JPH10202260A - Electrolyzed water forming device - Google Patents

Electrolyzed water forming device

Info

Publication number
JPH10202260A
JPH10202260A JP9017829A JP1782997A JPH10202260A JP H10202260 A JPH10202260 A JP H10202260A JP 9017829 A JP9017829 A JP 9017829A JP 1782997 A JP1782997 A JP 1782997A JP H10202260 A JPH10202260 A JP H10202260A
Authority
JP
Japan
Prior art keywords
water
electrolytic cell
flow rate
switching
inflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9017829A
Other languages
Japanese (ja)
Inventor
Kenji Sugizaki
健司 杉崎
Tatsuo Sugata
達夫 菅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP9017829A priority Critical patent/JPH10202260A/en
Publication of JPH10202260A publication Critical patent/JPH10202260A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a misoperation of a switching means by user by controlling the switching means by judging whether a connection is constituted to a parallel connection or a series connection based on a pH of an alkali water or an acid water in an electrolyzed water forming device capable of switching plural electrolytic cells to the series connection or the parallel connection. SOLUTION: In a control circuit 55, when an inflow of water is detected with a flow rate detecting means 20, the pH of the alkali water and the acid water are detected with pH detecting means 56a and 56b after starting power supply to the electrolytic cells 3a and 3b, and the detected pH is compared with the pH of the alkali water and the pH of the acid water stored in a pH recording means 54. When the detected pH of the alkali water is lower than a standard pH or the pH of the acid water is higher than the standard pH, a magnetic three-way valves 51 and 52 are switched to a communicating state respectively and a stop valve 53 is closed. In this way, the electrolytic cell 3a and the electrolytic cell 3b are switched from the parallel connection to the series connection, and the alkali water having higher pH or the acid water having lower pH are obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ水、酸性水を
生成するために用いられる電解水生成器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolyzed water generator used for producing alkaline water and acidic water.

【0002】[0002]

【従来の技術】現在、飲用等に供するアルカリ水、及
び、美容又は消毒用等に用いられる酸性水を得るために
電解水生成器が利用されている。この電解水生成器は、
一端が水道水等の水が供給される蛇口に接続され、他端
が前記水を電気分解してアルカリ水、酸性水を生成する
複数の電解槽に接続された流入路と、該電解槽の陽極と
陰極とに直流電圧を印加する電源回路と、一の電解槽と
他の電解槽とを直列接続とするか並列接続とするかを切
り換える切換手段とを備えた電解水生成器が使用されて
いる。そして、上記電解槽で生成されたアルカリ水、酸
性水はそれぞれ流出路としてのアルカリ水路及び酸性水
路より電解水生成器外部に供給される。また、使用者が
切換手段の操作をして一の電解槽と他の電解槽とを直列
接続とすることにより、一の電解槽と他の電解槽とを並
列接続した場合に生成されるアルカリ水(又は、酸性
水)のPHよりも高いPHのアルカリ水(又は、低いP
Hの酸性水)を生成できるようになっている。
2. Description of the Related Art At present, an electrolyzed water generator is used to obtain alkaline water used for drinking or the like and acidic water used for beauty or disinfection. This electrolyzed water generator
One end is connected to a faucet to which water such as tap water is supplied, and the other end is connected to a plurality of electrolytic cells that electrolyze the water to produce alkaline water and acidic water, and an inflow path for the electrolytic cells. An electrolyzed water generator is used which includes a power supply circuit for applying a DC voltage to the anode and the cathode, and switching means for switching whether one electrolytic cell and another electrolytic cell are connected in series or in parallel. ing. Then, the alkaline water and the acidic water generated in the electrolytic cell are respectively supplied to the outside of the electrolytic water generator from the alkaline water channel and the acidic water channel as the outflow channels. In addition, the user operates the switching means to connect one electrolytic cell and another electrolytic cell in series, so that alkali generated when one electrolytic cell and another electrolytic cell are connected in parallel. Alkaline water (or low P) having a higher PH than that of water (or acid water)
H acidic water).

【0003】[0003]

【発明が解決しようとする課題】上記電解水生成器で
は、使用者により切換手段が操作されるので、切換手段
の操作ミスにより、使用者の望まないPHのアルカリ水
(又は、酸性水)が生成されてしまうおそれがあった。
従って、本発明は、使用者が切換手段を操作することな
く、一の電解槽と他の電解槽とを並列接続とするか直列
接続とするかが切り換わるようにした電解水生成装置を
提供することを目的とする。
In the above electrolyzed water generator, since the switching means is operated by the user, an operation error of the switching means causes alkaline water (or acidic water) having a pH not desired by the user to be produced. There was a risk of being generated.
Therefore, the present invention provides an electrolyzed water generating apparatus in which one electrolytic cell and another electrolytic cell are switched between a parallel connection and a series connection without a user operating the switching means. The purpose is to do.

【0004】[0004]

【課題を解決するための手段】上記の問題点を解決する
ために、本発明の請求項1は、流入路と流出路との間に
設けられ、当該流入路より流入する水からアルカリ水及
び酸性水を生成する複数の電解槽と、一の電解槽と他の
電解槽とを直列接続とするか並列接続とするかを切り換
える切換手段を設けた電解水生成器において、前記電解
槽で生成されたアルカリ水又は酸性水のPHを検出する
PH検出手段と、前記PH検出手段により検出されたア
ルカリ水又は酸性水のPHに基づき、前記一の電解槽と
他の電解槽とを並列接続とするか直列接続とするかを判
定し、この判定結果に基づき切換手段により前記一の電
解槽と他の電解槽とを並列接続とするか直列接続とする
かを切り換える生成PH基準切換制御手段と、を設けた
ことを特徴とする。
In order to solve the above-mentioned problems, a first aspect of the present invention is provided between an inflow channel and an outflow channel. A plurality of electrolyzers for generating acidic water, and an electrolyzed water generator provided with switching means for switching between one electrolyzer and another electrolyzer in series or parallel connection, wherein PH detecting means for detecting the pH of the alkaline water or acidic water that has been detected, based on the PH of the alkaline water or acidic water detected by the PH detecting means, the one electrolytic cell and another electrolytic cell are connected in parallel. Or a series connection, and a generation PH reference switching control unit that switches between the one electrolytic cell and the other electrolytic cell in a parallel connection or a series connection by a switching unit based on a result of the determination. , Is provided.

【0005】また、本発明の請求項2は、流入路と流出
路との間に設けられ、当該流入路より流入する水からア
ルカリ水及び酸性水を生成する複数の電解槽と、一の電
解槽と他の電解槽とを直列接続とするか並列接続とする
かを切り換える切換手段を設けた電解水生成器におい
て、前記電解槽で生成させるべきアルカリ水又は酸性水
のPHを設定するためのPH設定手段と、前記PH設定
手段により設定されたアルカリ水又は酸性水のPHに基
づき、前記一の電解槽と他の電解槽とを並列接続とする
か直列接続とするかを判定し、この判定結果に基づき切
換手段により前記一の電解槽と他の電解槽とを並列接続
とするか直列接続とするかを切り換える設定PH基準切
換制御手段と、を設けたことを特徴とする。
[0005] A second aspect of the present invention is to provide a plurality of electrolytic cells provided between an inflow channel and an outflow channel for generating alkaline water and acidic water from water flowing from the inflow channel, and one electrolytic cell. In an electrolyzed water generator provided with a switching means for switching whether a cell and another electrolytic cell are connected in series or in parallel, in order to set the pH of alkaline water or acidic water to be generated in the electrolytic cell. Based on the pH of the alkaline water or acidic water set by the PH setting means and the PH setting means, it is determined whether the one electrolytic cell and the other electrolytic cell are connected in parallel or in series, A set PH reference switching control means for switching between the one electrolytic cell and the other electrolytic cell to be connected in parallel or in series based on the determination result is provided.

【0006】また、本発明の請求項3は、流入路と流出
路との間に設けられ、当該流入路より流入する水からア
ルカリ水及び酸性水を生成する複数の電解槽と、一の電
解槽と他の電解槽とを直列接続とするか並列接続とする
かを切り換える切換手段を設けた電解水生成器におい
て、前記電解槽に流入する水の流速又は流量を検出する
流速検出手段と、前記流速検出手段により検出された水
の流速又は流量が所定流速又は流量以下の場合には、前
記切換手段により前記一の電解槽と他の電解槽とを並列
接続にするとともに、前記流速検出手段により検出され
た水の流速又は流量が所定流速又は流量を超えた場合に
は、前記切換手段により前記一の電解槽と他の電解槽と
を並列接続から直列接続に切り換える流速基準切換制御
手段と、を設けたことを特徴とする。
[0008] A third aspect of the present invention is a method for manufacturing a battery, comprising: a plurality of electrolytic cells provided between an inflow channel and an outflow channel to generate alkaline water and acidic water from water flowing from the inflow channel; In an electrolyzed water generator provided with a switching means for switching between a series connection and a parallel connection between a cell and another electrolytic cell, a flow rate detecting means for detecting a flow rate or a flow rate of water flowing into the electrolytic cell, When the flow rate or flow rate of the water detected by the flow rate detecting means is equal to or less than a predetermined flow rate or flow rate, the switching means connects the one electrolytic cell and another electrolytic cell in parallel, and the flow rate detecting means When the flow rate or flow rate of the water detected by the above exceeds a predetermined flow rate or flow rate, the flow rate reference switching control means for switching the one electrolytic cell and the other electrolytic cell from parallel connection to series connection by the switching means. , Established The features.

【0007】[0007]

【発明の実施の形態】以下、本発明の一実施例を図1及
び図2を用いて説明する。図1に示すように、電解水生
成器1は、流入路2より流入する水を電気分解する二つ
の電解槽3a,3bと、二つの電解槽3a,3bにおい
て生成されたアルカリ水及び酸性水を電解水生成器1の
外部にそれぞれ流出させるための流出路としてのアルカ
リ水流出路4と酸性水流出路5とから大略構成されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. As shown in FIG. 1, an electrolyzed water generator 1 includes two electrolyzers 3 a and 3 b for electrolyzing water flowing from an inflow passage 2, and alkaline water and acidic water generated in the two electrolyzers 3 a and 3 b. Is roughly constituted by an alkaline water outflow passage 4 and an acidic water outflow passage 5 as outflow passages for allowing the water to flow out of the electrolyzed water generator 1.

【0008】電解槽3a,3bは、それらそれぞれの内
部に陰極6a,6bと陽極7a,7bを有しており、陰
極6a,6bと陽極7a,7bとの間にはイオン透過分
離膜8a,8bが設けられている。このようにして、電
解槽3a,3b内は、イオン透過分離膜8a,8bによ
って、陰極6a,6bを有する陰極室9a,9bと陽極
7a,7bを有する陽極室10a,10bの2室に画成
されている。
The electrolytic cells 3a and 3b have cathodes 6a and 6b and anodes 7a and 7b, respectively, inside thereof, and an ion permeable separation membrane 8a and a cathode 7a and 7b are provided between the cathodes 6a and 6b and the anodes 7a and 7b. 8b are provided. In this way, the electrolytic cells 3a, 3b are separated by the ion-permeable separation membranes 8a, 8b into two chambers, namely, the cathode chambers 9a, 9b having the cathodes 6a, 6b and the anode chambers 10a, 10b having the anodes 7a, 7b. Has been established.

【0009】更に、陰極室9a,9bには、電気分解す
べき水を流入させるための陰極室流入口11a,11b
と、陰極室9a,9b内で電解された水を陰極室9a,
9bの外部に流出させるための陰極室流出口12a,1
2bとが設けられている。また、陽極室10a,10b
には、陽極室10a,10bに電気分解すべき水を流入
させるための陽極室流入口13a,13bと、陽極室1
0a,10b内で電解された水を陽極室10a,10b
の外部に流出させるための陽極室流出口14a,14b
とが設けられている。
Further, the cathode chambers 9a and 9b have cathode chamber inlets 11a and 11b through which water to be electrolyzed is introduced.
And the water electrolyzed in the cathode chambers 9a and 9b.
9b for discharging to the outside of the cathode chamber 9b
2b are provided. Also, the anode chambers 10a, 10b
The anode chamber inlets 13a, 13b for allowing water to be electrolyzed to flow into the anode chambers 10a, 10b, and the anode chamber 1
The electrolyzed water in the anode chambers 10a, 10b
Anode outlets 14a, 14b for flowing out of
Are provided.

【0010】そして、上記電解槽3a,3bにおいて
は、陰極6a,6b及び陽極7a,7bに直流電圧を印
加することにより、水を電気分解する過程で水中の陽イ
オンが陰極6a,6b側に移動し、陰イオンが陽極7
a,7b側に移動することを利用して、イオン透過分離
膜8a,8bの陰極6a,6b側即ち陰極室9a,9b
側に陽イオンを多く含むアルカリ水を生成させるととも
に、陽極7a,7b側即ち陽極室10a,10b側に陰
イオンを多く含む酸性水を生成させるようになってい
る。
In the electrolytic cells 3a and 3b, by applying a DC voltage to the cathodes 6a and 6b and the anodes 7a and 7b, cations in the water are electrolyzed to the cathodes 6a and 6b in the process of electrolyzing the water. Moves and the anion moves to anode 7
Utilizing the movement to the a, 7b side, the cathode 6a, 6b side of the ion permeable separation membranes 8a, 8b, that is, the cathode chambers 9a, 9b.
In addition to generating alkaline water containing a large amount of cations on the side, acidic water containing a large amount of anions is generated on the anodes 7a and 7b side, that is, on the anode chambers 10a and 10b side.

【0011】流入路2は、水が電解槽3a,3bに流入
しているか否かを流量の有無より検出する流量検出手段
20が介装された原水流入路15と、電解槽3a,3b
の数と同数設けられた電解槽用流入路16a,16b
と、電解槽3a,3b内の各室9a,9b,10a,1
0bの数と同数設けられた室用流入路17a,17b,
17c,17dとから構成されている。そして、原水流
入路15は、一端が電解すべき水の供給源である水道蛇
口(図示せず)に接続され、他端が電解槽用流入路16
a,16bのそれぞれの一端に接続されている。電解槽
用流入路16aの他端は室用流入路17a,17bのそ
れぞれの一端に接続されている。室用流入路17aの他
端は陰極室流入口11aに接続されている。また、室用
流入路17bの他端は陽極室流入口13aに接続されて
いる。電解槽用流入路16bの他端は室用流入路17
c,17dのそれぞれの一端に接続されている。室用流
入路17cの他端は陰極室流入口11bに接続されてい
る。また、室用流入路17dの他端は陽極室流入口13
bに接続されている。
The inflow passage 2 includes a raw water inflow passage 15 provided with a flow rate detecting means 20 for detecting whether or not water is flowing into the electrolytic cells 3a and 3b based on the presence or absence of a flow rate, and the electrolytic cells 3a and 3b.
Electrolyte inflow passages 16a, 16b provided in the same number as
And each of the chambers 9a, 9b, 10a, 1 in the electrolytic cells 3a, 3b.
0b, the number of room inflow passages 17a, 17b,
17c and 17d. The raw water inflow path 15 has one end connected to a water tap (not shown) which is a supply source of water to be electrolyzed, and the other end connected to an inflow path 16 for an electrolytic cell.
a, 16b are connected to one end of each. The other end of the electrolytic cell inflow passage 16a is connected to one end of each of the chamber inflow passages 17a and 17b. The other end of the chamber inflow passage 17a is connected to the cathode chamber inlet 11a. The other end of the chamber inflow passage 17b is connected to the anode chamber inlet 13a. The other end of the electrolytic cell inflow passage 16 b is connected to the chamber inflow passage 17.
c, 17d. The other end of the chamber inflow path 17c is connected to the cathode chamber inlet 11b. The other end of the chamber inflow passage 17d is connected to the anode chamber inflow port 13d.
b.

【0012】アルカリ水流出路4は、電解槽3a,3b
内の陰極室9a,9bの数と同数設けられた陰極室用流
出路18a,18cと、一つのアルカリ水用統合路と、
から構成されている。陰極室用流出路18a,18cの
一端は、陰極室流出口12a,12bに夫々接続され、
それらの他端は共に一端がアルカリ水の吐出口となった
アルカリ水用統合路19aの他端に接続されている。酸
性水流出路5は、電解槽3a,3b内の陽極室10a,
10bの数と同数設けられた陽極室用流出路18b,1
8dと、一つの酸性水用統合路19bと、から構成され
ている。陽極室用流出路18b,18dの一端は、陽極
室流出口14a,14bに夫々接続され、それらの他端
は共に一端が酸性水の吐出口となった酸性水用統合路1
9bの他端に接続されている。
The alkaline water outflow passage 4 is connected to the electrolytic cells 3a and 3b.
A cathode chamber outflow passages 18a and 18c provided in the same number as the number of the cathode chambers 9a and 9b in the inside, one integrated passage for alkaline water,
It is composed of One ends of the cathode chamber outflow passages 18a and 18c are connected to the cathode chamber outlets 12a and 12b, respectively.
Both of the other ends are connected to the other end of the alkaline water integrated passage 19a, one end of which is a discharge port of the alkaline water. The acidic water outflow channel 5 is connected to the anode chambers 10a and 10a in the electrolytic cells 3a and 3b.
Outflow passages 18b, 1 for the anode chamber provided in the same number as the number of 10b
8d and one integrated path for acidic water 19b. One end of each of the anode chamber outflow passages 18b and 18d is connected to each of the anode chamber outflow ports 14a and 14b, and the other end of each of the anode water outflow passages 18b and 18d has one end serving as an acid water discharge port.
9b is connected to the other end.

【0013】21は、前記流量検出手段20が通水を検
出した場合に電解槽3a,3bの各電極6a,6b,7
a,7bに電圧を印加する制御回路である。
Reference numeral 21 denotes each of the electrodes 6a, 6b, 7 of the electrolytic cells 3a, 3b when the flow detecting means 20 detects water flow.
This is a control circuit for applying a voltage to a and 7b.

【0014】22,23はバイパス路であり、バイパス
路22は、一端が陰極室用流出路18aに連通すると共
に他端が室用流入路17cに接続されて連通し、また、
バイパス路23は一端が陽極室用流出路18bに連通す
ると共に他端が室用流入路17dに接続されて連通して
いる。51,52は流路の切り換えが可能な三つのポー
トを有する電磁式三方弁である。電磁式三方弁51は二
つのポートが陰極室用流出路18aに接続され、残る一
つのポートはバイパス路22の一端に接続されており、
これは後述の制御回路55よりの信号に基づき陰極室用
流出路18aより流れてくる水をアルカリ水用統合路1
9aに流出させるか、又は、バイパス22に流出させる
かを切り換えるようになっている。電磁式三方弁52は
二つのポートが陽極室用流出路18bに接続され、残る
一つのポートはバイパス路23の一端に接続されてお
り、これは後述の制御回路55よりの信号に基づき、陽
極室用流出路18bより流れてくる水を酸性水用統合路
19bに流出させるか、又は、バイパス路23に流出さ
せるかを切り換えるようになっている。53は流路16
bに介装された電磁式開閉弁であり、これは後述の制御
回路55よりの信号に基づき開閉動作するようになって
いる。
Reference numerals 22 and 23 denote bypass passages. One end of the bypass passage 22 communicates with the cathode chamber outlet passage 18a and the other end thereof is connected to the room inlet passage 17c.
The bypass passage 23 has one end communicating with the outlet passage 18b for the anode chamber and the other end connected to the inlet passage 17d for the chamber. Reference numerals 51 and 52 denote electromagnetic three-way valves having three ports capable of switching flow paths. The electromagnetic three-way valve 51 has two ports connected to the cathode chamber outflow passage 18a, and one remaining port connected to one end of the bypass passage 22.
This is based on a signal from a control circuit 55 to be described later.
The flow is switched between flowing out to 9a and flowing out to the bypass 22. The electromagnetic three-way valve 52 has two ports connected to the anode chamber outflow passage 18b, and the other one port connected to one end of the bypass passage 23. It is configured to switch whether the water flowing from the room outflow passage 18b flows out to the acidic water integrated passage 19b or to the bypass passage 23. 53 is the channel 16
b is an electromagnetic open / close valve, which opens and closes based on a signal from a control circuit 55 described later.

【0015】56a,56bは、アルカリ水用統合路1
9a及び酸性水用統合路19bのそれぞれにアルカリ水
及び酸性水のそれぞれのPHを検出するためのPH検出
手段である。
Reference numerals 56a and 56b denote an integrated path 1 for alkaline water.
PH detection means for detecting the pH of each of the alkaline water and the acidic water in each of the integrated path 9a and the integrated path for acidic water 19b.

【0016】次に、制御回路55の制御構成を示す図2
のフローチャートを用いて電解水生成器1の制御構成及
びその動作を説明する。
FIG. 2 shows a control configuration of the control circuit 55.
The control configuration and operation of the electrolyzed water generator 1 will be described with reference to the flowchart of FIG.

【0017】制御回路55は、まず、流量検出手段20
が流入路2内に水が流入しているか否かを検出し(S
1)、流量検出手段20が水の流入を検出している場合
には、電解槽3a,3bへの通電を開始した後(S
2)、後述のS4の処理を行う。尚、S2において流量
検出手段20が水の流入を検出していない場合には、電
解槽3a,3bへの通電を停止し(S3)、再びS1の
処理を行う。
The control circuit 55 firstly controls the flow rate detecting means 20
Detects whether water is flowing into the inflow passage 2 (S
1) When the flow rate detecting means 20 detects the inflow of water, the power supply to the electrolytic cells 3a and 3b is started (S
2) The processing of S4 described below is performed. When the flow rate detecting means 20 does not detect the inflow of water in S2, the power supply to the electrolytic cells 3a and 3b is stopped (S3), and the process of S1 is performed again.

【0018】次に、S4において、PH検出手段56
a,56bより、アルカリ水及び酸性水のPHを入力し
た後、S5,S6において、S4で入力したアルカリ水
及び酸性水のPHがPH記憶手段54に記憶されている
アルカリ水のPH及び酸性水のPHとを比較する(S
5,S6)。
Next, at S4, the PH detecting means 56
After inputting the pH of the alkaline water and the acidic water from a and 56b, in steps S5 and S6, the pH of the alkaline water and the acidic water input in S4 is stored in the PH storage means 54. And PH (S
5, S6).

【0019】S5での比較結果、PH検出手段56aで
検出されたアルカリ水のPHがPH記憶手段54に記憶
されているアルカリ水の基準PHよりも低いと判断され
た場合、又は、S6での比較結果、PH検出手段56b
で検出されたPHがPH記憶手段54に記憶されている
酸性水の基準PHよりも高いと判断された場合には、電
磁式三方弁51を陰極室流出路18aとバイパス路22
とが連通するように切り換え、電磁式三方弁52を陽極
室流出路18bとバイパス路23とが連通するように切
り換え、電磁式開閉弁53を閉弁させる(S7)。
As a result of the comparison in S5, when it is determined that the pH of the alkaline water detected by the PH detection means 56a is lower than the reference pH of the alkaline water stored in the PH storage means 54, or in S6 Comparison result, PH detection means 56b
Is determined to be higher than the reference pH of the acidic water stored in the PH storage means 54, the electromagnetic three-way valve 51 is connected to the cathode chamber outflow passage 18a and the bypass passage 22.
The electromagnetic three-way valve 52 is switched so that the anode chamber outflow passage 18b and the bypass passage 23 communicate with each other, and the electromagnetic on-off valve 53 is closed (S7).

【0020】これにより、流入路2に流入する水の流速
又は流量が増加してアルカリ水のPHが低下又は酸性水
のPHが上昇した場合には、電解槽3aと電解槽3bと
が並列接続から直列接続に切り換わり、流入路2からア
ルカリ水用流出路(又は酸性水用流出路)までの流路の
距離が延長されることにより流路抵抗が増加し、この結
果、流速又は流量が低下すると共に、流入路2より流入
する水は電解槽3aで電解された後、電解槽3bで再度
電解されるので、より高いPHのアルカリ水又はより低
いPHの酸性水を得ることができる。
Thus, when the flow rate or flow rate of the water flowing into the inflow passage 2 increases and the pH of the alkaline water decreases or the pH of the acidic water increases, the electrolytic cells 3a and 3b are connected in parallel. From the inflow channel 2 to the outflow channel for alkaline water (or the outflow channel for acidic water), the flow path resistance increases, and as a result, the flow velocity or the flow rate increases. At the same time, the water flowing in from the inflow passage 2 is electrolyzed in the electrolytic cell 3a and then electrolyzed again in the electrolytic cell 3b, so that higher pH alkaline water or lower PH acidic water can be obtained.

【0021】また、S5での比較結果、PH検出手段5
6aで検出されたアルカリ水のPHがPH記憶手段54
に記憶されているアルカリ水の基準PHよりも低くない
と判断された場合、又は、S6での比較結果、PH検出
手段56bで検出されたPHがPH記憶手段54に記憶
されている酸性水の基準PHよりも高くないと判断され
た場合には、電磁式三方弁51を陰極室流出路18aと
アルカリ水用統合路19aとが連通するように切り換
え、電磁式三方弁52を陽極室流出路18bと酸性水用
統合路19bとが連通するように切り換え、電磁式開閉
弁53を開弁させる(S8)。
The comparison result in S5 indicates that the PH detection means 5
The PH of the alkaline water detected in 6a is stored in the PH storage means 54.
If it is determined that the pH is not lower than the reference pH of the alkaline water stored in the PH storage means 54, or if the PH detected by the PH detection means 56b If it is determined that the pressure is not higher than the reference PH, the electromagnetic three-way valve 51 is switched so that the cathode chamber outflow passage 18a and the alkaline water integration passage 19a communicate with each other, and the electromagnetic three-way valve 52 is switched to the anode chamber outflow passage The electromagnetic open / close valve 53 is opened by switching so that the 18b and the integrated passage for acidic water 19b communicate (S8).

【0022】これにより、流入路2に流入する水の流速
又は流量が増加してアルカリ水のPHがPH記憶手段5
4に記憶されたアルカリ水のPHよりも上昇又は酸性水
のPHがPH記憶手段54に記憶された酸性水のPHよ
りも低下したた場合には、電解槽3aと電解槽3bとが
直列接続から並列接続に切り換わるることにより、流入
路2からアルカリ水用流出路19a(又は酸性水用流出
路19b)までの流路の距離が短縮されることにより流
路抵抗が低下し、流入路2より流入する水の流速又は流
量が増大し、この結果、アルカリ水用流出路19a(又
は酸性水用流出路19b)より吐出されるアルカリ水の
PHが低下(又は酸性水のPHが上昇)するが、電解槽
3aと電解槽3bとが直列接続されている場合よりもよ
り多いアルカリ水(又は酸性水)を得ることができる。
As a result, the flow rate or flow rate of the water flowing into the inflow passage 2 increases, and the PH of the alkaline water is stored in the PH storage means 5.
When the pH of the alkaline water stored in the storage unit 4 is higher than the pH of the alkaline water or the pH of the acidic water is lower than the pH of the acidic water stored in the PH storage unit 54, the electrolytic cells 3a and 3b are connected in series. To the parallel connection, the distance of the flow path from the inflow path 2 to the outflow path 19a for alkaline water (or the outflow path 19b for acidic water) is reduced, so that the flow path resistance is reduced and the inflow path is reduced. 2, the flow rate or flow rate of the water flowing in increases, and as a result, the pH of the alkaline water discharged from the alkaline water outflow channel 19a (or the acidic water outflow channel 19b) decreases (or the pH of the acidic water increases). However, more alkaline water (or acidic water) can be obtained than when the electrolytic cell 3a and the electrolytic cell 3b are connected in series.

【0023】次に、一実施例の第一の変形例を図3乃至
図4を用いて説明する。尚、本第二の変形例を示す図3
において前述の一実施例を示す図1の構成と同様の構成
については同一番号を付し、その構成の説明を省略す
る。
Next, a first modification of the embodiment will be described with reference to FIGS. FIG. 3 showing the second modified example.
In the figure, the same components as those of the embodiment shown in FIG. 1 are denoted by the same reference numerals, and the description of the components will be omitted.

【0024】図3において、図1と異なる構成は、制御
回路55に代えて、電解水生成器60で生成されるべき
アルカリ水又は酸性水のPHを設定するためのPH設定
手段64と、PH設定手段64に使用者が設定したアル
カリ水又は酸性水のPHを記憶するPH記憶手段61
と、電解槽3aと電解槽3bとを直列接続とするか並列
接続とするかの切り換えの基準となるPHを記憶する基
準PH記憶手段62を有する制御回路63が設けられて
いる点のみである。
3 differs from FIG. 1 in that the control circuit 55 is replaced with a PH setting means 64 for setting the pH of alkaline water or acidic water to be generated by the electrolyzed water generator 60. PH storage means 61 for storing the pH of alkaline water or acidic water set by the user in setting means 64
And a control circuit 63 having a reference PH storage means 62 for storing a PH serving as a reference for switching between the series connection and the parallel connection of the electrolytic cells 3a and 3b. .

【0025】次に、制御回路63の制御構成を示す図4
のフローチャートを用いて電解水生成器60の制御構成
及びその動作を説明する。
FIG. 4 shows a control configuration of the control circuit 63.
The control configuration and operation of the electrolyzed water generator 60 will be described with reference to the flowchart of FIG.

【0026】制御回路63は、まず、流量検出手段20
が流入路2内に水が流入しているか否かを検出し(S1
1)、流量検出手段20が水の流入を検出している場合
には、電解槽3a,3bへの通電を開始した後(S1
2)、後述のS14の処理を行う。尚、S12において
流量検出手段20が水の流入を検出していない場合に
は、電解槽3a,3bへの通電を停止し(S13)、再
びS11の処理を行う。
The control circuit 63 first detects the flow rate
Detects whether water is flowing into the inflow passage 2 (S1).
1) When the flow rate detection means 20 detects the inflow of water, the power supply to the electrolytic cells 3a and 3b is started (S1).
2) The processing of S14 described below is performed. If the flow detecting means 20 does not detect the inflow of water in S12, the power supply to the electrolytic cells 3a and 3b is stopped (S13), and the process of S11 is performed again.

【0027】次に、S14において、PH記憶手段61
に記憶されたPHと基準PH記憶手段62に記憶された
基準PHとの大小関係を判断する。
Next, at S14, the PH storage means 61
Of the reference PH stored in the reference PH storage means 62 is determined.

【0028】S14において、PH記憶手段61に記憶
されたアルカリ水のPHが基準PH記憶手段62に記憶
されているアルカリ水の基準PHよりも低いと判断され
た場合、又は、S15での比較結果、PH記憶手段61
に記憶された酸性水のPHが基準PH記憶手段62に記
憶されている酸性水の基準PHよりも高いと判断された
場合には、電磁式三方弁51を陰極室流出路18aとバ
イパス路22とが連通するように切り換え、電磁式三方
弁52を陽極室流出路18bとバイパス路23とが連通
するように切り換え、電磁式開閉弁53を閉弁させる
(S16)。
In S14, if it is determined that the pH of the alkaline water stored in the PH storage means 61 is lower than the reference pH of the alkaline water stored in the reference PH storage means 62, or if the comparison result in S15 is obtained. , PH storage means 61
If it is determined that the PH of the acidic water stored in the storage unit 62 is higher than the reference pH of the acidic water stored in the reference PH storage unit 62, the electromagnetic three-way valve 51 is connected to the cathode chamber outflow passage 18a and the bypass passage 22. The electromagnetic three-way valve 52 is switched so that the anode chamber outflow passage 18b and the bypass passage 23 communicate with each other, and the electromagnetic on-off valve 53 is closed (S16).

【0029】これにより、流入路2に流入する水の流速
又は流量が増加してアルカリ水のPHが低下又は酸性水
のPHが上昇した場合には、電解槽3aと電解槽3bと
が並列接続から直列接続に切り換わり、流入路2からア
ルカリ水用流出路(又は酸性水用流出路)までの流路の
距離が延長されることにより流路抵抗が増加し、この結
果、流速又は流量が低下すると共に、流入路2より流入
する水は電解槽3aで電解された後、電解槽3bで再度
電解されるので、より高いPHのアルカリ水又はより低
いPHの酸性水を得ることができる。
Thus, when the flow rate or flow rate of the water flowing into the inflow passage 2 increases and the pH of the alkaline water decreases or the pH of the acidic water increases, the electrolytic cells 3a and 3b are connected in parallel. From the inflow channel 2 to the outflow channel for alkaline water (or the outflow channel for acidic water), the flow path resistance increases, and as a result, the flow velocity or the flow rate increases. At the same time, the water flowing in from the inflow passage 2 is electrolyzed in the electrolytic cell 3a and then electrolyzed again in the electrolytic cell 3b, so that higher pH alkaline water or lower PH acidic water can be obtained.

【0030】また、S14での比較結果、PH記憶手段
61に記憶されたアルカリ水のPHが基準PH記憶手段
62に記憶されているアルカリ水の基準PHよりも低く
ないと判断された場合、又は、S15での比較結果、P
H記憶手段61に記憶された酸性水のPHが基準PH記
憶手段62に記憶されている酸性水の基準PHよりも高
くないと判断された場合には、電磁式三方弁51を陰極
室流出路18aとアルカリ水用統合路19aとが連通す
るように切り換え、電磁式三方弁52を陽極室流出路1
8bと酸性水用統合路19bとが連通するように切り換
え、電磁式開閉弁53を開弁させる(S17)。
If it is determined in step S14 that the pH of the alkaline water stored in the PH storage means 61 is not lower than the reference pH of the alkaline water stored in the reference PH storage means 62, or , S15, P
When it is determined that the PH of the acidic water stored in the H storage means 61 is not higher than the reference PH of the acidic water stored in the reference PH storage means 62, the electromagnetic three-way valve 51 is connected to the cathode chamber outflow passage. 18a and the alkaline water integrated passage 19a are switched to communicate with each other, and the electromagnetic three-way valve 52 is connected to the anode chamber outflow passage 1
8b and the integrated path for acidic water 19b are switched to communicate with each other, and the electromagnetic on-off valve 53 is opened (S17).

【0031】これにより、流入路2に流入する水の流速
又は流量が増加してアルカリ水のPHがPH記憶手段6
1に記憶されたアルカリ水のPHよりも上昇又は酸性水
のPHがPH記憶手段61に記憶された酸性水のPHよ
りも低下したた場合には、電解槽3aと電解槽3bとが
直列接続から並列接続に切り換わるることにより、流入
路2からアルカリ水用流出路19a(又は酸性水用流出
路19b)までの流路の距離が短縮されることにより流
路抵抗が低下し、流入路2より流入する水の流速又は流
量が増大し、この結果、アルカリ水用流出路19a(又
は酸性水用流出路19b)より吐出されるアルカリ水の
PHが低下(又は酸性水のPHが上昇)するが、電解槽
3aと電解槽3bとが直列接続されている場合よりもよ
り多いアルカリ水(又は酸性水)を得ることができる。
As a result, the flow rate or flow rate of the water flowing into the inflow passage 2 increases, and the PH of the alkaline water is stored in the PH storage means 6.
When the pH of the alkaline water stored in step 1 rises above the pH of the alkaline water or the pH of the acidic water drops below the pH of the acidic water stored in the PH storage means 61, the electrolytic cell 3a and the electrolytic cell 3b are connected in series. To the parallel connection, the distance of the flow path from the inflow path 2 to the outflow path 19a for alkaline water (or the outflow path 19b for acidic water) is reduced, so that the flow path resistance is reduced and the inflow path is reduced. 2, the flow rate or flow rate of the water flowing in increases, and as a result, the pH of the alkaline water discharged from the alkaline water outflow channel 19a (or the acidic water outflow channel 19b) decreases (or the pH of the acidic water increases). However, more alkaline water (or acidic water) can be obtained than when the electrolytic cell 3a and the electrolytic cell 3b are connected in series.

【0032】次に、一実施例の第二の変形例を図5乃至
図6を用いて説明する。尚、本第二の変形例を示す図5
において前述の第一の変形例を示す図3の構成と同様の
構成については同一番号を付し、その構成の説明を省略
する。
Next, a second modification of the embodiment will be described with reference to FIGS. FIG. 5 showing the second modified example.
In the figure, the same reference numerals are given to the same configurations as the configuration of FIG. 3 showing the above-described first modification, and the description of the configuration will be omitted.

【0033】図5において、図3と異なる構成は、流量
検出手段20の代わりに電解水生成器70の電解槽3
a,3bに流入する水の流速又は流量を検出する流速検
出手段71が設けられている点と、制御回路63に代え
て、電解水生成器70の電解槽3a,3bに流入する水
の基準となる流速又は流量を予め記憶する流速記憶手段
72を有する制御回路73が設けられている点のみであ
る。尚、前述の一実施例の流量検出手段20が水の流速
を検出することにより通水を検出するものである場合に
は、この流量検出手段20をそのまま流速検出手段71
として使用しても良い。
5 differs from FIG. 3 in that the flow rate detecting means 20 is replaced with the electrolytic cell 3 of the electrolyzed water generator 70.
a, a flow rate detecting means 71 for detecting the flow rate or flow rate of the water flowing into the electrolyzed water generators 70 and 3b is provided instead of the control circuit 63; The only difference is that a control circuit 73 having a flow velocity storage means 72 for preliminarily storing the flow velocity or flow rate is provided. In the case where the flow rate detecting means 20 of the above-described embodiment detects the flow of water by detecting the flow rate of water, the flow rate detecting means 20 is directly used as the flow rate detecting means 71.
You may use as.

【0034】次に、制御回路73の制御構成を示す図6
のフローチャートを用いて電解水生成器70の制御構成
及びその動作を説明する。
FIG. 6 shows a control configuration of the control circuit 73.
The control configuration and operation of the electrolyzed water generator 70 will be described with reference to the flowchart of FIG.

【0035】制御回路73は、まず、流速検出手段71
が流入路2内に水が流入しているか否かを水の流速又は
流量から検出し(S21)、流速検出手段71が水の流
入を検出している場合には、電解槽3a,3bへの通電
を開始した後(S22)、後述のS24の処理を行う。
尚、S21において流速検出手段71が水の流入を検出
していない場合には、電解槽3a,3bへの通電を停止
し(S23)、再びS21の処理を行う。
The control circuit 73 first comprises a flow rate detecting means 71
Detects whether or not water is flowing into the inflow passage 2 from the flow velocity or flow rate of the water (S21). If the flow velocity detecting means 71 detects the inflow of water, the flow is detected in the electrolytic cells 3a and 3b. (S22), the process of S24 described later is performed.
When the flow velocity detecting means 71 does not detect the inflow of water in S21, the power supply to the electrolytic cells 3a and 3b is stopped (S23), and the processing of S21 is performed again.

【0036】次に、S24において、流速検出手段71
により検出された流速又は流量と流速記憶手段72に記
憶された基準流速又は流量との大小関係を判断する。
Next, at S24, the flow velocity detecting means 71
Then, the magnitude relation between the flow velocity or the flow rate detected by the above and the reference flow velocity or the flow rate stored in the flow velocity storage means 72 is determined.

【0037】S24において、流速検出手段71により
検出された流速又は流量が流速記憶手段72に記憶され
た基準流速又は流量よりも大きくないと判断された場合
には、電磁式三方弁51を陰極室流出路18aとアルカ
リ水用統合路19aとが連通するように切り換え、電磁
式三方弁52を陽極室流出路18bと酸性水用統合路1
9bとが連通するように切り換え、電磁式開閉弁53を
開弁させる(S25)。
If it is determined in step S24 that the flow rate or the flow rate detected by the flow rate detecting means 71 is not larger than the reference flow rate or the flow rate stored in the flow rate storing means 72, the electromagnetic three-way valve 51 is set to the cathode chamber. The outflow passage 18a and the alkaline water integrated passage 19a are switched so as to communicate with each other, and the electromagnetic three-way valve 52 is connected to the anode chamber outflow passage 18b and the acidic water integrated passage 1
9b, and the electromagnetic on-off valve 53 is opened (S25).

【0038】これにより、流入路2に流入する水の流速
又は流量が増加してアルカリ水のPHがPH記憶手段5
4に記憶されたアルカリ水のPHよりも上昇又は酸性水
のPHがPH記憶手段54に記憶された酸性水のPHよ
りも低下したた場合には、電解槽3aと電解槽3bとが
直列接続から並列接続に切り換わることにより、流入路
2からアルカリ水用流出路19a(又は酸性水用流出路
19b)までの流路の距離が短縮されることにより流路
抵抗が低下し、流入路2より流入する水の流速又は流量
が増大し、この結果、アルカリ水用流出路19a(又は
酸性水用流出路19b)より吐出されるアルカリ水のP
Hが低下(又は酸性水のPHが上昇)するが、電解槽3
aと電解槽3bとが直列接続されている場合よりもより
多いアルカリ水(又は酸性水)を得ることができる。
As a result, the flow rate or flow rate of the water flowing into the inflow passage 2 increases, and the PH of the alkaline water is stored in the PH storage means 5.
When the pH of the alkaline water stored in the storage unit 4 is higher than the pH of the alkaline water or the pH of the acidic water is lower than the pH of the acidic water stored in the PH storage unit 54, the electrolytic cells 3a and 3b are connected in series. To the parallel connection, the distance of the flow path from the inflow path 2 to the alkaline water outflow path 19a (or the acidic water outflow path 19b) is shortened, whereby the flow path resistance is reduced, and the inflow path 2 The flow speed or flow rate of the inflowing water increases, and as a result, the alkaline water P discharged from the alkaline water outflow passage 19a (or the acidic water outflow passage 19b) is discharged.
H decreases (or the pH of acidic water increases), but the electrolytic cell 3
More alkaline water (or acidic water) can be obtained than when a and the electrolytic cell 3b are connected in series.

【0039】また、S24において、流速検出手段71
により検出された流速又は流量が流速記憶手段72に記
憶された基準流速又は流量よりも大きいと判断された場
合には、電磁式三方弁51を陰極室流出路18aとバイ
パス路22とが連通するように切り換え、電磁式三方弁
52を陽極室流出路18bとバイパス路23とが連通す
るように切り換え、電磁式開閉弁53を閉弁させる(S
26)。
At S24, the flow velocity detecting means 71
Is determined to be larger than the reference flow rate or the flow rate stored in the flow rate storage means 72, the electromagnetic three-way valve 51 communicates with the cathode chamber outflow passage 18a and the bypass passage 22. The electromagnetic three-way valve 52 is switched so that the anode chamber outflow passage 18b and the bypass passage 23 communicate with each other, and the electromagnetic on-off valve 53 is closed (S
26).

【0040】これにより、流入路2に流入する水の流速
又は流量が増加してアルカリ水のPHが低下又は酸性水
のPHが上昇した場合には、電解槽3aと電解槽3bと
が並列接続から直列接続に切り換わり、流入路2からア
ルカリ水用流出路(又は酸性水用流出路)までの流路の
距離が延長されることにより流路抵抗が増加し、この結
果、流速又は流量が低下すると共に、流入路2より流入
する水は電解槽3aで電解された後、電解槽3bで再度
電解されるので、より高いPHのアルカリ水又はより低
いPHの酸性水を得ることができる。
Thus, when the flow rate or flow rate of the water flowing into the inflow passage 2 increases and the pH of the alkaline water decreases or the pH of the acidic water increases, the electrolytic cells 3a and 3b are connected in parallel. From the inflow channel 2 to the outflow channel for alkaline water (or the outflow channel for acidic water), the flow path resistance increases, and as a result, the flow velocity or the flow rate increases. At the same time, the water flowing in from the inflow passage 2 is electrolyzed in the electrolytic cell 3a and then electrolyzed again in the electrolytic cell 3b, so that higher pH alkaline water or lower PH acidic water can be obtained.

【0041】なお、本第二の変形例においては、流速検
出手段71により電解槽3a,3bに流入する水の流速
又は流量に基づき、電解槽3aと電解槽3bとを直列接
続とするか並列接続とするかを切り換えるようにしてい
るが、この流速検出手段71に代えて電解槽3a,3b
内の圧力から間接的に電解槽3a,電解槽3bに流入す
る水の流速又は流量を検出する手段を流量検出手段とし
て用い、これにより検出された圧力に応じて電解槽3a
と電解槽3bとを直列接続とするか並列接続とするかを
切り換えるようにしてもよいのは言うまでもない。
In the second modified example, the electrolytic cell 3a and the electrolytic cell 3b are connected in series or in parallel based on the flow velocity or flow rate of the water flowing into the electrolytic cells 3a and 3b by the flow velocity detecting means 71. Although the connection or the connection is switched, the flow rate detecting means 71 is replaced with the electrolytic cells 3a, 3b.
A means for indirectly detecting the flow rate or flow rate of the water flowing into the electrolytic cells 3a and 3b from the internal pressure is used as a flow rate detecting means.
Needless to say, it may be switched between series connection and electrolytic cell 3b or parallel connection.

【0042】[0042]

【発明の効果】以上のように、本発明の請求項1は、生
成PH基準切換制御手段が、PH検出手段により検出さ
れたアルカリ水又は酸性水のPHに基づき、一の電解槽
と他の電解槽とを並列接続とするか直列接続とするかを
判定し、この判定結果に基づき切換手段により一の電解
槽と他の電解槽とを並列接続とするか直列接続とするか
を切り換える。このため、アルカリ水のPHが低下又は
酸性水のPHが上昇した場合には、一の電解槽と他の電
解槽とが並列接続から直列接続に切り換わり、流入路か
らア流出路までの流路の距離が延長されることにより流
路抵抗が増加し、この結果、流速又は流量が低下すると
共に、流入路より流入する水は一の電解槽で電解された
後、他の電解槽で再度電解されるので、より高いPHの
アルカリ水又はより低いPHの酸性水を得ることができ
る。よって、使用者が電解槽で生成されたアルカリ水又
は酸性水のPHを確かめて切換手段を操作する必要がな
いので、使用者による切換手段の誤操作を防止すること
ができる。
As described above, according to the first aspect of the present invention, the generation PH reference switching control means determines whether one electrolytic cell and another electrolytic cell are based on the pH of alkaline water or acidic water detected by the PH detection means. It is determined whether the electrolytic cell and the electrolytic cell are connected in parallel or in series. Based on the result of the determination, the switching means switches between the one electrolytic cell and another electrolytic cell in parallel or in series. Therefore, when the pH of the alkaline water decreases or the pH of the acidic water increases, one electrolytic cell and another electrolytic cell are switched from parallel connection to series connection, and the flow from the inflow passage to the outflow passage is changed. The flow path resistance is increased by extending the distance of the path, and as a result, the flow velocity or the flow rate is reduced, and the water flowing in from the inflow path is electrolyzed in one electrolytic cell and then again in another electrolytic cell. Since it is electrolyzed, higher pH alkaline water or lower PH acidic water can be obtained. This eliminates the need for the user to operate the switching unit by checking the pH of the alkaline water or the acidic water generated in the electrolytic cell, thereby preventing the user from erroneously operating the switching unit.

【0043】また、本発明の請求項2は、設定PH基準
切換制御手段が、PH設定手段により設定されたアルカ
リ水又は酸性水のPHに基づき、一の電解槽と他の電解
槽とを並列接続とするか直列接続とするかを判定し、こ
の判定結果に基づき切換手段により一の電解槽と他の電
解槽とを並列接続とするか直列接続とするかを切り換え
る。このため、PH設定手段により設定されたアルカリ
水のPH(又は酸性水に基づいて一の電解槽と他の電解
槽とが並列接続から直列接続に切り換わり、流入路から
流出路までの流路の距離が延長されることにより流路抵
抗が増加し、この結果、流速又は流量が低下すると共
に、流入路より流入する水は一の電解槽で電解された
後、他の電解槽で再度電解されるので、電解槽に高い電
圧を印加することなく、より高いPHのアルカリ水又は
より低いPHの酸性水を得ることができる。よって、使
用者が電解槽で生成されたアルカリ水又は酸性水のPH
を確かめて切換手段を操作する必要がないので、使用者
による切換手段の誤操作を防止することができる。ま
た、本発明の請求項3は、流速基準切換制御手段が、流
速検出手段により検出された水の流速又は流量が所定流
速又は流量以下の場合には、前記一の電解槽と他の電解
槽とを並列接続とし、流速検出手段により検出された水
の流速又は流量が所定流速又は流量を超えた場合には、
前記切換手段を作動させて一の電解槽と他の電解槽とを
並列接続から直列接続にする。このため、複数の電解槽
に流入する水の流速又は流量が多い場合には、一の電解
槽と他の電解槽とが並列接続から直列接続に切り換わ
り、流入路から流出路までの流路の距離が延長されるこ
とにより流路抵抗が増加し、この結果、流速又は流量が
低下すると共に、流入路より流入する水は一の電解槽で
電解された後、他の電解槽で再度電解されるので、より
高いPHのアルカリ水又はより低いPHの酸性水を得る
ことができる。よって、使用者が電解槽に流入する水の
流量を確かめて切換手段を操作する必要がないので、使
用者による切換手段のご操作を防止することができる。
According to a second aspect of the present invention, the set PH reference switching control means sets one electrolytic cell and another electrolytic cell in parallel based on the pH of the alkaline water or acidic water set by the PH setting means. It is determined whether connection is to be made in series or in series, and based on the result of this determination, switching means switches between one electrolytic cell and another electrolytic cell in parallel or in series. For this reason, one electrolytic cell and another electrolytic cell are switched from parallel connection to series connection based on the pH of the alkaline water (or the acidic water) set by the PH setting means, and the flow path from the inflow passage to the outflow passage is changed. The flow path resistance is increased by extending the distance, and as a result, the flow velocity or the flow rate is reduced, and the water flowing from the inflow path is electrolyzed in one electrolytic cell and then electrolyzed in another electrolytic cell. Therefore, it is possible to obtain higher pH alkaline water or lower pH acidic water without applying a high voltage to the electrolytic cell, so that the user can use the alkaline water or acidic water generated in the electrolytic cell. PH
Therefore, it is not necessary to operate the switching means after confirming the above, so that erroneous operation of the switching means by the user can be prevented. Further, in the present invention, the flow rate reference switching control means may be arranged such that, when the flow rate or flow rate of the water detected by the flow rate detection means is equal to or less than a predetermined flow rate or flow rate, the one electrolytic cell and the other electrolytic cell Are connected in parallel, and when the flow rate or flow rate of the water detected by the flow rate detection means exceeds a predetermined flow rate or flow rate,
By operating the switching means, one electrolytic cell and another electrolytic cell are changed from parallel connection to series connection. Therefore, when the flow rate or flow rate of water flowing into a plurality of electrolytic cells is large, one electrolytic cell and another electrolytic cell are switched from parallel connection to series connection, and the flow path from the inflow passage to the outflow passage is changed. The flow path resistance is increased by extending the distance, and as a result, the flow velocity or the flow rate is reduced, and the water flowing from the inflow path is electrolyzed in one electrolytic cell and then electrolyzed in another electrolytic cell. Therefore, higher pH alkaline water or lower pH acidic water can be obtained. Therefore, the user does not need to check the flow rate of the water flowing into the electrolytic cell and operate the switching means, thereby preventing the user from operating the switching means.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の電解水生成器1の全体構成
図を示す。
FIG. 1 shows an overall configuration diagram of an electrolyzed water generator 1 according to one embodiment of the present invention.

【図2】本発明の一実施例の電解水生成器1の制御回路
55の制御構成を示すフローチャートを示す。
FIG. 2 is a flowchart showing a control configuration of a control circuit 55 of the electrolyzed water generator 1 according to one embodiment of the present invention.

【図3】本発明の第一の変形例の電解水生成器60の全
体構成図を示す。
FIG. 3 is an overall configuration diagram of an electrolyzed water generator 60 according to a first modification of the present invention.

【図4】本発明の第一の変形例の電解水生成器60の制
御回路63の制御構成を示すフローチャートを示す。
FIG. 4 is a flowchart showing a control configuration of a control circuit 63 of the electrolyzed water generator 60 according to a first modification of the present invention.

【図5】本発明の第二の変形例の電解水生成器70の全
体構成図を示す。
FIG. 5 is an overall configuration diagram of an electrolyzed water generator 70 according to a second modification of the present invention.

【図6】本発明の第二の変形例の電解水生成器70の制
御回路73の制御構成を示すフローチャートを示す。
FIG. 6 is a flowchart showing a control configuration of a control circuit 73 of an electrolyzed water generator 70 according to a second modification of the present invention.

【符号の説明】 1,60,70 電解水生成器 2 流入路 3a,3b 電解槽 4 アルカリ水流出路(流出路) 5 酸性水流出路(流出路) 51,52 電磁式三方弁(切換手段) 53 電磁式開閉弁(切換手段) 55 制御回路(生成PH基準切換制御手段) 56a,56b PH検出手段 61 PH記憶手段 62 基準PH記憶手段 63 制御回路(設定PH基準切換制御手段) 64 PH設定手段 71 流速検出手段 73 制御回路(流量基準切換制御手段)[Description of Signs] 1,60,70 Electrolyzed water generator 2 Inflow path 3a, 3b Electrolysis tank 4 Alkaline water outflow path (outflow path) 5 Acidic water outflow path (outflow path) 51,52 Electromagnetic three-way valve (switching means) 53 Electromagnetic on-off valve (switching means) 55 Control circuit (generation PH reference switching control means) 56a, 56b PH detection means 61 PH storage means 62 Reference PH storage means 63 Control circuit (setting PH reference switching control means) 64 PH setting means 71 Flow velocity detecting means 73 control circuit (flow rate reference switching control means)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 流入路と流出路との間に設けられ、当該
流入路より流入する水からアルカリ水及び酸性水を生成
する複数の電解槽と、一の電解槽と他の電解槽とを直列
接続とするか並列接続とするかを切り換える切換手段を
設けた電解水生成器において、 前記電解槽で生成されたアルカリ水又は酸性水のPHを
検出するPH検出手段と、 前記PH検出手段により検出されたアルカリ水又は酸性
水のPHに基づき、前記一の電解槽と他の電解槽とを並
列接続とするか直列接続とするかを判定し、この判定結
果に基づき切換手段により前記一の電解槽と他の電解槽
とを並列接続とするか直列接続とするかを切り換える生
成PH基準切換制御手段と、 を設けたことを特徴とする電解水生成器。
1. An electrolytic cell provided between an inflow channel and an outflow channel and configured to generate alkaline water and acidic water from water flowing from the inflow channel, and one electrolytic cell and another electrolytic cell. In an electrolyzed water generator provided with a switching means for switching between serial connection and parallel connection, PH detection means for detecting the pH of alkaline water or acidic water generated in the electrolytic cell, and PH detection means Based on the detected pH of the alkaline water or acidic water, it is determined whether the one electrolytic cell and the other electrolytic cell are connected in parallel or in series, and based on the result of the determination, the switching means determines the one electrolytic cell and the other electrolytic cell. An electrolyzed water generator comprising: a generation PH reference switching control means for switching between an electrolytic cell and another electrolytic cell to be connected in parallel or in series.
【請求項2】 流入路と流出路との間に設けられ、当該
流入路より流入する水からアルカリ水及び酸性水を生成
する複数の電解槽と、一の電解槽と他の電解槽とを直列
接続とするか並列接続とするかを切り換える切換手段を
設けた電解水生成器において、 前記電解槽で生成させるべきアルカリ水又は酸性水のP
Hを設定するためのPH設定手段と、 前記PH設定手段により設定されたアルカリ水又は酸性
水のPHに基づき、前記一の電解槽と他の電解槽とを並
列接続とするか直列接続とするかを判定し、この判定結
果に基づき切換手段により前記一の電解槽と他の電解槽
とを並列接続とするか直列接続とするかを切り換える設
定PH基準切換制御手段と、 を設けたことを特徴とする電解水生成器。
2. An electrolytic cell provided between an inflow channel and an outflow channel and configured to generate alkaline water and acidic water from water flowing from the inflow channel, and one electrolytic cell and another electrolytic cell. In an electrolyzed water generator provided with a switching means for switching between series connection and parallel connection, an alkaline water or an acidic water to be generated in the electrolytic cell
PH setting means for setting H, and the one electrolytic cell and the other electrolytic cell are connected in parallel or in series based on the pH of the alkaline water or acidic water set by the PH setting means. And setting PH reference switching control means for switching whether the one electrolytic cell and the other electrolytic cell are connected in parallel or in series based on the determination result based on the result of the determination. Characterized electrolyzed water generator.
【請求項3】 流入路と流出路との間に設けられ、当該
流入路より流入する水からアルカリ水及び酸性水を生成
する複数の電解槽と、一の電解槽と他の電解槽とを直列
接続とするか並列接続とするかを切り換える切換手段を
設けた電解水生成器において、 前記電解槽に流入する水の流速又は流量を検出する流速
検出手段と、 前記流速検出手段により検出された水の流速又は流量が
所定流速又は流量以下の場合には、前記切換手段により
前記一の電解槽と他の電解槽とを並列接続にするととも
に、前記流速検出手段により検出された水の流速又は流
量が所定流速又は流量を超えた場合には、前記切換手段
により前記一の電解槽と他の電解槽とを並列接続から直
列接続に切り換える流速基準切換制御手段と、 を設けたことを特徴とする電解水生成器。
3. A plurality of electrolytic cells, which are provided between an inflow path and an outflow path and generate alkaline water and acidic water from water flowing through the inflow path, and one electrolytic cell and another electrolytic cell. In an electrolyzed water generator provided with a switching means for switching between a series connection and a parallel connection, a flow rate detecting means for detecting a flow rate or a flow rate of water flowing into the electrolytic cell, and the flow rate detecting means detects the flow rate or the flow rate. When the flow rate or the flow rate of the water is equal to or less than the predetermined flow rate or the flow rate, the one electrolytic cell and the other electrolytic cell are connected in parallel by the switching means, and the water flow rate or the flow rate detected by the flow rate detecting means. When the flow rate exceeds a predetermined flow rate or flow rate, flow rate reference switching control means for switching the one electrolytic cell and another electrolytic cell from parallel connection to series connection by the switching means, and Electrolysis water generation vessel.
JP9017829A 1997-01-16 1997-01-16 Electrolyzed water forming device Pending JPH10202260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9017829A JPH10202260A (en) 1997-01-16 1997-01-16 Electrolyzed water forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9017829A JPH10202260A (en) 1997-01-16 1997-01-16 Electrolyzed water forming device

Publications (1)

Publication Number Publication Date
JPH10202260A true JPH10202260A (en) 1998-08-04

Family

ID=11954606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9017829A Pending JPH10202260A (en) 1997-01-16 1997-01-16 Electrolyzed water forming device

Country Status (1)

Country Link
JP (1) JPH10202260A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000176452A (en) * 1998-12-14 2000-06-27 Chemicoat & Co Ltd Production of electrolytically ionized water
JP2016022470A (en) * 2014-07-24 2016-02-08 中国電力株式会社 Device for generating hydrogen-containing electrolytic water
JP2017136531A (en) * 2016-02-02 2017-08-10 株式会社日本トリム Apparatus for producing electrolysis water, and apparatus for producing water for preparing dialysis liquid, and method for producing electrolysis water
WO2017138047A1 (en) * 2016-02-10 2017-08-17 パナソニックIpマネジメント株式会社 Water treatment apparatus
WO2018207452A1 (en) * 2017-05-09 2018-11-15 パナソニックIpマネジメント株式会社 Electrolyzed water generating apparatus
JP2019202296A (en) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 Electrolytic water generator
WO2019225414A1 (en) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 Electrolyzed water generator and electrolyzed water generation system
JP2019202297A (en) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 Electrolytic water generation system
JP2019202295A (en) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 Electrolytic water generator and electrolytic water generating system
JP2020006373A (en) * 2019-10-17 2020-01-16 パナソニックIpマネジメント株式会社 Electrolytic water generation system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000176452A (en) * 1998-12-14 2000-06-27 Chemicoat & Co Ltd Production of electrolytically ionized water
JP2016022470A (en) * 2014-07-24 2016-02-08 中国電力株式会社 Device for generating hydrogen-containing electrolytic water
JP2017136531A (en) * 2016-02-02 2017-08-10 株式会社日本トリム Apparatus for producing electrolysis water, and apparatus for producing water for preparing dialysis liquid, and method for producing electrolysis water
WO2017135207A1 (en) * 2016-02-02 2017-08-10 株式会社日本トリム Electrolyzed water generation device and production device for water for dialysate preparation and method for electrolyzed water generation that use same
CN108473344A (en) * 2016-02-02 2018-08-31 日本多宁股份有限公司 Electrolytic water generating device and the manufacturing device and electrolyzed water producing method for using its dialyzate preparation water
CN108473344B (en) * 2016-02-02 2022-03-29 日本多宁股份有限公司 Electrolyzed water production device and device for producing water for dialysate preparation using same
WO2017138047A1 (en) * 2016-02-10 2017-08-17 パナソニックIpマネジメント株式会社 Water treatment apparatus
JP2017140579A (en) * 2016-02-10 2017-08-17 パナソニックIpマネジメント株式会社 Water treatment apparatus
JP2018187576A (en) * 2017-05-09 2018-11-29 パナソニックIpマネジメント株式会社 Electrolyzed water generator
CN110603231A (en) * 2017-05-09 2019-12-20 松下知识产权经营株式会社 Electrolyzed water generation device
WO2018207452A1 (en) * 2017-05-09 2018-11-15 パナソニックIpマネジメント株式会社 Electrolyzed water generating apparatus
JP2019202296A (en) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 Electrolytic water generator
WO2019225414A1 (en) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 Electrolyzed water generator and electrolyzed water generation system
JP2019202297A (en) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 Electrolytic water generation system
JP2019202295A (en) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 Electrolytic water generator and electrolytic water generating system
CN112154124A (en) * 2018-05-25 2020-12-29 松下知识产权经营株式会社 Electrolyzed water generation device and electrolyzed water generation system
US11795072B2 (en) 2018-05-25 2023-10-24 Panasonic Intellectual Property Management Co., Ltd. Electrolyzed water generator and electrolyzed water generation system
JP2020006373A (en) * 2019-10-17 2020-01-16 パナソニックIpマネジメント株式会社 Electrolytic water generation system

Similar Documents

Publication Publication Date Title
JPH10202260A (en) Electrolyzed water forming device
JP2558567B2 (en) Continuous electrolyzed water generator with flow path switching valve device
WO2011073714A1 (en) Multi-chamber electrolytic cell and methods of use
KR20120019316A (en) Electrolyzed-water system having non_diaphragm electrolysis apparatus
JPH1080687A (en) Ionized water generator
JPH09192667A (en) Electrolyzed water generating device
JP2001327968A (en) Electrolytic water generating device
CN214457047U (en) Electrolyzed water generating device
JPH06238280A (en) Electrolytic water preparation and its device
JP7165119B2 (en) Electrolyzed water generation method and electrolyzed water generator
JPH026588B2 (en)
JPH07155762A (en) Device for producing electrolyzed water
JPH0757346B2 (en) Water electrolyzer
JP3655068B2 (en) Chlorine generator
JP2698957B2 (en) Electrolytic ionic water generator
KR101021954B1 (en) A water flow exchange system have three-way type drainage of electrolyzer
JP2698955B2 (en) Electrolytic ionic water generator
JPH0985249A (en) Electrolytic water preparation device
JP6885776B2 (en) Electrolyzed water generator
JPH07136659A (en) Continuous electrolytic water making apparatus
KR100683881B1 (en) Ion purifier and control method of ion purifier
KR20170024618A (en) Apparatus for producing acid water
JPH08168762A (en) Electrolytic ionized water producing device and method therefor
JPH06304561A (en) Device for producing electrolyzed ionized water
JPH0550066A (en) Ionized water supplying device