JPS586482A - Optical boresight device - Google Patents

Optical boresight device

Info

Publication number
JPS586482A
JPS586482A JP10528781A JP10528781A JPS586482A JP S586482 A JPS586482 A JP S586482A JP 10528781 A JP10528781 A JP 10528781A JP 10528781 A JP10528781 A JP 10528781A JP S586482 A JPS586482 A JP S586482A
Authority
JP
Japan
Prior art keywords
target
laser
output
laser beam
distance measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10528781A
Other languages
Japanese (ja)
Inventor
Hiroshi Asano
寛 浅野
Yorio Oomichi
大道 「ぐう」男
Akiyoshi Mori
森 昭義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10528781A priority Critical patent/JPS586482A/en
Publication of JPS586482A publication Critical patent/JPS586482A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/66Tracking systems using electromagnetic waves other than radio waves

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To obtain the titled device which is capable of an assured measurement of distance regardless of a big tracking error, by providing a means that deflects the laser beam of a laser distance measuring device in accordance with the error between a target coordinate output and the servo system reference value. CONSTITUTION:A means is provided to deflect the laser beam of a laser distance measuring device in accordance with the error between the target coordinate output contained in the output of an image tracking device and the servo system reference value. Then only the transmission/reception optical axis or the transmission optical axis of the laser distance measuring device is deflected by an angle of deflection which is shown by the target position coordinate output value of the image tracking device. Thus a laser beam of a comparatively narrow angle can always be irradiated to a target for the measurement of distance. For instance, a laser distance measuring device 7 consists of a laser oscillator 8, a beam deflector 9, a receiving optical system 10, a photodetector 11 and a video amplifier 12. The deflector 9 functions to set the radiating direction of a laser beam L2 in accordance with an intra-screen target coordinate output of the image tracking device.

Description

【発明の詳細な説明】 この発明は移動する目標を自動追尾し、その方向と距離
を検出して、目標の照準を行う光学照準装置の改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an optical aiming device that automatically tracks a moving target, detects its direction and distance, and aims at the target.

光学照準装置としては通常撮像装置としてTVカメラ又
は赤外線撮像装置Iが、tた距離測定装着としてはレー
ザ測距製電が使用される。
As an optical aiming device, a TV camera or an infrared imaging device I is usually used as an imaging device, and a laser distance measuring device is used as a distance measuring device.

まず従来のとの種装置の関連部分を第1図によシ説明す
る。
First, related parts of a conventional seeding device will be explained with reference to FIG.

第1図において、(1)けTVカメラ、c2)けTVカ
メラ。出力の映僚信号に含まれる目標を検出し。
In Figure 1, (1) a TV camera, c2) a TV camera. Detect targets included in the output mirror signal.

追尾する画像追尾装置、(33は画像追尾装置からの出
力信号を増幅するサーボ増幅器、(4)はサーボ増幅器
の駆動によって旋回方向及びふ仰方向にとう載品の方向
を向けるサーボ架台、(6)はTVモニタ、(6)は目
標までの距離を測定するレーザ測距装置である。
An image tracking device for tracking, (33 is a servo amplifier that amplifies the output signal from the image tracking device, (4) is a servo mount that orients the loaded product in the turning direction and the vertical direction by driving the servo amplifier, (6) ) is a TV monitor, and (6) is a laser range finder that measures the distance to the target.

上記装rlKklthて、TVカメラ【1)でたとえば
飛行している航空機(’f’)をとらえると操作者がT
Vモ二り(5)の画面内にうつってbる航空機(T)に
ゲートマーク(G)を合わせ画像追尾装置(21にロッ
クオン指示を与えると9画像追尾装醍(2;はゲートマ
ークp)内の周囲背景輝度レベルに対しコントラストを
有するものを目標と認識して映像信号内から切り出し、
その重心点演算を行いその位置にゲートマ、−り0)の
中心を常に合わせていく。従ってTVモニタ+51の画
面内で目標が移動するとそれを追尾してゲートマーク(
G)も移動する。一方画像追尾装置(21if T V
カメラ(1)の光軸すなわちTVモニタ(5)の画面中
央に対するゲートマーク(G)の中心位置の画面内座標
出力管垂直と水平方向に分けてサーボ増幅器(3)に与
える。
With the above installation rlKklth, when a TV camera [1] captures, for example, a flying aircraft ('f'), the operator
Align the gate mark (G) with the aircraft (T) that appears on the screen of the V monitor (5) and give a lock-on instruction to the image tracking device (21). p) recognizes as a target something that has contrast with the surrounding background brightness level in p) and cuts it out from within the video signal;
The center of gravity is calculated and the center of the gate marker (-0) is always aligned at that position. Therefore, when the target moves within the TV monitor +51 screen, it will be tracked and the gate mark (
G) also moves. On the other hand, image tracking device (21if TV
The in-screen coordinates of the center position of the gate mark (G) with respect to the optical axis of the camera (1), that is, the center of the screen of the TV monitor (5), are divided into vertical and horizontal directions and applied to the servo amplifier (3).

従って目標を追尾しているゲートマーク(j))が画面
中央から離れるは゛ど座標出力は大きくなシ。
Therefore, if the gate mark (j) that is tracking the target moves away from the center of the screen, the coordinate output will not be large.

サーボ架台は速く回転方向に動くことに々る・この′結
果目標の運動にともなってサーボ架台(j+の旋回及び
ふ仰軸が動き、常に画面の中央付近に目標を捕え続ける
ことができるようになる。
The servo mount often moves quickly in the rotational direction.As a result, the servo mount (J+'s rotation and elevation axes move as the target moves, making it possible to always capture the target near the center of the screen. Become.

レーザ測距装着(s+ it T Vカメラ(1)の光
軸に合わせてその送受信光軸が整合されており、従って
上記自動追尾が行われていればTVモニタ(5)の画面
中央に写っている目標cr)に発射したレーザパルス光
が当たることになシ、その反射ノ(シス光が帰ってくる
までの時間から目標までの距離を測定できる。
The transmitting and receiving optical axis is aligned with the optical axis of the TV camera (1), so if the above automatic tracking is performed, the laser distance measuring device (s+ it) will be reflected in the center of the screen of the TV monitor (5). When the emitted laser pulse light hits the target cr), the distance to the target can be measured from the time it takes for the reflected light to return.

以上のように光学照準装置1tj画像追尾ループによっ
て目標を画面中央に捕えることによって。
By capturing the target at the center of the screen using the optical aiming device 1tj image tracking loop as described above.

目標の方向はサーボ架台(4)の各可動軸の回転角から
取プ出すことができ、目標の距離はレーザ測距、装置に
よって得ることができる。
The direction of the target can be determined from the rotation angle of each movable axis of the servo mount (4), and the distance of the target can be obtained using a laser ranging device.

ところでこの種の装#けサーボ架台(41の軸、を動か
して目標を゛追尾するためKは9画儂追尾装置(2)の
出力である画面内目標座標位着の偏移量を基本的に使用
している。従ってサーボ架台+41を速く動かす場合t
1どサーボ増幅器(3)の出力は大きな量になるわけで
あるから必然的にその入力である上記座標出力の偏移量
も大きくなる必要がある。すなわち目標の運動が高速に
なるはど画像追尾装置(2)の座標出力偏移量が増加す
ることKなり、これは目標が1面中央からずれていくこ
とになる。その様子を第2図のTVモニタ(5)画面で
示す。従ってこの場合レーザ測距装置(6)のレーザビ
ーム角を上記偏移が越えればレーザビームが目標をはず
れるため測距できないという欠点があっ六〇またその場
合で本レーザビームが当たるようにレーザビーム角をあ
らかじめ広げておくとと′も考えられるが、目欅上にお
ける単位面積あたりのレーザ光強度P打ビーム角θの二
乗に反比例(P oo、 ” )するので測距θ′ できる距離限界が大幅に短くなる。また距離性能を同一
にするにけレーザの出力パワーを02倍する必要があ〕
装置′の大型化をまねくという欠点があった。
By the way, in order to track the target by moving this type of equipped servo mount (axis 41), K is basically the deviation amount of the target coordinate position in the screen which is the output of the 9-stroke tracking device (2). Therefore, when moving the servo stand +41 quickly,
Since the output of the first servo amplifier (3) is large, the amount of deviation of the coordinate output, which is its input, must also be large. That is, as the target moves faster, the coordinate output deviation amount of the image tracking device (2) increases, which means that the target shifts from the center of one plane. The situation is shown on the TV monitor (5) screen in FIG. Therefore, in this case, if the above deviation exceeds the laser beam angle of the laser distance measuring device (6), the laser beam will miss the target and distance measurement will not be possible. It is also possible to widen the angle in advance, but since the laser light intensity per unit area on the keyhole is inversely proportional to the square of the beam angle θ (P oo, ”), the distance limit that can be measured by θ′ is It will be significantly shorter.Also, the output power of the laser needs to be multiplied by 02 in order to maintain the same distance performance.]
This has the drawback of increasing the size of the device.

なおとの種装置においてさらに高級化して計算機を使用
し、現在の目標方向と距離値から。
Naoto's seed device uses a more advanced calculator to calculate the current target direction and distance.

わずかに未来の目標位#iを予測することによりサーボ
架台を駆動して追尾精度を・大幅に向上させる手法があ
るが、この方法によっても目標の運動が一定でなくなる
場合1例えば加速、減速。
There is a method that greatly improves tracking accuracy by driving the servo mount by slightly predicting the future target position #i, but even with this method, there are cases where the motion of the target is not constant (for example, acceleration or deceleration).

旋回等を行うときKは予測値とのずれが生しかなシ大き
な追尾誤差が住じる。
When making a turn, etc., K may deviate from the predicted value, resulting in a large tracking error.

この発明は上記従来の欠点を解消し、たとえ上記状態に
あっても目mまでの距離測定が可能となるよう画像追尾
装置 (2+の目標位置座標出力値で示される偏移角だ
けレーザ測距装置(6)の送受信光軸又は送信光軸のみ
を振ることによって比較的狭い角度のレーザビームを常
に目標に当て測距ができるようK L、ようとするもの
である。
This invention solves the above-mentioned conventional drawbacks and makes it possible to measure the distance to eye m even in the above-mentioned state. By swinging only the transmitting/receiving optical axis or the transmitting optical axis of the device (6), a relatively narrow angle laser beam is always applied to the target and distance measurement can be performed.

以下図面に従ってこの発明を説明する〇第3図はこの発
明の一実施例の関連部分のみを示すもので、同図で図示
してないTVカメラ01、画像追尾装Fl (21、サ
ーボ増幅器(31,サーボ架台(41,TVモニタ(6
)は従来のものと同一である。
The present invention will be described below with reference to the drawings. Figure 3 shows only relevant parts of an embodiment of the present invention, including a TV camera 01, an image tracking device Fl (21, and a servo amplifier (31) that are not shown in the figure. , servo mount (41, TV monitor (6)
) is the same as the conventional one.

第3図はレーザ測距装#C71の内部構成の一部を示す
もので、(81けレーザ発振器、(91tfビーム偏向
器、611−r受信光学系、ol)は受光器、 02け
ビデオアンプであシ、従来のレーザ測距g e(e+に
対し、新たにビーム偏向器(9)が追加されている。
Figure 3 shows a part of the internal configuration of laser distance measuring device #C71, including (81 laser oscillator, (91TF beam deflector, 611-r receiving optical system, OL) is a light receiver, and 02 video amplifier. A new beam deflector (9) has been added to the conventional laser distance measuring system GE (e+).

第3図において、レーザ発振器(81からのレーザビー
ムr、1 ijビーム偏向器(9)を経て目標に向けて
レーザビームL2として発射される。このときビーム偏
向器(9)は画像追尾装置からの画面内目標座標出力に
応じてレーザビームL2の発対方向をそれに合わせるよ
う動作する。従って。
In FIG. 3, a laser beam r from a laser oscillator (81) is emitted as a laser beam L2 toward a target via a beam deflector (9). At this time, the beam deflector (9) The output direction of the laser beam L2 is adjusted according to the output of the target coordinates on the screen.

目標の角速度が速くなり、追尾誤差が大きくなっても、
レーザビームL2を目標に向はズ常に発射できるため、
特にビーム角を広げることなく測距が可能となる。受信
光学系・1と受光器aυによる受信視野角けO,S程度
までは比較的容易に広げておくこともできるため、レー
ザビームL2 f振る範囲がそれ以内である々らレーザ
ビーAL2に合わせて受信光軸も振る必要は無い。
Even if the angular velocity of the target increases and the tracking error increases,
Since the laser beam L2 can be constantly emitted toward the target,
In particular, distance measurement is possible without widening the beam angle. Since it is relatively easy to widen the reception field of view by the receiving optical system 1 and the receiver aυ to about O, S, the range of the laser beam L2 f swing is within that range, so it is possible to adjust the field of view to match the laser beam AL2. There is no need to swing the receiving optical axis either.

なお受光器αυで電気信号になった受信信号はビデオア
ンプaZで増幅され、計数回路(図示せ慣に与えられる
。ビーム偏向器(9)の具体的手段とし千汀種々の方法
があるが、第4図にその一実施例を示す。
The received signal converted into an electric signal by the photoreceiver αυ is amplified by the video amplifier aZ and fed to a counting circuit (not shown).There are various methods as specific means for the beam deflector (9). FIG. 4 shows an example of this.

第4図で、α3はウェッジガラス、Q4tiコントロー
ル回路、αSけメモIJ、QeけD/Aコンバータ。
In Figure 4, α3 is a wedge glass, Q4ti control circuit, αS memo IJ, and Qe D/A converter.

CI’ll tj 7 yブ、’alHjモー1.Q9
dボテyVヨメ−タである。
CI'll tj 7 yb,'alHj mo 1. Q9
It is a d body V yometer.

第4図において、二つのウェッジガラス(至)は側面か
ら見たところを示しておシ、それぞれのレーザ光通過面
が平行でなくウェッジ状になっている。したがってレー
ザビームL1hfJラスの屈折によって、一つのウェッ
ジガラスa湯を通ると方向が曲げられて出てくる。さら
に2つのウェッジガラスα3の回転方向の組合せによシ
In FIG. 4, two wedge glasses are shown viewed from the side, and their respective laser beam passing surfaces are not parallel but wedge-shaped. Therefore, due to the refraction of the laser beam L1hfJ, when it passes through one wedge glass a, the laser beam comes out with its direction bent. Furthermore, the rotation direction of the two wedge glasses α3 can be combined.

自由にレーザビームL2の方向を制御することができる
。04〜0gの奄のけウェッジガラスa3の回転角を所
定の値に制御するためのもので、第4図では一方のウェ
ッジガラスα3にっbては図示を省略しているが゛他方
と同様に別に制御される。コントロール回路α−は画像
追尾装置から追尾目標の座標位ltが与えられると、そ
の値に対応したメモリa9の番地から、あらかじめプロ
グラムされた値を読み出す。その出力flD/hコンバ
ータ゛aeでアナログ値に変換されアンプ(資)に与え
られる。アンプ(2)けモータ鱈を回転させ、ウェッジ
ガラスa3の回転角がポテンショメータoIで検出され
アンプ(2)にフィードバックされる。
The direction of the laser beam L2 can be freely controlled. This is to control the rotation angle of the 04-0g Amanoke wedge glass a3 to a predetermined value. In Fig. 4, one wedge glass α3 is not shown, but it is the same as the other wedge glass. are controlled separately. When the control circuit α- is given the coordinate position lt of the tracking target from the image tracking device, it reads a pre-programmed value from the address of the memory a9 corresponding to that value. The output is converted into an analog value by the flD/h converter ae and applied to an amplifier. The motor of the amplifier (2) is rotated, and the rotation angle of the wedge glass a3 is detected by the potentiometer oI and fed back to the amplifier (2).

したがりてD/Aコンバータαeの出力値とポテンショ
メータ(至)の値が一致したときモータ舖が止まシワウ
ェッジガラスα3が所定の回転角に設定される。さらに
もう一方のウェッジガラスU4同様に設定され、入力座
標出力に応じてレーザビームL2を常に目標に当たるよ
う方向制御することができる。
Therefore, when the output value of the D/A converter αe and the value of the potentiometer (to) match, the motor is stopped and the wrinkled wedge glass α3 is set to a predetermined rotation angle. Furthermore, it is set similarly to the other wedge glass U4, and the direction of the laser beam L2 can be controlled so that it always hits the target according to the input coordinate output.

以上説明したようにこの発明によれは撮像装rItKよ
)目標をとらえ追尾し、レーザ測距装置で目標までの距
離を測定して、目標の照準を行う光学照準装置において
、レーザビーム族がり角を拡大する等の手段を必要とせ
ず追尾誤差の大きい状況においても確実に距離測定がで
きる装置を提供することができる。
As explained above, according to the present invention, the optical aiming device captures and tracks a target, measures the distance to the target with a laser range finder, and aims at the target. It is possible to provide a device that can reliably measure distances even in situations where tracking errors are large without requiring means such as enlarging the distance.

なお実施例ではレーザビームを偏向するのにウェッジガ
ラスを使甲することで説明したが。
In the embodiment, a wedge glass was used to deflect the laser beam.

ビーム偏向のために、可動錠、あるいけ超音波偏向素子
等を用いても良しことけもちろんである。
Of course, a movable lock, an ultrasonic deflection element, etc. may be used for beam deflection.

【図面の簡単な説明】[Brief explanation of the drawing]

@1、図は従業の光学照準装置の構成図、第2図はその
作用を説明する図、第3図はこの発明の要部を示す図、
第4図は第3図に示した部分の細部を示すブロック図で
あり、 (IIはTVカメラ、(21は画像追尾装置1
t、(s+はサーボ増幅器、(4)はサーボ架台、(5
)はTVモニタ、、 (61けレーザ測距装置、(7ル
−ザ側距装置の一部、(81ijレ一ザ発振器、(91
ijビーム偏向器、01ij受信光学系。 (Il+は受光器、oFiビデオアンプ、 (+3はウ
ェッジガラス、 Q41けコントロール回路、 [+5
はメモリ。 +161 it D/A コン/< −1、(n u 
77 〕、 al tj モfi *a[有]はポテン
ショメータである。 なお図中同一あるいは相当部分には同一符号を付して示
しである。 代理人 葛 野 信 − @1図 第3囚
@1, Figure is a configuration diagram of the employee's optical aiming device, Figure 2 is a diagram explaining its function, Figure 3 is a diagram showing the main part of this invention,
FIG. 4 is a block diagram showing the details of the part shown in FIG. 3, (II is a TV camera, (21 is an image tracking device 1)
t, (s+ is the servo amplifier, (4) is the servo stand, (5
) is a TV monitor, (61 laser distance measuring device, (7 part of laser side distance measuring device, (81ij laser oscillator, (91
ij beam deflector, 01ij receiving optical system. (Il+ is the optical receiver, oFi video amplifier, (+3 is the wedge glass, Q41 is the control circuit, [+5
is memory. +161 it D/A con/< -1, (nu
77], al tj mofi *a [Yes] is a potentiometer. In the drawings, the same or corresponding parts are designated by the same reference numerals. Agent Makoto Kuzuno - @Figure 1 3rd prisoner

Claims (1)

【特許請求の範囲】[Claims] 目標物体までの距離を測定するレーザ測距装置と、目標
物体を撮像する撮像装置と、撮像装着出力ビデオ信号に
含まれる目標の座標を検出する画像追尾装置と1画儂追
尾装置の出力に含まれる目標座標出力が基準値になるよ
う上記レーザ測距装置と撮像装置の視野の方向を制御す
るサーボ系とから構成される光学照準装置において、上
記画像追尾装置の出力に含まれる目標座標出力と上記サ
ーボ系基準値との誤差量に応じて、上記レーザ測距装置
のレーザビームを偏向する手段を付加したことを特徴と
する光学照準装置。
Included in the output of a laser ranging device that measures the distance to the target object, an imaging device that images the target object, an image tracking device that detects the coordinates of the target included in the imaging output video signal, and a single-stroke tracking device. In an optical aiming device, the optical aiming device includes the laser ranging device and a servo system that controls the direction of the field of view of the imaging device so that the target coordinate output included in the output of the image tracking device and the target coordinate output included in the output of the image tracking device are set to a reference value. An optical aiming device further comprising means for deflecting a laser beam of the laser distance measuring device according to an amount of error from the servo system reference value.
JP10528781A 1981-07-06 1981-07-06 Optical boresight device Pending JPS586482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10528781A JPS586482A (en) 1981-07-06 1981-07-06 Optical boresight device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10528781A JPS586482A (en) 1981-07-06 1981-07-06 Optical boresight device

Publications (1)

Publication Number Publication Date
JPS586482A true JPS586482A (en) 1983-01-14

Family

ID=14403461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10528781A Pending JPS586482A (en) 1981-07-06 1981-07-06 Optical boresight device

Country Status (1)

Country Link
JP (1) JPS586482A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124483A (en) * 1985-11-25 1987-06-05 Tech Res & Dev Inst Of Japan Def Agency Laser radar device for semiactive guidance
JPS63502453A (en) * 1985-12-19 1988-09-14 ヒユ−ズ・エアクラフト・カンパニ− Laser beam aiming device
JPH0912155A (en) * 1995-06-26 1997-01-14 Kawasaki Heavy Ind Ltd Relative position measuring device
JP2012058158A (en) * 2010-09-10 2012-03-22 Toshiba Corp Target tracking apparatus and target tracking method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124483A (en) * 1985-11-25 1987-06-05 Tech Res & Dev Inst Of Japan Def Agency Laser radar device for semiactive guidance
JPH0438314B2 (en) * 1985-11-25 1992-06-24
JPS63502453A (en) * 1985-12-19 1988-09-14 ヒユ−ズ・エアクラフト・カンパニ− Laser beam aiming device
JPH0912155A (en) * 1995-06-26 1997-01-14 Kawasaki Heavy Ind Ltd Relative position measuring device
JP2012058158A (en) * 2010-09-10 2012-03-22 Toshiba Corp Target tracking apparatus and target tracking method

Similar Documents

Publication Publication Date Title
JP3953103B2 (en) Method and apparatus for quickly detecting the position of a target mark
EP0874218B1 (en) Surveying instrument
US5134409A (en) Surveillance sensor which is provided with at least one surveillance radar antenna rotatable about at least one first axis of rotation
US7342650B2 (en) Electronic display and control device for a measuring device
EP2065724B1 (en) Light detection and ranging system
US5092670A (en) Automatic focusing system for use with a motion picture camera
US7055253B2 (en) Surveying instrument
EP0084060B1 (en) Steering mechanism for a thermal imaging system and rangefinder therefor
CN101821583A (en) Surveying apparatus for tracking and surveying an object
CN113340279B (en) Surveying device with on-axis beam deflection element
JP3647608B2 (en) Surveyor automatic tracking device
JPH0814619B2 (en) Optical image system
US4736247A (en) Range and range rate system
KR100351018B1 (en) Arrangement for target detection
JPS586482A (en) Optical boresight device
JPH06186036A (en) Three-dimensional location measuring system
RU2523446C2 (en) Method for automated determination of coordinates of unmanned aerial vehicles
US5373318A (en) Apparent size passive range method
US5367333A (en) Passive range measurement system
JP2518066B2 (en) Laser beam direction control device
JPH06186035A (en) Three-dimenisonal position measuring system
RU2748872C1 (en) Optical direction finding system of all-round view
RU2562750C1 (en) Optical-electronic locator
RU2653158C1 (en) Location optical-electronic module
US2983915A (en) Scoring system