに着目し、
零相循環電流、T COI〜I CO4に影響されず事
故電流、TFl〜T++4のみを抽出し事故判定する方
式が提案されている。この方式について以下に述べると
、この方式iI:l1.11故発生前における各回線L
1〜L4の零相電流■。、〜Io4は零相循環電流Tc
o1〜Tco4のみであり、I’o1= Icol  
          ・・・・・・(5)I’o2−’
Ico2           ・・・・・・(6)I
’o3 = Ico3            ・・・
・・・(7)i・。4= Ico4         
 、−−−−1(s)で与えられるのに対し、事故発生
後は前述したごとく式(1)〜(4)で与えられること
になることから、事故発生前の値I’o 1〜I’o4
を一定期間記憶しておき、これらI’o1〜I ’o 
4と、式(1)〜(4)で力えられる事故発生後の値I
o1〜Io4との差、つまり事故発生前後の変化分を下
式に示すように各回線毎に抽出し、事故判定するもので
ある。すなわち、変化分ΔIo1〜ΔIo4は、 ΔIo4−Io4  TO4=IF4+]’CO4Ic
o4−Jp4  H・・・・(12)のように力えられ
るものである。このよう々、計算を行なう装置の具体例
を第4図に示す。すなわち、第4図は、地絡保護装置の
従来例を示すブロック図である。
FIG. 2 shows an example of a four-circuit parallel power transmission line. In this figure, each line ~L4 has a load. In such a state, if a one-line ground fault occurs in any one of the transmission lines L1 to TJ4, in a resistance-grounded transmission line, the fault current will flow through the ground resistance of the neutral point of the transformer 11. 13
It is difficult to distinguish from the zero-phase circulating currents Icol to ICO4 explained in FIG. 2, and it is often impossible to determine internal/external faults with a simple earth fault direction relay. FIG. 3 shows an example of a parallel transmission line with four circuits in parallel, similar to FIG. 2, in the case of a - line ground fault. That is, when a ground fault occurs, the zero-sequence currents Io1 to Io of each line L1 to L4 on the bus 10 side in FIG.
4 is Accident Electricity #1. (Current flowing through the neutral point grounding resistor 13) IF, ~IF4, and zero-sequence circulating current Ico, ~■c
It becomes the sum with o4, I O4 = I Fl + Ic
ol-・・-・Q)102-T
F2 + Ico2-88. (2) 103-I F3
+JCO3--(3)T 04 = T F4 +Tc
o, + −・−・・・・(/l)
Dodoru. The original ground fault judgment is zero-sequence voltage V. This is done by identifying the magnitude and phase of the fault currents IFI to IF4, but as already mentioned, when the zero-phase circulating current 1cO5 to ]co4 cannot be ignored compared to the fault current, , the magnitude and phase of the current IFI~1F4 change due to the influence of these currents J'col~1CO4, which sometimes makes it impossible to make a proper accident determination. Various countermeasures against such external phenomena have been proposed in the past. As an example, focusing on the change in zero-sequence current before and after the occurrence of an accident,
A method has been proposed that extracts only the fault currents, TF1 to T++4, without being influenced by the zero-phase circulating currents, TCOI to ICO4, to determine a fault. This method will be described below.
1 to L4 zero-sequence current■. , ~Io4 is the zero-phase circulating current Tc
Only o1 to Tco4, I'o1= Icol
・・・・・・(5) I'o2-'
Ico2 ・・・・・・(6)I
'o3 = Ico3...
...(7) i. 4 = Ico4
, ----1(s), whereas after the accident occurs, it is given by equations (1) to (4) as mentioned above, so the value I'o before the accident occurs is 1 to I'o4
are stored for a certain period of time, and these I'o1 to I'o
4, and the value I after the accident occurs, which can be determined by equations (1) to (4).
The difference between o1 to Io4, that is, the change before and after the occurrence of an accident, is extracted for each line as shown in the formula below, and an accident is determined. That is, the changes ΔIo1 to ΔIo4 are as follows: ΔIo4-Io4 TO4=IF4+]'CO4Ic
o4-Jp4 H... (12). A specific example of a device that performs calculations in this manner is shown in FIG. That is, FIG. 4 is a block diagram showing a conventional example of a ground fault protection device.

第4図において、地絡保護継電装置は、零相電流の発生
する抵抗接地系の多回線送電線毎に設けられ、各送電線
における零相電ff:voを入力端子30から取り込む
とともに、零相電流Io1〜Io4を入力端子31〜3
4から取り込み、これら取り込んだ信号に基づいて各回
線の有効分零相電流を演算する演算手段41〜44と、
これら演算手段41〜44からの有効分零相電流に基づ
いて事故判定をする比較手段としての比較回路5とから
構成されている。前記演算手段41〜44は、それぞれ
同一構成を有しているので、これらMu手段41〜44
のうちの一つを説明すると、演勢手段41は、入力端子
31に入力された零相電流の瞬時および記憶回路6から
の零相電流の葡とを(9)式に示す式で比較差演労する
比較回路71と、前記入力端子30から取り込んだ零相
電圧■。を取り込み、前記比較回路71からの値とで有
効分零相電流を演算する有効分計算回路81とから構成
されている。なお、他の演9手段42〜44は、記憶装
置62〜64と、比1り回路72〜74と、有効分演算
回路82〜84とをそれぞれ有している。
In FIG. 4, the earth fault protection relay device is provided for each resistance-grounded multi-circuit transmission line in which zero-sequence current is generated, and receives the zero-sequence current ff:vo in each transmission line from the input terminal 30. Input the zero-sequence currents Io1 to Io4 to terminals 31 to 3
calculation means 41 to 44 for calculating the effective zero-sequence current of each line based on the signals taken in from 4;
It is comprised of a comparison circuit 5 as comparison means for determining an accident based on the effective zero-sequence currents from these calculation means 41 to 44. Since the calculation means 41 to 44 have the same configuration, these Mu means 41 to 44
To explain one of them, the effecting means 41 compares the instantaneous zero-sequence current input to the input terminal 31 and the zero-sequence current from the memory circuit 6 using the equation shown in equation (9). The comparator circuit 71 that operates and the zero-sequence voltage (■) taken in from the input terminal 30. and an effective component calculation circuit 81 which calculates the effective component zero-sequence current using the value from the comparator circuit 71. The other operation means 42 to 44 have storage devices 62 to 64, ratio circuits 72 to 74, and effective component calculation circuits 82 to 84, respectively.

上述のように構成されだ地絡保護継電装置の動作を説明
する。
The operation of the earth fault protection relay device configured as described above will be explained.

各回線L1〜L4の零相電流Io1〜i。4入力端子3
1〜34から取り込み、各記憶回路61〜64にそれぞ
れ一定時間、零相電流のベクトル量を記憶せしめ、次い
で各比較回路71〜74によって、入力される零相電流
の瞬時値と、記憶回路61〜64に記憶されだ零相電流
の値とでの比較差演算をさせ、(9)〜(12式事故電
流TFI〜IF4の抽出を行ない、さらにこのようにし
て抽出された各回線■、。
Zero-sequence current Io1-i of each line L1-L4. 4 input terminal 3
1 to 34, the vector quantities of the zero-sequence current are stored in each of the storage circuits 61 to 64 for a certain period of time, and then the instantaneous value of the input zero-sequence current and the storage circuit 61 are stored by each of the comparison circuits 71 to 74. .about.64 are compared with the stored zero-sequence current values, and the fault currents TFI to IF4 of formulas (9) to 12 are extracted.

〜L4の事故電流IPI〜IF4と、零相電圧入力端子
30より導入した零相電圧V。とから、有効分割a回路
81〜84により、各回線の有効分零相電流(VOと同
相成分の零相電流)を鏝出し、その結果を比較回路5に
より比較し、前記有効分零相電流の最も大きい回線を事
故回路と判定し、その結果に対応した出力を各回線毎に
出力端子91〜94から出力するものである。
~L4 fault current IPI~IF4 and zero-sequence voltage V introduced from zero-sequence voltage input terminal 30. From this, the effective division a circuits 81 to 84 extract the effective zero-sequence current of each line (the zero-sequence current of the in-phase component with VO), the results are compared by the comparison circuit 5, and the effective zero-sequence current The line with the largest value is determined to be the faulty circuit, and an output corresponding to the result is outputted from output terminals 91 to 94 for each line.

しかし、このような保護継電装置のように変化分を検出
し事故判定をすることを基本とする方式においては、次
のよう々欠点があった。すなわち、第2図に示すような
平行多回線送電線において、母線20側至近端1線地絡
事故を想定すると、母線10側では、(9)弐〜(12
)式により抽出する事故電流IPI〜IF4が平行して
流れ各回線間に差を生じないだめ、事故回線の判定が困
咲11となる欠点があった。捷だ、母線20側において
、正規にrJ、(故判定し、20L+端のしゃ断器SI
3...をしゃ断した後も、第5図に示すよう々電流分
布となり、事故回線L1の母線10 (+111では事
故電流11.のみが流れるが、健全回線には零相循環電
流Tco。〜I CO4が流れ、最悪の場合、例えば 1F、夕■co2・・・・・・(13)になることも想
定され、変化分電流を考えても、f(線20側の20 
Ll端で先行しゃ断接も、10I、。
However, in a system such as the protective relay device, which is based on detecting a change and determining an accident, there are the following drawbacks. That is, in a parallel multi-circuit power transmission line as shown in Fig. 2, assuming a single-line ground fault on the bus 20 side, on the bus 10 side, (9) 2 to (12
Unless the fault currents IPI to IF4 extracted by the equation ) flow in parallel and create a difference between each line, there is a drawback that the fault line will be judged as 11. On the busbar 20 side, it is determined that rJ is normal.
3. .. .. Even after the circuit is cut off, the current distribution becomes as shown in Fig. 5, and only the fault current 11. flows in the fault line L1 bus 10 (+111), but the zero-sequence circulating current Tco.~I CO4 flows in the healthy line. , in the worst case, for example, 1F, evening ■ co2 (13), and even considering the changing current, f (20 on the line 20 side)
Also, 10I, with advance disconnection at the Ll end.

端では事故回線の判別が困何1であるという欠点があっ
た。
The disadvantage was that it was difficult to identify the faulty line at the end.

本発明の目的は、」−述した従来技術の欠点を解消する
ためになされたもので、接地系の平行多回線併架送電線
において、零相循環電流が発生する場合でも、これに影
響されず工作に!Jl故判定が可能な地絡保護継電装置
を提供するにある。
An object of the present invention has been made to eliminate the drawbacks of the prior art described above. For work! An object of the present invention is to provide a ground fault protection relay device capable of determining Jl failure.

本発明は、多回線送電線の零相電圧および各回線の零相
電流を取り込み有効零相電流を演算するとともに、この
演算結果に基づいて事故回線を判定する地絡保護継電装
置において、各回線の負荷電流(各相電流)条件に基づ
いて前記地絡事故判定を制御し、零相循環電流の影響の
ない事故判定を行なうようにしたものである。
The present invention provides an earth fault protection relay device that takes in the zero-sequence voltage of a multi-line power transmission line and the zero-sequence current of each line, calculates an effective zero-sequence current, and determines a faulty line based on the calculation result. The ground fault fault determination is controlled based on line load current (each phase current) conditions, and fault determination is performed without the influence of zero-sequence circulating current.

以下、本発明の一実施例を図面に基づいて説明する。Hereinafter, one embodiment of the present invention will be described based on the drawings.

第6図は、本発明に係る地絡保護継電装置の一実施例を
示すブロック図である。この図の実施例において、第4
図と同一構成要素には同一の符号を付して、その説明を
省略する。
FIG. 6 is a block diagram showing an embodiment of the earth fault protection relay device according to the present invention. In the example of this figure, the fourth
Components that are the same as those in the figures are given the same reference numerals, and their explanations will be omitted.

第6図に示す実施例が第4図のものと異なるところは、
各回線り、〜L4の負荷電流ILI〜丁+、4を入力端
子101〜102を介してそれぞれ取り込み、負荷電流
の有無を判定し、負荷電流ILI〜IL4のうちの負荷
電流無しと判定された回線(Ll〜L4のうちの一つ)
における演算回路(41〜(9) 44のうちの一つ)の演栃を制御するとともに、比較回
路5に対し、電流無しと判定されたhii算回路以外の
演算回路からの有効分零相電流を比較対象から外すよう
に制御するレベル判定手段201〜204を各回線L1
〜L44riに設けた点にある。
The difference between the embodiment shown in FIG. 6 and that in FIG. 4 is as follows.
The load current ILI~D+, 4 of each line ~L4 is taken in through the input terminals 101~102, the presence or absence of the load current is determined, and it is determined that there is no load current among the load currents ILI~IL4. Line (one of Ll to L4)
In addition to controlling the operation of the arithmetic circuit (one of 41 to (9) 44) in the comparator circuit 5, the effective zero-sequence current from the arithmetic circuit other than the hii arithmetic circuit determined to have no current is transmitted to the comparator circuit 5. Level determination means 201 to 204 for each line L1
~L44ri.

す々わち、本発明は第5図に示す、]:うに、零零電流
による識別は困弼1であるが、健全回線では、負荷電流
が系統の1線地絡事故に関係なく、はぼ事故前と同様な
状態でIT、2〜ス1,4のように継続的に流れる点と
、事故回線(Ll〜L4)では20..1端は正規に内
部事故判定し先行しゃ断しているだめ、負荷電流はII
 OIIとなり流れない点とに着目し、すなわち、事故
回線と健全回線のf】荷電流の相違に着目し、相手端先
行しゃ断接の地絡内部事故を正規に判定するようにしだ
ものである。つまり、負荷電流のある回線は零相循環電
流が流れていることにより、誤判定を防止するだめ、地
絡継電器の動作を阻止し、負荷電流が流れていない回線
は相手先行しゃ断しているだめ、流入する零相電流は事
故電流のみであると判定し、正規に内部。
The present invention is shown in FIG. IT continues to flow in the same state as before the accident, as shown in lines 2 to 1 and 4, and 20. .. The load current is II because the first terminal has not properly determined the internal fault and cut off in advance.
By focusing on the point where OII occurs and no flow occurs, that is, the difference in the charge current f] between the faulty line and the healthy line, it is possible to properly determine whether the other end is a pre-break/break ground fault or an internal fault. In other words, lines with load current are flowing with zero-sequence circulating current, so in order to prevent erroneous judgments, the operation of the ground fault relay is prevented, and lines with no load current are cut off in advance of the other party. , it is determined that the zero-sequence current flowing in is only the fault current, and the internal operation is normal.

(10) 1線地絡事故判定を行なうようにしたものである。(10) This system is designed to determine a one-line ground fault accident.

次に、本発明の実施例の動作を説明する。Next, the operation of the embodiment of the present invention will be explained.

第4図で示した地絡事故判定回路に、さらに負荷電流(
第6図では単相回路で示すが、実際には、3相の負荷電
流条件を判別するため、3相回路となる)の条件を、各
回線毎に入力端子101〜104より導入し、レベル判
定回路201〜204により判定する。
In addition, the load current (
In Figure 6, a single-phase circuit is shown, but in reality, in order to determine the three-phase load current conditions, a three-phase circuit is introduced from the input terminals 101 to 104 for each line, and the level The determination is made by determination circuits 201 to 204.

ここで、このレベル判定回路201〜204のうちの一
つが負荷電流無と判定した場合、第4図ですでに説明し
た、ベクトル記憶回路61〜64のうちの負荷電流が零
と判定された回・路の記憶している量を強制的に“0″
にするとともに、さらに負荷電流のレベル判定回路20
1〜204のうちの負荷電流無しと判定した回路の出力
を比較回路5に導入し、9荷電流の有る回線の判定を阻
止するように制御するものである。なお、負荷電流無の
条件で、ベクトル記憶回路61〜64の描該記憶回路の
記憶量を強制的に“0″とした場合、第5図の状態で (11) Io1= I F               −・
・・(14)?o、(記憶量)→lI O11(強制”
 O” ) ・・−・・・(15)ΔIo1=Io11
’o1=jp    叫・・(t61となり、正規に事
故電流による判定が可能となる。
Here, when one of the level determination circuits 201 to 204 determines that there is no load current, the circuit in which the load current is determined to be zero among the vector memory circuits 61 to 64, which has already been explained in FIG.・Forcibly set the amount stored in the path to “0”
In addition, the load current level determination circuit 20
Outputs of the circuits 1 to 204 that have determined that there is no load current are introduced to the comparison circuit 5, and control is performed so as to prevent the determination of lines with 9 load currents. Note that when the storage capacity of the vector memory circuits 61 to 64 is forcibly set to "0" under the condition of no load current, in the state shown in FIG. 5, (11) Io1=I F -・
...(14)? o, (memory amount) → lI O11 (forced)
O") ... - ... (15) ΔIo1=Io11
'o1=jp Shouting...(It becomes t61, and it becomes possible to make a regular judgment based on the fault current.

このように、本発明による負荷電流条件による判定制御
を行えば、零相循環電流に左右されない内部1線地絡事
故判定が可能である。さらに、第2図に示すように、通
常、負荷電流は各回線に並行して流れるものであるから
、 となり、さらに、零相循環電流は次のような比例関係に
あることから、 Icol−α1 Tr、          ・・・・
・・(18)Ico2=α21□、         
 ・・・・・・G翅、。。3−(! 3 Tr、   
        ・・・・・・(2o)□C04= ”
 4  T T−”団1”)(但し、α1.α2.α3
.α4定数〔複素数〕)となる。しだがって、11.が
少なく、事故電流I co1〜I CO4が比例的に小
さく、事故電流IFI〜IF4に比較して事故判定上無
視し得る場合が考え(12) られるが、このような場合においても、本発明を応用し
、第6図のレベル判定回路201〜204のレベルを選
定することで、ベクトル記憶回路の記憶量を強制゛0″
として、変化分検出を行ない判定が可能となる。
In this way, by performing the determination control based on the load current condition according to the present invention, it is possible to determine an internal one-wire ground fault that is not influenced by the zero-sequence circulating current. Furthermore, as shown in Figure 2, since the load current normally flows in parallel to each line, it becomes Icol-α1, and since the zero-sequence circulating current has the following proportional relationship, Tr...
...(18) Ico2=α21□,
・・・・・・G wings. . 3-(! 3 Tr,
・・・・・・(2o)□C04= ”
4 T T-"Group 1") (However, α1.α2.α3
.. α4 constant [complex number]). Therefore, 11. There may be a case (12) in which the fault currents Ico1 to Ico4 are proportionally small and can be ignored in accident determination compared to the fault currents IFI to IF4. By applying this and selecting the levels of the level determination circuits 201 to 204 in FIG. 6, the storage capacity of the vector storage circuit is forced to ``0''.
As a result, it is possible to make a judgment by detecting the amount of change.

以上述べたように、本発明によれば、負荷電流を取り込
んで、負荷電流の有無を判定し、負荷電流が無して判定
された回線の有効分零相電流の演算を制御するとともに
、他の回線の有効分零相電流を事故判定条件から外すよ
うに制御できるようにしたので、零相循環電流に左右さ
れず正確に事故判定ができるという利点がある。
As described above, according to the present invention, the load current is taken in, the presence or absence of the load current is determined, and the calculation of the effective zero-sequence current of the line for which it is determined that there is no load current is controlled. Since the effective zero-sequence current of the line can be controlled to be excluded from the fault determination conditions, there is an advantage that fault determination can be made accurately without being influenced by the zero-sequence circulating current.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は多回線送電線の系統構成別を示す系統図、第2
図は第1図の系統における零相循環電流および負荷電流
の分布を示す説明図、第3図は同一送電線における内部
1線地絡事故時の電流分布を示す説明図、第4図は零相
循環電流に対する対策を施した地絡保護継電装置を示す
ブロック図、第5図は1端光行しゃ断時の電流分布を示
す説明(13) 図、第6図は本発明に係る地絡保護継電装置の一実施例
を示すブロック図である。 41〜44・・・演算回路、訃・・比較回路、61〜6
4・・・記憶回路、71〜74・・・比較回路、81〜
84・・・有効分針突回路、201〜202・・・レベ
ル判定回路。 (14) 葛3図 謔40 ?ハ
Figure 1 is a system diagram showing the system configuration of multi-circuit transmission lines;
The figure is an explanatory diagram showing the distribution of zero-phase circulating current and load current in the system shown in Figure 1. Figure 3 is an explanatory diagram showing the current distribution at the time of an internal one-line ground fault in the same transmission line. A block diagram showing a ground fault protection relay device with countermeasures against phase circulating current, Fig. 5 is an explanation showing the current distribution when one end light line is cut off (13), and Fig. 6 is a ground fault according to the present invention. FIG. 1 is a block diagram showing an embodiment of a protective relay device. 41-44... Arithmetic circuit,... Comparison circuit, 61-6
4... Memory circuit, 71-74... Comparison circuit, 81-
84... Effective minute hand thrust circuit, 201-202... Level determination circuit. (14) Kuzu 3 zuyo 40? C

Claims (1)

【特許請求の範囲】[Claims] 1、零相電流の発生する抵抗接地系の多回線送電線毎に
設けられ、前記送電線における零相電圧と各回線の零相
電流とをそれぞれ取り込み、これらに基づいて各回線の
有効分零相電流を演算する演算手段と、これら演算手段
からの有効分零相電流に基づいて事故判定をする比較手
段とを備えだ地絡保護継電装置において、各回線の負荷
電流をそれぞれ取り込み、それら回線のうちの負荷電流
が無しと判定された回線における演算手段の演算を制御
するとともに、前記判定された回線以外の回線の演算手
段からの有効分零相電流を前記比較手段の比較対象から
外すように制御するレベル判定手段を設けたことを特徴
とする地絡保護継電装置。
1. It is installed in each resistance grounding multi-line power transmission line where zero-sequence current is generated, and captures the zero-sequence voltage in the transmission line and the zero-sequence current of each line, and calculates the effective component zero of each line based on these. In an earth fault protective relay device, which is equipped with calculation means for calculating phase currents and comparison means for determining faults based on the effective zero-sequence currents from these calculation means, the load currents of each line are taken in, and the load currents are Controls the computation of the computation means in the circuit for which it is determined that there is no load current among the circuits, and removes the effective zero-sequence current from the computation means of the circuit other than the determined circuit from the comparison target of the comparison means. A ground fault protection relay device characterized in that it is provided with a level determination means for controlling.
JP16421281A 1981-10-16 1981-10-16 Ground-fault protecting relay unit Granted JPS5866528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16421281A JPS5866528A (en) 1981-10-16 1981-10-16 Ground-fault protecting relay unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16421281A JPS5866528A (en) 1981-10-16 1981-10-16 Ground-fault protecting relay unit

Publications (2)

Publication Number Publication Date
JPS5866528A true JPS5866528A (en) 1983-04-20
JPH0116089B2 JPH0116089B2 (en) 1989-03-22

Family

ID=15788792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16421281A Granted JPS5866528A (en) 1981-10-16 1981-10-16 Ground-fault protecting relay unit

Country Status (1)

Country Link
JP (1) JPS5866528A (en)

Also Published As

Publication number Publication date
JPH0116089B2 (en) 1989-03-22

Similar Documents

Publication Publication Date Title
US4398232A (en) Protective relaying methods and apparatus
EP0316203B1 (en) Protective relay
US3754163A (en) Protection of transformers
Sidhu et al. A power transformer protection technique with stability during current transformer saturation and ratio-mismatch conditions
US4530025A (en) Current ratio-differential relay
US4589050A (en) Method and apparatus for the protection of a thyristor power conversion system
Berdy Application of out-of-step blocking and tripping relays
KR20180087508A (en) Appatus for protecting of microgrid using superimposed reactive energy and method thereof
EP0316202A2 (en) Selecting a faulty phase in a multi-phase electrical power system
JPS5866528A (en) Ground-fault protecting relay unit
JP2778148B2 (en) Ground fault line selection relay for shared multi-line system
JPH0442726A (en) Ground fault indicator for distribution line
KR830000034B1 (en) Protective relay
JPH0438118A (en) Variation width detector
CA1269415A (en) Distance relay supervision system
JPH01160313A (en) Protective relay
JPH02266817A (en) Power system-protective relay
JPS59204418A (en) Trestle multichannel ground-fault protecting relay
JPS6350934B2 (en)
JPS58190224A (en) Ground-fault channel selecting relay
EP0009365A1 (en) Transformer differential safety systems
Wilkinson et al. Design considerations in the development of a new ground distance relay
JPS62118712A (en) Distance relay
Muchayi PERFORMANCE OF DIGITAL DISTANCE RELAY ALGORITHMS FOR PROTECTING TRANSFORMER TERMINATED LINES
JP2002027661A (en) Leakage detection/protection method and apparatus for commonly grounded circuit