JPS5864391A - Control mechanism for quantity of water in continuous type water electrolyzing device - Google Patents

Control mechanism for quantity of water in continuous type water electrolyzing device

Info

Publication number
JPS5864391A
JPS5864391A JP16390181A JP16390181A JPS5864391A JP S5864391 A JPS5864391 A JP S5864391A JP 16390181 A JP16390181 A JP 16390181A JP 16390181 A JP16390181 A JP 16390181A JP S5864391 A JPS5864391 A JP S5864391A
Authority
JP
Japan
Prior art keywords
water
insulating means
electrolytic cell
acidic
electrically insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16390181A
Other languages
Japanese (ja)
Inventor
Tatsuo Okazaki
龍夫 岡崎
Yasukichi Okazaki
岡崎 弥寿吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP16390181A priority Critical patent/JPS5864391A/en
Publication of JPS5864391A publication Critical patent/JPS5864391A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide economy in continuous formation of water without waste of water by providing simple control mechanisms to water supply lines from electrical insulating means to electrolytic cells and controlling the production ratios between alkali ion water and acidic water. CONSTITUTION:The water released from the water separator 3 of the 1st insulating means 3 into a water receiving tank 3a enters an electrolytic cell 2 through a passage 5 from a water introducing port 2f. The alkali ion water and acidic water formed by receiving electrolysis and electric osmosis effect are brought into water supply nozzles 4f, 4f' as well through valve mechanisms 9, 9' then through pipelines 8, 8'. Here, both are treated with the 2nd electrical insulating means 4 and are received in respective water receiving tanks. In this case, the inflow rates of both passages in the cell 2 are controlled by controlling the openings of the valve discs of the mechanisms 9, 9'. At the same time the DC voltages to be applied are controlled. With such mechanism, the alkali ion water and the acidic water are formed according to the rates of consumption.

Description

【発明の詳細な説明】 この発明は、主として飲用に供するアルカリイオン水を
生成するための連続式水電解装置における水量制御機構
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water flow rate control mechanism in a continuous water electrolysis device for producing alkaline ionized water primarily for drinking.

この梅の連続式水電解装−においては、水源(例えば水
道管)IIあるいは末端使用口(蛇口)儒に、電鵡のた
めの電流が漏出するのを防止しなくてはならない。この
ため、電解槽には電気絶縁手段を介して水を供給し、ま
た電解槽からの水は電気絶縁手段を介して取出すことに
なる。このような安全管配慮した連続式水電解装置にお
いて、問題になる点は、アルカリイオン水および酸性水
の使用量が時に応じて相違することである。もし、アル
カリイオン水を多量に使用する状況下で、酸性水をそれ
ほど必要としないならば、たとえ、ペーパ値が著しく低
下しても酸性水の量を減少させることが望ましい。また
、逆に酸性水を多量に必要とする時には、たとえペーパ
値が著しく高くなっても、アルカリイオン水の量を減少
させることが望ましい。
In this type of continuous water electrolyzer, it is necessary to prevent the electric current for charging water from leaking to the water source (for example, a water pipe) or the end use port (faucet). For this reason, water is supplied to the electrolytic cell via electrically insulating means, and water is taken out from the electrolytic cell via electrically insulating means. In such a continuous water electrolysis device that takes safety precautions into consideration, a problem is that the amounts of alkaline ionized water and acidic water used vary depending on the time. If a large amount of alkaline ionized water is used and acidic water is not needed so much, it is desirable to reduce the amount of acidic water even if the paper value decreases significantly. Conversely, when a large amount of acidic water is required, it is desirable to reduce the amount of alkaline ionized water even if the paper value becomes significantly high.

このように、水生aoaoを上記連続A解装置において
制御することが、水の無駄を省く上で重要である。
In this way, it is important to control aquatic aoao in the above-mentioned continuous A decomposition device in order to avoid waste of water.

仁の発明は、上記事情にもとづいてなされたもので、電
気絶縁手段から電解槽への水供給経路において簡単な制
御機II′ft設けて、アルカリイオン水と酸性水との
生成割合を制御できるようにした連続式水電解装置にお
ける水量制御機構を提供しようとするものである。
Jin's invention was made based on the above circumstances, and it is possible to control the generation ratio of alkaline ionized water and acidic water by providing a simple controller II'ft in the water supply path from the electrical insulation means to the electrolytic cell. The present invention aims to provide a water flow rate control mechanism in such a continuous water electrolysis device.

以下、この発明を図示の実施例にもとづいて。The present invention will be described below based on the illustrated embodiments.

具体的に説明する。図において、符号1は水の電解装置
の一体であり、上記1体1円には、細長い電解槽2、第
1の電気絶縁手段3および飢2の電気絶縁手段4が設置
されている。
I will explain in detail. In the figure, reference numeral 1 denotes an integral part of the water electrolyzer, and a long and narrow electrolytic cell 2, a first electrically insulating means 3, and a second electrically insulating means 4 are installed in one circle of the above-mentioned body.

上記1[s檜2は、その外壁でI8まnる内II?!関
に配設さnた円筒状の陰電極2aと、上記陰電極の陽電
極2cと、上記外壁の上下端に設けら−nた頂板2dお
よび底板2eとより構成さnている。
Above 1 [s Hinoki 2 is I8 round II on its outer wall? ! It is composed of a cylindrical negative electrode 2a disposed at the wall, a positive electrode 2c of the negative electrode, and a top plate 2d and a bottom plate 2e provided at the upper and lower ends of the outer wall.

上記底板26には、素焼隔壁2bの内側および外側に位
置して、上記電解槽2円に連通inろ水導入口2fおよ
び2gが設けらnており、ま凱上記頂板26には、同じ
く累焼隔112bの内側および外114に位置して上記
電解槽2内に連通さnる水環出口2hおよび21が設け
られている。
The bottom plate 26 is provided with in-filtrate inlets 2f and 2g located on the inside and outside of the unglazed partition wall 2b and communicating with the electrolytic cell 2, and the top plate 26 is also provided with infiltration inlets 2f and 2g. Water ring outlets 2h and 21 are provided on the inside and outside 114 of the thermal spacing 112b and communicated with the inside of the electrolytic cell 2.

上記電気絶縁手段3および4は、そnぞn受水槽3aお
よび4c%4 m’を具備しており、上記受水槽3at
rjび4mb 4a’KFi、傾斜軸3bお!び4b、
4b’によって胞転駆動さnる水分離器3Cおよび4c
、46’が配設されている。上記本分離器3ebおよび
4eb4c’は、1転方向に、放射方向に延びる壁で、
複数に分割さrt比(、その数#i3個以上である必要
がある)分離室3dおよび4d、4dt−具備し、上記
分離用の壁の上には山形状の分水嶺部材3・および4e
14・′がある。
The electrical insulation means 3 and 4 respectively include water tanks 3a and 4c%4m', and the water tanks 3a and 4c%4m' respectively.
rj and 4mb 4a'KFi, tilt axis 3b! and 4b,
Water separators 3C and 4c driven by 4b'
, 46' are arranged. The main separators 3eb and 4eb4c' are walls extending in the radial direction in the one-turn direction,
Separation chambers 3d, 4d, and 4dt are divided into a plurality of rt ratios (the number #i must be 3 or more), and mountain-shaped watershed members 3 and 4e are provided on the separation wall.
There is 14・'.

上記水分離器3cおよび4eb4c’の上方には、傾斜
軸3bおよび4b、4b’の上側において水供給ノズル
3fおよび4f%4 f’が配置されている。
Above the water separators 3c and 4eb4c', water supply nozzles 3f and 4f%4f' are arranged above the inclined shafts 3b and 4b, 4b'.

また、上記受水槽3 m sおよび4mb4m’には、
そnぞれ経路5および6、ダが設けらnており一上記経
路5は電解槽2の水導入口2fに連通さn、上記経路6
、ダはそ塾ぞれ蛇ロア、1に連通さnている。tた、上
記水供給ノズル4f、4f’は。
In addition, in the water receiving tank 3 m s and 4 mb 4 m',
Paths 5 and 6 are provided respectively, and the path 5 is connected to the water inlet 2f of the electrolytic cell 2, and the path 6 is connected to the water inlet 2f of the electrolytic cell 2.
, Da is connected to the cram school, respectively Snake Roa, 1. The water supply nozzles 4f and 4f' are as follows.

管路818:を介して電解槽2の水環出口2hおよび2
1に連通さnている。
Conduit 818: Water ring outlet 2h and 2 of electrolytic cell 2 via
It is connected to 1.

また、上記経路6、σの入口部分には、そnぞれの流通
断面積t−詞節するための弁機構9およびqが設けられ
ている。上記弁機構9およびグは、上記経路φ、σにそ
れぞn連通する2つの弁口9a −、g 、/を具備し
−この弁口9am  9a’t1M度制御する弁体9b
%9 b’を具備していて、上記弁体9b、9 b’は
枢軸9eb9c”t’枢支すrt、上1e枢軸9c、9
 c’は互いに連動関係にあり、回動されることで、弁
口9am9m’のうち一方の開度を減少し、他方の開度
を増大させるように弁体を制御するようになっている。
In addition, valve mechanisms 9 and q are provided at the inlet portions of the paths 6 and σ for controlling the respective flow cross-sectional areas. The valve mechanism 9 and the valve mechanism 9 are provided with two valve ports 9a-, g, / that communicate with the paths φ and σ, respectively.
%9b', and the valve bodies 9b, 9b' are pivoted to the pivots 9eb9c''t', and the upper 1e pivots 9c, 9
c' are in an interlocking relationship with each other, and when rotated, the valve body is controlled so as to decrease the opening degree of one of the valve ports 9am 9m' and increase the opening degree of the other.

なお、上記受水槽31内の水しベルよりも、管路8、ぎ
の水レベルが低くなるように、上記受水槽のレベル1−
、電解槽2上に位置させて置<m*がある。
Note that the water level 1- of the water tank 31 is set so that the water level in the pipe line 8 is lower than the water bell in the water tank 31.
, is located above the electrolytic cell 2.

このような構成において、電極2aお・よび2c間に直
流電圧を印加させて置いて、水供給ノズル3fより水を
水分離器3c上にもたらし、かつ、分離器3at−傾斜
軸3bの回転で駆動しておくと、順次分離室34に入っ
た水は、傾斜軸3bの下側Kt?−いて受水槽31内に
放出される。水の供給は、放出さnていない分離m3d
のいづnか、あるいは両方に跨って供給さnているが、
放出中の分離IIKは注がnないので、電気的には遮断
されてお勤、受水槽3aにうけた水が電解槽2に連続的
にもたらされていても、水供給ノズル3fへ漏電する仁
とはない。とくに、上記分水嶺部材の働きで、台分su
iは電気的Kjllk断さnているので、このような電
気絶縁効果を達成できるのである。
In such a configuration, a DC voltage is applied between the electrodes 2a and 2c, water is brought onto the water separator 3c from the water supply nozzle 3f, and the rotation of the separator 3at and the inclined shaft 3b When the water is driven, the water that enters the separation chamber 34 sequentially moves to the lower side Kt of the inclined shaft 3b. - is released into the water tank 31. Water supply is not released and separated m3d
However, it is supplied across both sides,
Separation IIK is not injected during discharge, so it is electrically cut off, and even if the water received in the water receiving tank 3a is continuously brought to the electrolytic tank 2, there is no electrical leakage to the water supply nozzle 3f. There is no such thing as Jin. In particular, due to the function of the above-mentioned watershed member, the unit su
Since i is electrically disconnected from Kjllk, such an electrical insulation effect can be achieved.

受水槽3aに入った水は、経路5.5′を経由して、陽
1に2cがある部屋2 c’および陰極2aがあるfi
tBjll 2 m’にそnそn吃たらさn1電解槽2
円ふち下から上i/cf11.nる過程で%素焼隔壁2
bを介して電気分解および電気滲透作用をうける。そし
て−素焼隔112bの外側で、アルカリイオン水を生成
し1円側で酸性水を生成する。生成さnたアルカリイオ
ン水および酸性水Fi、そnぞれ弁機構9およびCat
−介して管路8.8′より水供給ノズル4f。
The water that entered the water tank 3a passes through the path 5.5' to the room 2c' where the positive electrode 2c is located and the fi where the negative electrode 2a is located.
tBjll 2 m' ni so n statarasa n1 electrolytic tank 2
From bottom to top of circle edge i/cf11. % bisque partition wall 2 in the process of
It is subjected to electrolytic and electroosmotic effects via b. Then, alkaline ionized water is generated on the outside of the unglazed space 112b, and acidic water is generated on the 1-yen side. The generated alkaline ionized water and acidic water Fi, the valve mechanism 9 and Cat
- water supply nozzle 4f via line 8.8';

4 f’にもたらさn、hzの電気絶縁手段4で、その
飢1の電気絶縁手段3の場合と同じように処理さf′L
1亀解槽と電気的に遮断さfL′fC状態で、受水!#
I4am4m’にそれぞnうけら牡る。
4 f' brought to n, hz electrically insulating means 4, treated as in the case of electrically insulating means 3 of that starvation 1 f'L
1 Receive water in the state of fL′fC, which is electrically disconnected from the turtle tank! #
I 4 am 4 m' respectively.

この場合、枢軸9c、9C′を操作して弁体9bにより
弁口9aの開度を小さくシ、弁体9 b’により、弁口
9&′の開wtt−大きくすると、部屋2 c’への流
通蓋が減少し、部屋2 a/への流通蓋が増大さnる。
In this case, by manipulating the shafts 9c and 9C' to reduce the opening degree of the valve port 9a with the valve body 9b and increase the opening degree of the valve port 9&' with the valve body 9b', the opening degree of the valve port 9&' is increased. The flow cover decreases and the flow cover to room 2a/ increases.

この部屋2 m’への流通量の増大に見合っただけ直流
電圧の印加′t−筒めると、上1ピ弁機構9のflL箪
制匈にも拘らず、アルカリイオン水の濃度は一足に保た
nる。一方、酸性水の濃度は重圧上昇と流速音減少で、
著しく増大さnるが、こnは、この時点では必要とさn
ないので問題はなく、放棄される水tFi節約さnるこ
とになる。もし、枢軸9c、9c’を逆に操作して弁体
9 b’により弁口9 a’の開tを小さくし、弁体9
bにより弁口9aの開[を大きくすnば、酸性水の流通
量が増大され、アルカリイオン水の流通蓋が減少さnる
。このような制御は、酸性水使用の時に用いらnるとよ
い。
When applying a direct current voltage commensurate with the increase in the flow rate to this room 2 m, the concentration of alkaline ionized water is slightly reduced, despite the flL control of the upper 1 pin valve mechanism 9. Keep it in place. On the other hand, the concentration of acidic water increases due to increased pressure and decreased flow velocity and sound.
This will increase significantly, but this is not needed at this point.
Since there is no problem, the amount of water that would be wasted will be saved. If the pivots 9c and 9c' are reversely operated to reduce the opening t of the valve port 9a' by the valve body 9b', the valve body 9
If the opening of the valve port 9a is increased by b, the flow rate of acidic water is increased and the flow rate of alkaline ionized water is decreased. Such control is preferably used when using acidic water.

なおlEtの少ない個の水t′i、それが中性点より外
れるほど、導電性が高くなるので、場合によってFi、
電圧制at−行なわなくても、・流量の大きい備の水に
ついてのベーハ値を所定atで到達させる一助になる。
Note that the conductivity of water t'i with less lEt increases as it deviates from the neutral point, so depending on the case, Fi,
Even without voltage regulation, it helps to reach the Beha value for water with a large flow rate at a predetermined at.

なお、このようなR音制御に1.上述のような弁機構9
、qを用いてもよいが、管路8、ビのレベルを上下動操
作して、%差によるam抵抗を増大、あるいけ減少させ
る方式で流量制御してもよいこ六勿論である。このm台
、管Th8あるいはぎのいづnか一方だけを上下させて
、相対的な落差をつけてもよい。
In addition, for such R sound control, 1. Valve mechanism 9 as described above
. It is also possible to create a relative head by raising or lowering only one of the pipes Th8 and Izun.

この発明は以上詳述したように、JIIoIIC気絶縁
手1!iを介して電解槽に水を供給し、上記電解槽の頂
部より生成され次アルカリイオン水および酸性水をそれ
ぞれ飢2の電気絶縁手段を介して取出すようにしたもの
において%m1の電気絶縁手段から電解槽へ水を供給す
る経路を二経路に分け、そnぞれの経路全上記電解槽の
陰極室および陽極室に連通すると共に、上記経路に互い
に連動関係fある9P機Jkを設け、一方の経路の15
を通量を増大する時、他方の流通tr全減少するように
構成したので、必要とさtLる生成水を多皺に入手でき
、不必要な狽りはこn’をシナして水の無駄を省くこと
ができ、連続式の水生成VCおいて、大きな経済性を発
揮できるという優fまた効果が侮られる□
As detailed above, this invention is based on the JIIoIIC Kisinsute 1! Water is supplied to the electrolytic cell through the electrolytic cell, and the alkaline ionized water and acidic water produced from the top of the electrolytic cell are taken out through the electrically insulating means of %m1, respectively. The route for supplying water from the tank to the electrolytic tank is divided into two routes, each of which communicates with the cathode chamber and the anode chamber of the electrolytic tank, and a 9P machine Jk that is interlocked with each other is installed in the route, 15 on one route
When the flow rate is increased, the other flow rate is completely reduced, so the required amount of produced water can be obtained easily, and unnecessary waste is avoided. The advantages and effects of being able to eliminate waste and demonstrate great economic efficiency in continuous water generation VC are being underestimated□

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一夾施例を示す概略的系統図、第2
図は電解槽の縦酌丁慢11撓1凶、第3図および第4図
は電気絶縁手段の縦側「餉凹図、記5図は水分Mkmの
斜視図、第6図は弁機構の斜視図である。 1・・、・・・・一体、2・・・・・・電解槽、3.4
・・・・・・電気絶縁手段、5、ダ叩・・ 経路、9・
・−・・・弁機構、919a′・・・・・・升0.9b
・・印・弁板。
Figure 1 is a schematic system diagram showing one embodiment of this invention;
Figures 3 and 4 are vertical views of the electrolytic cell, Figures 3 and 4 are vertical views of the electrical insulation means, Figure 5 is a perspective view of the water content Mkm, and Figure 6 is the valve mechanism. It is a perspective view. 1...,... integral, 2...... electrolytic cell, 3.4
・・・・・・Electrical insulation means, 5, Tap... Route, 9.
... Valve mechanism, 919a' ... 0.9b
・Seal/valve plate.

Claims (1)

【特許請求の範囲】[Claims] 第1の電気絶縁手段を介して電解槽に水を供給し、上記
電解槽の頂部より生成さnたアルカリイオン水および酸
性水をそれぞt″LL第電気絶縁中□ 段゛を介して取
出すよう圧したもの罠おいて、1!1の電気絶縁手段か
ら電解槽への水を供給する経路は上記電解槽の導入口に
おいて、に&の室および陽極の室に連通さnると共に、
各室゛の頂部に連通して第2の電気絶縁手段に生成水を
もたらす二つの経路に、一方の経路の流通量を増大する
時他方の流通量を減少するように両流量O制御を行なう
流量制御手験を設けたことを特徴とする連続式水電解装
置における水量制御機構。
Water is supplied to the electrolytic cell through the first electrically insulating means, and alkaline ionized water and acidic water generated from the top of the electrolytic cell are taken out through the t''LLth electrically insulating stage, respectively. In a pressurized trap, the path for supplying water from the electrically insulating means of 1!1 to the electrolytic cell communicates with the anode chamber and the anode chamber at the inlet of the electrolytic cell, and
Control is performed on the two paths that communicate with the top of each chamber and bring generated water to the second electrically insulating means so that when the flow rate of one path is increased, the flow rate of the other path is decreased. A water flow control mechanism in a continuous water electrolysis device characterized by having a flow control technique.
JP16390181A 1981-10-14 1981-10-14 Control mechanism for quantity of water in continuous type water electrolyzing device Pending JPS5864391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16390181A JPS5864391A (en) 1981-10-14 1981-10-14 Control mechanism for quantity of water in continuous type water electrolyzing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16390181A JPS5864391A (en) 1981-10-14 1981-10-14 Control mechanism for quantity of water in continuous type water electrolyzing device

Publications (1)

Publication Number Publication Date
JPS5864391A true JPS5864391A (en) 1983-04-16

Family

ID=15782970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16390181A Pending JPS5864391A (en) 1981-10-14 1981-10-14 Control mechanism for quantity of water in continuous type water electrolyzing device

Country Status (1)

Country Link
JP (1) JPS5864391A (en)

Similar Documents

Publication Publication Date Title
US5427667A (en) Apparatus for electrochemical treatment of water
JPH0287481A (en) Drainage system for fuel cell battery
JPH0338293A (en) Apparatus for continuous production of electrolytic water
KR19980081345A (en) Electrochemical half cell
US20220209274A1 (en) Redox flow battery with a balancing cell
KR102156372B1 (en) Shower device with oral cavaty washer using hydrogen-containing water
JPS5864391A (en) Control mechanism for quantity of water in continuous type water electrolyzing device
JPS5864182A (en) Mechanism for controlling amount of water in continuous water-electrolyzing apparatus
JPH02504653A (en) Anti fluctuation outlet device for use in electrochemical baths
KR101937930B1 (en) Hydrogenated electrolytic cell
EP0131173B1 (en) Electrolysis apparatus
JP2014226598A (en) Electrolytic tank and electrolyzed water generator equipped with the same
JPS59189988A (en) Controlling mechanism for volume of water in continuous water electrolysis unit
JPH10202260A (en) Electrolyzed water forming device
JPH09192667A (en) Electrolyzed water generating device
JP2991111B2 (en) Non-diaphragm type water electrolyzer
JPS61149289A (en) Continuous electrolytic water forming apparatus
JPH0889962A (en) Electrolytic water generator
RU2042639C1 (en) Device for electrochemical treatment of water
CN217498771U (en) Continuous electric desalting anode chamber
JPH025915Y2 (en)
CN213651964U (en) Electric field catalysis Fenton reactor
JPS60114392A (en) Continuous forming device for electrolytic water
RU2034791C1 (en) Installation for production of disinfecting and detergent solution
JP2622973B2 (en) Electrolytic ionic water generator having flow rate ratio adjusting member