JPS5864649A - Driving device for objective lens - Google Patents

Driving device for objective lens

Info

Publication number
JPS5864649A
JPS5864649A JP16323881A JP16323881A JPS5864649A JP S5864649 A JPS5864649 A JP S5864649A JP 16323881 A JP16323881 A JP 16323881A JP 16323881 A JP16323881 A JP 16323881A JP S5864649 A JPS5864649 A JP S5864649A
Authority
JP
Japan
Prior art keywords
objective lens
coil
fixed
holder
information track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16323881A
Other languages
Japanese (ja)
Other versions
JPS6214891B2 (en
Inventor
Masayuki Ito
正之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16323881A priority Critical patent/JPS5864649A/en
Publication of JPS5864649A publication Critical patent/JPS5864649A/en
Publication of JPS6214891B2 publication Critical patent/JPS6214891B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Automatic Focus Adjustment (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To simplify the structure by supporting the holder contg. coils for driving an objective lens by means of flat springs which are flexible in 2 directions meeting at right angles to each other. CONSTITUTION:An objective lens 7 is fixed on a holder 8 and the holder 8 is supported by means of flat springs 11-14. The flat springs 11-14 have rectangular faces 11a-14a formed at the central parts and faces 11b-14b, 11c-14c meeting at right angles to the faces 11a-14a at both ends of the faces 11a-14a.

Description

【発明の詳細な説明】 本発明は、円盤状ディスク形状をなす記録媒体に高密度
なデジタル信号を記録させた情報トラックに光スポット
を投影させて光学的に情報を読みとる方式の再生装置に
おいて、情報トラックの信号に対して光スポットの位置
を正確に補正制御するために、対物レンズの位置をディ
スク面に対して相対的に制御する対物レンズ駆動装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a reproducing apparatus that optically reads information by projecting a light spot onto an information track on which a high-density digital signal is recorded on a disc-shaped recording medium. The present invention relates to an objective lens driving device that controls the position of an objective lens relative to a disk surface in order to accurately correct and control the position of a light spot with respect to a signal on an information track.

より詳しくは、たとえばディスクの回転中心に対する情
報トラックの偏心量、すなわちディスクの径方向の相対
的位置ズレを補正するトラッキング制御と、ディスク自
体のン1ハ及びディスクの回転運動に伴い相対的に発生
するディスク面の振れに対して対物レンズと情報トラッ
ク位置との距ディスクの再生時に必要となる時間補正す
なわちジッター制御とを行な−うものである。
More specifically, for example, tracking control corrects the amount of eccentricity of the information track with respect to the center of rotation of the disk, that is, the relative positional deviation in the radial direction of the disk, and the correction of the eccentricity of the information track relative to the center of rotation of the disk, and the correction of the eccentricity of the information track relative to the center of rotation of the disk. This method performs time correction, that is, jitter control, which is necessary when reproducing a disk based on the distance between the objective lens and the information track position, with respect to the vibration of the disk surface.

一般にこの種の光方式情報読取り装置は、ビデオ信号を
記録したビデオディスク、及び符号化されたオーディオ
信号を記録したデジタルオーディオディスクに採用され
るとともに、その他コンピュータ関係等の高密度情報記
録再生装置に応用されている。
Generally, this type of optical information reading device is used in video discs that record video signals and digital audio discs that record encoded audio signals, as well as other high-density information recording and reproducing devices such as those related to computers. It is applied.

これは、符号化されたビデオ信号や音声信号や種々の情
報を、ディスク上に情報トラックとして記録しておき、
このディスクを高速に回転させながら、レーザー光線な
どの光源より放射された光をディスク上の情報トラック
に集束させ、ディスク面よりの反射光を読み取ることに
より、記録された元の情報を再生するものである。
This involves recording encoded video signals, audio signals, and various information on a disk as information tracks.
While this disk is rotating at high speed, light emitted from a light source such as a laser beam is focused on an information track on the disk, and the original recorded information is reproduced by reading the reflected light from the disk surface. be.

この光方式情報読取り装置は、情報の記録密度をきわめ
て高密度にすることができ、従来のアナログ方式に比べ
て高密度で、高精度で、高性能な記録ができるという特
長を有する。
This optical information reading device can record information at an extremely high density, and has the advantage of being able to record information at a higher density, with higher accuracy, and with higher performance than conventional analog systems.

反面、情報トラックの幅、及びピッチがきわめて小さい
ため、この高密度な情報を忠実に再生するためには、読
み取りのだめの光スポットの集束径もきわめて小さなも
のにしなければならず、したがってディスクの情報トラ
ックに対して、光スポットを正確に追従させるためには
、対物レンズを正確に駆動してディスクとの相対的な位
置ズレが生じないように制御しなければならないという
問題がある。
On the other hand, since the width and pitch of the information tracks are extremely small, in order to faithfully reproduce this high-density information, the convergence diameter of the optical spot for reading must also be extremely small. In order to accurately follow the optical spot with respect to the track, there is a problem in that the objective lens must be accurately driven and controlled so as to avoid positional deviation relative to the disk.

この問題を解決するだめに従来から、ディスク面からの
反射光を電気的に検出し、読み取り光スポツト位置を情
報トラック位置に合致させるよう制御することが行われ
ている。
In order to solve this problem, conventional techniques have been used to electrically detect the reflected light from the disk surface and control the reading light spot position to match the information track position.

その−例として、レーザー光源と、対物レンズとの間に
ある光路に回動可能なミラーを置き、トラッキング誤差
信号の情報をもとにして、このミラーを回動させて制御
する方法がある。しかし、この方法では対物レンズ内の
光軸に常にある傾斜角が発生し、高精度な再生が認めな
い欠点がある。
As an example, there is a method in which a rotatable mirror is placed in the optical path between the laser light source and the objective lens, and the mirror is rotated and controlled based on the information of the tracking error signal. However, this method has the disadvantage that a certain inclination angle always occurs in the optical axis within the objective lens, which prevents highly accurate reproduction.

また、他の例として、対物レンズまたはその保   − 荷枠を板バネよりなる弾性支持部材により支持し、トラ
ッキング誤差信号に従って対物レンズをディスク面に対
して平行に変位させてトラッキング制御を行ない、さら
にこれら0弾性支持部材、対物レンズ、及びトラッキン
グ制御用の駆動装置を有する装置全体を別の弾性支持部
材で支持し、これをフォーカス制御用の駆動装置(例え
ばスピーカに一般的に用いられているボイスコイルと等
価なもの)を用いてディスク面に垂直な方向に対物レン
ズを駆動し、フォーカスを制御する方法が提案されてい
る。ところがこの方法は、トラッキング制御とフォーカ
ス制御がそれぞれ別個の電磁装置によって行なわれるか
ら、構成が複雑になり、重量も大きくなって高い周波数
での応答が悪くなるという問題がある。しかも対物レン
ズにトラッキング制御用の弾性部材を設け、この弾性部
材を含めてフォーカス方向に駆動するため、前記弾性部
材がトラッキング方向に傾斜している状態でレンズと弾
性部材をフォーカス方向に駆動すると、弾性部材の弾性
作用によってレンズのフォーカス方向への移動に時間的
なずれが生じ、正確なフォーカス制御ができないという
致命的な問題がある。
As another example, the objective lens or its storage frame is supported by an elastic support member made of a leaf spring, and tracking control is performed by displacing the objective lens parallel to the disk surface according to a tracking error signal. The entire device including the elastic support member, the objective lens, and the drive device for tracking control is supported by another elastic support member, and this is connected to the drive device for focus control (for example, the voice A method has been proposed in which the focus is controlled by driving the objective lens in a direction perpendicular to the disk surface using a coil (equivalent to a coil). However, this method has problems in that tracking control and focus control are performed by separate electromagnetic devices, resulting in a complicated configuration, increased weight, and poor response at high frequencies. Moreover, since the objective lens is provided with an elastic member for tracking control and is driven in the focus direction including this elastic member, if the lens and the elastic member are driven in the focus direction with the elastic member tilted in the tracking direction, There is a fatal problem in that the elastic action of the elastic member causes a time lag in the movement of the lens in the focus direction, making accurate focus control impossible.

本発明は、これらの欠点を除去し、トラッキング方向及
びフォーカス方向に対して対物レンズをより正確に制御
することができ、さらにトラッキング方向とフォーカス
方向のいずれに対しても9゜度の方向、即ち情報トラッ
クの接続方向に対しても、例えば、ビデオディスクの再
生に必要となる時間補正、すなわちジッター制御を行な
うことができ、いずれの方向に対しても動作の直線性(
リニアリティー)が良く、構造が簡単で、かつ軽量な対
物レンズ駆動装置を提供するものである。
The present invention eliminates these drawbacks, allows for more precise control of the objective lens in the tracking and focusing directions, and furthermore allows the objective lens to be controlled at 9 degrees to both the tracking and focusing directions, i.e. For example, it is possible to perform time correction, that is, jitter control, required for video disc playback in the connection direction of the information track, and to improve the linearity of the operation in either direction.
The object of the present invention is to provide an objective lens driving device that has good linearity, has a simple structure, and is lightweight.

以下、本発明の詳細を図面を参照して説明する。Hereinafter, details of the present invention will be explained with reference to the drawings.

第1図は本発明の対物レンズを駆動させる駆動力を得る
だめの原理図を示すものである。一定の空間を置いて同
軸上に配置された2つの永久磁石1と2は、第1図に示
す通り同軸上に互に逆方向に着磁されており、2つの同
一極が対向されている。従って対向する2つの永久磁石
1と2の間の空間には共通磁界が発生する。第1図に示
すT軸、F軸、Z軸の3つの軸は互いに直角をなしてお
り、ここではZ軸を2つの永久磁石1,20着磁方向と
している。前記3つの軸の交点は、2つの永久磁石1,
2の対向する空1間の中点にあるものとする。この空間
内にコイル巻枠3がT、F、Zの各方向の任意な方向に
移動可能に支持(支持構造は第1図には図示していない
)されており、このコイル巻枠3の外周部において、F
−2面内に平行に第1コイル4、Z−T面内に平行に第
2コイルrs、T−F面内に第3コイル6が巻装されて
いる。
FIG. 1 shows a principle diagram of how to obtain the driving force for driving the objective lens of the present invention. Two permanent magnets 1 and 2 are placed on the same axis with a certain space between them, as shown in Figure 1, and are magnetized in opposite directions on the same axis, with the two same poles facing each other. . Therefore, a common magnetic field is generated in the space between the two opposing permanent magnets 1 and 2. Three axes, the T-axis, F-axis, and Z-axis shown in FIG. 1, are perpendicular to each other, and here the Z-axis is the direction in which the two permanent magnets 1 and 20 are magnetized. The intersection of the three axes is the two permanent magnets 1,
It is assumed that it is at the midpoint between two opposing spaces 1. A coil winding frame 3 is supported within this space so as to be movable in any direction in the T, F, and Z directions (the support structure is not shown in FIG. 1). At the outer periphery, F
A first coil 4 is wound in parallel in the −2 plane, a second coil rs is wound in parallel in the Z-T plane, and a third coil 6 is wound in the T-F plane.

なお各コイルは四角形状をなすものとする。It is assumed that each coil has a rectangular shape.

今、第1図に示す第1コイル4の矢印方向に電流が流れ
ると、第1コイル4と永久磁石1,20間の電磁作用に
より、T軸の矢印方向にコイル巻枠3が移動する。同様
に第2コイル6に矢印方向の電流を流すと、F軸の矢印
方向にコイル巻枠3が移動し、第3コイル6に矢印方向
の電流を流すと、Z軸の矢印方向にコイル巻枠3が移動
する六もちろん、電流を流す方向を逆にすれば、コイル
巻枠3の移動方向も逆になる。、即ち、一つの共通磁界
内において互いに直角をなす方向に巻装された3つのコ
イルにそれぞれ電流を供給すると、コイル巻枠3は駆動
力を受け、決められた方向に移動することになる。
Now, when a current flows in the direction of the arrow in the first coil 4 shown in FIG. 1, the coil winding frame 3 moves in the direction of the arrow on the T-axis due to the electromagnetic action between the first coil 4 and the permanent magnets 1 and 20. Similarly, when a current is passed through the second coil 6 in the direction of the arrow, the coil winding frame 3 moves in the direction of the arrow on the F-axis, and when a current is passed through the third coil 6 in the direction of the arrow, the coil winding moves in the direction of the arrow on the Z-axis. Of course, if the direction of current flow is reversed, the direction of movement of the coil winding frame 3 will also be reversed. That is, when current is supplied to each of the three coils wound in directions perpendicular to each other within one common magnetic field, the coil winding frame 3 receives a driving force and moves in a predetermined direction.

次に本発明の具体例を示す。本発明の第1の実施例を第
2図〜第6図に示す。
Next, specific examples of the present invention will be shown. A first embodiment of the present invention is shown in FIGS. 2 to 6.

この第1の実施例は、対物レンズをトラッキング方向と
フォーカス方向の2方向に制御するだめの対物レンズ駆
動装置を示すものである。対物レンズ7はコイル巻枠を
兼ねた保持体8に固着されており、この保持体8は対物
レンズ7からの光路が通過するべき穴部8aを有してい
る。保持体8の外周部に−はフォーカス方向(F方向)
に平行にトラッキング制御コイル9が、またトラッキン
グ方向(T方向)に平行にフォーカス制御コイル10が
それぞれ四角形状に巻装されている。そして保持体8の
上下の両側部には、トラッキング方向とフォーカス方向
の移動を規制する金属等の導電性の板バネ11.12,
13.14の一端部が固着されており、各板バネ11.
12,13,140他端は支持体16に固定されている
。この支持体15は基台16に固着されている。これに
よ勺対物レンズ7はT方向及びF方向の任意な方向に移
動可能に支持されるととになる。
This first embodiment shows an objective lens driving device that controls the objective lens in two directions, the tracking direction and the focusing direction. The objective lens 7 is fixed to a holder 8 which also serves as a coil winding frame, and the holder 8 has a hole 8a through which the optical path from the objective lens 7 passes. - on the outer periphery of the holder 8 indicates the focus direction (F direction)
A tracking control coil 9 is wound in a rectangular shape parallel to the T direction, and a focus control coil 10 is wound in a rectangular shape parallel to the tracking direction (T direction). On both upper and lower sides of the holder 8, conductive plate springs 11 and 12 made of metal or the like are installed to restrict movement in the tracking direction and the focus direction.
13.14 is fixed at one end, and each leaf spring 11.
The other ends of 12, 13, and 140 are fixed to the support 16. This support 15 is fixed to a base 16. This allows the objective lens 7 to be supported so as to be movable in any direction of the T direction and the F direction.

一方、制御コイル9,10を巻装した保持体80前後方
向、即ちF−T面に直角な方向に、保持体8に対して一
定のエヤーギャップが形成されるように永久磁石17と
18を基台16に固定する。
On the other hand, permanent magnets 17 and 18 are arranged so that a constant air gap is formed with respect to the holder 8 in the front-rear direction, that is, in the direction perpendicular to the F-T plane, around which the control coils 9 and 10 are wound. It is fixed to the base 16.

これらの永久磁石17,180着磁方向は第2図。The magnetization directions of these permanent magnets 17 and 180 are shown in FIG.

第3図の通り同軸上で逆方向である。As shown in Figure 3, they are coaxial and in opposite directions.

ここで板バネ11.12,13.14の動作の説細をの
べる。
Here, a detailed explanation of the operation of the leaf springs 11, 12, 13, and 14 will be given.

第4図は上記実施例の上面図、第6図は同側面図である
。前述のように、互いに独立した板バネ11.12,1
3,14の一端は保持体8に、他端は支持体16に固定
されているが、これらの板バネ11,12,13.14
は、第3図〜第5図に示すように中央部に形成された短
冊状の第1の面11+a、122L、131L、142
Lの長手方向の両端゛に、第1の面11a〜141Lと
直角をなす第2の面11b、12b、13b、14bを
有する。そして、第1の面11a〜141Lの両端部近
傍および第2の面11b〜14bの第1の面1111〜
141Lに近い部分にそれぞれ透孔11C〜140を設
けてこの部分を弱くシ、この部分を中心に屈曲可能に構
成している。
FIG. 4 is a top view of the above embodiment, and FIG. 6 is a side view of the same. As mentioned above, mutually independent leaf springs 11, 12, 1
One end of 3, 14 is fixed to the holder 8 and the other end to the support 16, and these leaf springs 11, 12, 13, 14
As shown in FIGS. 3 to 5, the strip-shaped first surfaces 11+a, 122L, 131L, 142 are formed in the center.
L has second surfaces 11b, 12b, 13b, and 14b that are perpendicular to the first surfaces 11a to 141L at both ends in the longitudinal direction. The vicinity of both ends of the first surfaces 11a to 141L and the first surfaces 1111 to 141 of the second surfaces 11b to 14b
Through-holes 11C to 140 are provided in a portion close to 141L, respectively, so that this portion is weakened and can be bent around this portion.

このようにすれば、第4図において、今、T方向の駆動
力を受けだ場合、それぞれの屈曲部(第1の面111L
〜142Lの両端部付近の屈曲部で第4図に矢印で示す
部分)を支点として、対物レンズ8は支持体1已に対し
平行にT方向に移動する。
In this way, in FIG. 4, when receiving a driving force in the T direction, each bent portion (first surface 111L
The objective lens 8 moves in the T direction parallel to the width of the support body 142L with the bent portions near both ends of 142L (portions indicated by arrows in FIG. 4) as fulcrums.

また第6図において、今、F方向の駆動力を受けた場合
、それぞれの屈曲部(第2の面11b〜14bの第1の
面111L〜141Lに近い部分の屈曲部で第6図に矢
印で示す部分)を支点として、対物レンズ8は支持体1
6に対し平行にF方向に平行移動する。
In addition, in FIG. 6, if a driving force in the direction F is now received, the arrows in FIG. The objective lens 8 is mounted on the support 1 with the part shown in ) as a fulcrum.
Translate in parallel to 6 in the F direction.

しだがってこのような板バネ11〜14を使用すると、
互いに平行関係を保ちつつ、トラッキング方向とフォー
カス方向に対して対物レンズ8t、Iができる。
Therefore, if such leaf springs 11 to 14 are used,
Objective lenses 8t and 8I are formed in the tracking direction and the focus direction while maintaining a parallel relationship with each other.

このように上記実施例によれば、1つの共通磁界中に対
物レンズに一体([Sされた2つの独立したコイルを配
置し、これらのコイルに電流を印加することにより対物
レンズを直接的に駆動することができる。したがって従
来のフォーカス制御をトラッキング支持バネを介して制
御するもののように、トラッキング支持バネが傾斜して
いる場合にフォーカス制御信号に対して位相的なズレが
発生するという問題が皆無となる。また制御用に2つの
独立したコイルを設けるのみでヨーク系が何ら存在しな
いため、動作の直線性(リニアリティー)が良く、永久
磁石とコイル寸法を適当に設定すれば、必要な可動範囲
もきわめて広くとることができる。また構造が軽量でか
つ、きわめて簡易であるため、応答速度9周波数特性1
位相特性、駆動能率等の緒特性が大きく改善される。
In this way, according to the above embodiment, by arranging two independent coils integrated with the objective lens in one common magnetic field and applying current to these coils, the objective lens can be directly Therefore, when the tracking support spring is tilted, as in conventional focus control that is controlled via a tracking support spring, there is a problem that a phase shift occurs with respect to the focus control signal. In addition, since there are only two independent coils for control and no yoke system, the linearity of the operation is good, and if the permanent magnet and coil dimensions are set appropriately, the necessary movement can be achieved. The range is also extremely wide.The structure is lightweight and extremely simple, so the response speed is 9. Frequency characteristics are 1.
Main characteristics such as phase characteristics and drive efficiency are greatly improved.

ところで、この実施例は可動コイル型の対物レンズ駆動
装置であるので、各コイル9.10に制御電流を供給す
るリード線が必要であるが、この実施例ではリード線の
異常共振を防止するために前記4個の板バネ11,12
,13.14をリード線に共用している。即ち第2図に
示すように、板バネ11.12,13.14の一端に各
コイル9.10の端部を結線し、他端に制御電流を印加
するリード線24を結線し、板バネ11,12゜13.
14をリード線の一端として利用している。
By the way, since this embodiment is a moving coil type objective lens drive device, lead wires are required to supply control current to each coil 9 and 10, but in this embodiment, in order to prevent abnormal resonance of the lead wires, The four leaf springs 11, 12
, 13 and 14 are shared as lead wires. That is, as shown in FIG. 2, the end of each coil 9.10 is connected to one end of the leaf springs 11.12, 13.14, the lead wire 24 for applying a control current is connected to the other end, and the leaf spring is 11,12゜13.
14 is used as one end of the lead wire.

このようにすれば、可動コイル型でありながら、板バネ
を制御電流印加用リード線にも兼用することができるた
め、リード線の共振異常も皆無となる0 次に本発明の第2実施例を第6図、第7図とともに説明
する。
In this way, even though it is a moving coil type, the leaf spring can also be used as a lead wire for applying control current, so there is no resonance abnormality in the lead wire.Next, a second embodiment of the present invention will be explained with reference to FIGS. 6 and 7.

この第2実施例はビデオディスクに利用する際のジッタ
一方向の制御を追加したもので、第2図〜第5図に示し
た第1の実施例と同一機能の部分には同一符号を付して
説明を省略し、第1の実施例と異なる部分を中心に説明
する。
This second embodiment adds one-way jitter control when used for video discs, and parts having the same functions as those of the first embodiment shown in Figs. 2 to 5 are given the same reference numerals. The explanation will be omitted, and the explanation will focus on the parts that are different from the first embodiment.

対物レンズ7をMする保持体8に、第1の実施3 例と同様にトラッキング制御コイル9とフォーカス制御
コイル1oが巻装されており、さらに、F−丁面内に平
行にジッター制御コイル19が巻装されている。そして
、板ノミネ11,12,13゜14の一端を保持体8に
固着し、それらの他端を軽量かつ剛性を有する中間支持
体20の上下方向に互いに平行に固着してらる。この中
間支持体2゜の前後方向、即ち、F−T面に平行な2面
に対して平行バネ21.22の一端を固着し、それらの
他端は支持体23に固着している。なおこの支持体23
は基台16に固着されている。
A tracking control coil 9 and a focus control coil 1o are wound around a holder 8 that holds an objective lens 7, as in the third embodiment, and a jitter control coil 19 is also wound in parallel to the F-plane. is wrapped. One ends of the plates 11, 12, 13.degree. 14 are fixed to the holder 8, and their other ends are fixed parallel to each other in the vertical direction of the intermediate support 20, which is lightweight and rigid. One end of the parallel springs 21 and 22 is fixed to two surfaces parallel to the front-rear direction of the intermediate support 2°, that is, the F-T plane, and the other end thereof is fixed to the support 23. Note that this support 23
is fixed to the base 16.

このようにすれば、対物レンズ7は、第7図のF、T、
Zの互いに直角をなす3方向に対し、光軸が傾斜するこ
となく任意な方向に動き得る様に支持される。そして第
1の実施例と同様にして、永久磁石17.18間の一つ
の共通磁界内において、これらの独立した3つのコイル
9,10.19に補正信号電流を印加することにより、
トラッキング、フォーカス、ジッターの各方向の補正が
可能になる。
In this way, the objective lens 7 can be adjusted to F, T, in FIG.
The optical axis is supported so that it can move in any direction without tilting in the three Z directions that are perpendicular to each other. Then, in the same way as in the first embodiment, by applying a correction signal current to these three independent coils 9, 10.19 within one common magnetic field between the permanent magnets 17.18,
It is possible to correct tracking, focus, and jitter in each direction.

に構造が簡単で、しかも軽量な支持構造をもとにしてい
るから、応答速度9周波数特性9位相特性及びリニアリ
ティー等の諸性能が改善され、対物レンズを弾性支持体
の影響を受けることなくトラッキング、フォーカス、ジ
ッターの3方向に直接的に駆動することができる。
Since the structure is simple and based on a lightweight support structure, various performances such as response speed, frequency characteristics, phase characteristics, and linearity are improved, and the objective lens can be tracked without being affected by the elastic support. It can be directly driven in three directions: , focus, and jitter.

なお、上記実施例では板バネ11,12,13゜14を
導電性の材料で構成し、これをリード線として用いるよ
うにしたが、必ずしも導電性材料で構成する必要はなく
、たとえば樹脂のような非導電性の可撓性材料で構成し
てもよい。また板バネ11.12,13.14をリード
線として用いない場合には、各板バネ11.12,13
.14を別々に形成する必要はなく、たとえば枠状に形
成した板バネの対向する2辺を互いに平行な一対の板バ
ネとして用いてもよい。また、板バネ11〜14に屈曲
部を構成する際に、必ずしも透孔11c〜14Cを設け
る必要はなく、たとえばV字状の切込みを入れるように
してもよい。さらに、上記実施例では可動コイル型の対
物レンズ駆動装置について述べたが、昭和56年特許願
第109883号や昭和66年特許願第109884号
に示されているような可動磁石型の対物レンズ駆動装置
にも応用することができる。
In the above embodiment, the leaf springs 11, 12, 13 and 14 are made of a conductive material and used as lead wires, but they do not necessarily have to be made of a conductive material, and may be made of, for example, resin. It may also be made of a non-conductive flexible material. In addition, if the leaf springs 11.12, 13.14 are not used as lead wires, each leaf spring 11.12, 13.
.. 14 need not be formed separately; for example, two opposing sides of a frame-shaped plate spring may be used as a pair of parallel plate springs. Moreover, when configuring the bent portions in the leaf springs 11 to 14, it is not always necessary to provide the through holes 11c to 14C, and for example, V-shaped cuts may be made. Furthermore, in the above embodiment, a movable coil type objective lens drive device was described, but a movable magnet type objective lens drive device as shown in Patent Application No. 109883 of 1983 and Patent Application No. 109884 of 1988 It can also be applied to devices.

以上のように、本発明は、中央部に形成された短冊状の
第1の面と、この第1の面の長手方向の両端に第1の面
と直交するように形成された第2の面とで構成され、か
つ上記第1の面の両端部近傍と上記第2の面の上記第1
の面;に近い端部を屈曲自在にした互いに平行な複数対
の板バネで対物レンズを支持し、上記板バネの屈曲部を
支点にして上記板バネを屈曲させることにより、上記対
物レンズを記録媒体の情報トラックに対して少なくとも
2軸方向に移動させるようにしたものであるから、構造
そのものを簡単でかつ軽量なものにすることができ、し
たがって応答速度1周波数特性。
As described above, the present invention has a rectangular first surface formed in the center, and second surfaces formed at both ends of the first surface in the longitudinal direction so as to be perpendicular to the first surface. and the vicinity of both ends of the first surface and the first surface of the second surface.
The objective lens is supported by a plurality of pairs of mutually parallel leaf springs whose ends near the surface of Since it is designed to move in at least two axial directions with respect to the information track of the recording medium, the structure itself can be made simple and lightweight, and therefore the response speed is 1 frequency characteristic.

位相特性、駆動能率等の緒特性を大幅に改善する−こと
ができる。
It is possible to significantly improve phase characteristics, drive efficiency, and other initial characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するための斜視図、第2図
、第3図は本発明の第1の実施例の斜視図および分解斜
視図、第4図、第6図は上記実施例の要部の上面図およ
び側面図、第6図、第7図は本発明の第2の実施例の斜
視図及び分解斜視図である0 7・・・・・・対物レンズ、8・・・・・・保持体、9
.1o。 19・・・・・・コイル、11,12,13.14・・
曲・板バネ、15.23・・・・・・固定支持体、16
・・・・・・基台、17.18・・・・・・永久磁石、
20・・・・・・中間支持体、21.22・・・・・・
平行バネ、24・・・・・・リード線。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 4 第4図 第5図 第6図
Fig. 1 is a perspective view for explaining the present invention in detail, Figs. 2 and 3 are perspective views and exploded perspective views of the first embodiment of the invention, and Figs. 4 and 6 are illustrations of the above embodiment. A top view and a side view of the main parts of the example, and FIGS. 6 and 7 are a perspective view and an exploded perspective view of the second embodiment of the present invention. ...Holding body, 9
.. 1 o. 19... Coil, 11, 12, 13.14...
Curved/plate spring, 15.23...Fixed support, 16
...Base, 17.18 ...Permanent magnet,
20... Intermediate support, 21.22...
Parallel spring, 24...Lead wire. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 4 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)  円盤状の記録媒体に設けられた符号化された
情報トラックに対向して配置され、上記情報トラックに
対して読み取り用の光スポットを投影させる対物レンズ
と、上記対物レンズを上記情報トラックに対して互いに
直交する少なくとも2軸方向に移動自在に支持する支持
手段とを備え、上記支持手段を、一端が上記対物レンズ
又はそれを保持する保持体に固着され、他端が固定支持
体に固着された互いに平行な複数対の板バネで構成する
とともに、上記各板バネを、中央部に形成された短冊状
の第1の面と、この第1の面の長手方向の両端に第1の
面と直交するように形成された第2の面とで構成し、か
つ上記第1の面の両端部近傍と、上記第2の面の上記第
1の面に近い端部を屈曲自在に構成したことを特徴とす
る対物レンズ駆動装置。 1の面に近い端部にそれぞれ透孔を形成し、こレンズ駆
動装置。  −
(1) An objective lens that is disposed opposite to an encoded information track provided on a disk-shaped recording medium and projects a reading light spot onto the information track, and the objective lens is connected to the information track. supporting means movably in at least two axial directions orthogonal to each other, one end of which is fixed to the objective lens or a holder for holding it, and the other end of which is fixed to a fixed support. It is composed of a plurality of pairs of plate springs that are fixed and parallel to each other. and a second surface formed perpendicular to the surface, and the vicinity of both ends of the first surface and the end of the second surface close to the first surface are bendable. An objective lens driving device characterized by comprising: A through hole is formed at each end near the surface of the lens drive device. −
JP16323881A 1981-10-13 1981-10-13 Driving device for objective lens Granted JPS5864649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16323881A JPS5864649A (en) 1981-10-13 1981-10-13 Driving device for objective lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16323881A JPS5864649A (en) 1981-10-13 1981-10-13 Driving device for objective lens

Publications (2)

Publication Number Publication Date
JPS5864649A true JPS5864649A (en) 1983-04-18
JPS6214891B2 JPS6214891B2 (en) 1987-04-04

Family

ID=15769959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16323881A Granted JPS5864649A (en) 1981-10-13 1981-10-13 Driving device for objective lens

Country Status (1)

Country Link
JP (1) JPS5864649A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050731A (en) * 1983-08-31 1985-03-20 Nec Home Electronics Ltd Actuator of optical pickup
US4587466A (en) * 1982-12-09 1986-05-06 Magnetic Peripherals Two axis linear motor for optical focusing and tracking system in optical recording
JPS6186823U (en) * 1984-11-09 1986-06-06
JPS6251041A (en) * 1985-08-29 1987-03-05 Mitsubishi Electric Corp Light spot control device
JPS63195834A (en) * 1987-02-10 1988-08-12 Pioneer Electronic Corp Supporting device for movable body
US4845699A (en) * 1986-03-04 1989-07-04 Sanyo Electric Co., Ltd. Electric mechanical transducer and optical type pickup apparatus driven by a magnetic field
JPH04209333A (en) * 1990-12-17 1992-07-30 Pioneer Electron Corp Light pickup
US5136558A (en) * 1989-06-20 1992-08-04 Applied Magnetics Corporation Two axis electromagnetic actuator
US5177640A (en) * 1991-10-08 1993-01-05 Applied Magnetics Corporation Two-axis moving coil actuator
US5208703A (en) * 1989-08-15 1993-05-04 Olympus Optical Co., Ltd. Apparatus for supporting optical system
US5265079A (en) * 1991-02-15 1993-11-23 Applied Magnetics Corporation Seek actuator for optical recording
US5287337A (en) * 1990-05-26 1994-02-15 Pioneer Electronic Corporatioin Optical pickup having flexible wiring plate with focusing effective length which eliminates plate restoring force induce pickup tilt during focusing
US5313332A (en) * 1990-11-16 1994-05-17 Applied Magnetics Corporation Flexure suspension for two axis actuator
US5323378A (en) * 1991-12-31 1994-06-21 Samsung Electronics Co., Ltd. Compact optical pickup
US5345432A (en) * 1990-10-31 1994-09-06 Kabushiki Kaisha Toshiba Optical head
US5381288A (en) * 1992-06-16 1995-01-10 Applied Magnetics Corporation, Inc. Center moment suspension assembly

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4587466A (en) * 1982-12-09 1986-05-06 Magnetic Peripherals Two axis linear motor for optical focusing and tracking system in optical recording
JPS6050731A (en) * 1983-08-31 1985-03-20 Nec Home Electronics Ltd Actuator of optical pickup
JPS6186823U (en) * 1984-11-09 1986-06-06
JPH0419615Y2 (en) * 1984-11-09 1992-05-06
JPS6251041A (en) * 1985-08-29 1987-03-05 Mitsubishi Electric Corp Light spot control device
US4845699A (en) * 1986-03-04 1989-07-04 Sanyo Electric Co., Ltd. Electric mechanical transducer and optical type pickup apparatus driven by a magnetic field
JPS63195834A (en) * 1987-02-10 1988-08-12 Pioneer Electronic Corp Supporting device for movable body
JPH0542061B2 (en) * 1987-02-10 1993-06-25 Pioneer Electronic Corp
US5136558A (en) * 1989-06-20 1992-08-04 Applied Magnetics Corporation Two axis electromagnetic actuator
US5208703A (en) * 1989-08-15 1993-05-04 Olympus Optical Co., Ltd. Apparatus for supporting optical system
US5287337A (en) * 1990-05-26 1994-02-15 Pioneer Electronic Corporatioin Optical pickup having flexible wiring plate with focusing effective length which eliminates plate restoring force induce pickup tilt during focusing
US5345432A (en) * 1990-10-31 1994-09-06 Kabushiki Kaisha Toshiba Optical head
US5313332A (en) * 1990-11-16 1994-05-17 Applied Magnetics Corporation Flexure suspension for two axis actuator
JPH04209333A (en) * 1990-12-17 1992-07-30 Pioneer Electron Corp Light pickup
US5265079A (en) * 1991-02-15 1993-11-23 Applied Magnetics Corporation Seek actuator for optical recording
US5177640A (en) * 1991-10-08 1993-01-05 Applied Magnetics Corporation Two-axis moving coil actuator
US5323378A (en) * 1991-12-31 1994-06-21 Samsung Electronics Co., Ltd. Compact optical pickup
US5381288A (en) * 1992-06-16 1995-01-10 Applied Magnetics Corporation, Inc. Center moment suspension assembly

Also Published As

Publication number Publication date
JPS6214891B2 (en) 1987-04-04

Similar Documents

Publication Publication Date Title
US4472024A (en) Apparatus for driving objective lens
US7221523B2 (en) Optical pickup and optical disk device
JPS649659B2 (en)
JPS5864649A (en) Driving device for objective lens
EP0464912B1 (en) Electro-optical scanning device and optical player comprising the scanning device
JPS6245613B2 (en)
JPS5864648A (en) Driving device for objective lens
JPH0145144B2 (en)
US7203136B2 (en) Optical pickup actuator capable of performing focusing, tracking and tilting operations
JPS58182140A (en) Objective lens driving device
JPH0313650B2 (en)
JPH1091990A (en) Objective lens tilt driving device
JPH0132579B2 (en)
JPS624909Y2 (en)
JPS58182139A (en) Objective lens driving device
JPS58182137A (en) Holding device of movable body
JPH0850727A (en) Objective lens driver
JP2897090B2 (en) Objective lens drive
JPS639307B2 (en)
JPS58182138A (en) Objective lens driving device
JP2000163773A5 (en)
JP3220474B2 (en) Galvano mirror device
JPH0612578B2 (en) Optical scanning device
JPS58211333A (en) Driving device of objective lens
JPS59231743A (en) Objective lens driver