JPS5864356A - Stainless steel for high temperature use with superior strength at high temperature, stress corrosion cracking resistance and weldability - Google Patents

Stainless steel for high temperature use with superior strength at high temperature, stress corrosion cracking resistance and weldability

Info

Publication number
JPS5864356A
JPS5864356A JP16372081A JP16372081A JPS5864356A JP S5864356 A JPS5864356 A JP S5864356A JP 16372081 A JP16372081 A JP 16372081A JP 16372081 A JP16372081 A JP 16372081A JP S5864356 A JPS5864356 A JP S5864356A
Authority
JP
Japan
Prior art keywords
weldability
high temperature
ferrite
temperature
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16372081A
Other languages
Japanese (ja)
Other versions
JPS6325053B2 (en
Inventor
Arata Komitsu
好光 新
Toshiaki Ishii
利明 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP16372081A priority Critical patent/JPS5864356A/en
Publication of JPS5864356A publication Critical patent/JPS5864356A/en
Publication of JPS6325053B2 publication Critical patent/JPS6325053B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the strength at high temp., stress corrosion cracking resistance and weldability by adding prescribed amounts of C, Si, Mn, Cr and Ni and by carrying out heat treatment at a prescribed temp. to form a structure composed of a certain range of ferrite and austenite. CONSTITUTION:A steel consisting of <=0.2% C, <=3% Si, <=3% Mn, 20-30% Cr, 6-12% Ni and the balance Fe is refined, cast, heated at 1,130-1,250 deg.C, and quenched to form a structure composed of 5-30% by area of ferrite and austenite. Thus, the strength at high temp., stress corrosion cracking resistance and weldability are enhanced.

Description

【発明の詳細な説明】 本発明は・、高温強度、耐応力腐食割れ性、溶接性など
の緒特性のすぐれた高温用ステンレス鋼に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-temperature stainless steel having excellent properties such as high-temperature strength, stress corrosion cracking resistance, and weldability.

重油脱硫装置用配管材料は、温度約400℃を越え、圧
力的200 kg/c、Itという高温・高圧下で使用
され、しかもそのシャットダウンの際にはポリチオン酸
などの腐食物質と接触する厳しい応力腐食割れ(以下、
「8CC」と称する)条件下にさらされる。従って、そ
の配管材料は、高温強度が高く、かつ耐SCC性にすぐ
れたものでなければなら°ない。むろん、構造用材料と
して、溶接性も良好であることが必要である。
Piping materials for heavy oil desulfurization equipment are used under high temperatures and pressures of over 400°C and pressures of 200 kg/c and It, and when shut down, they are exposed to severe stress as they come into contact with corrosive substances such as polythionic acid. Corrosion cracking (hereinafter referred to as
8CC) conditions. Therefore, the piping material must have high high temperature strength and excellent SCC resistance. Of course, as a structural material, it is necessary to have good weldability.

従来、かかる用途の管材料として、JIS8U8304
(8(!813)、8U8347あるいは5U8321
などのステンレス鋼が用いられている。しかしながら、
これらの従来材は、いづれ゛も上記緒特性のすべてを満
たすものではなく、例えば8(!813.5trs30
4は、強度や耐sea性が十分でなく、5US347は
溶接性や溶接部の耐SCC性に問題があシ、また5US
321は溶接部の耐SCC性に劣るほか、強度が不足す
るという欠点がある。高温強度、耐SCC性、並びに溶
接性のいづれにもすぐれた新たな材料の開発が要請され
る所以である。また、上記高温・高圧の使用条件に−そ
う適合するためには、高温長時間の使用においても高度
の靭性が保持されることが望まれる。
Conventionally, JIS8U8304 was used as a pipe material for such uses.
(8 (!813), 8U8347 or 5U8321
Stainless steel such as is used. however,
None of these conventional materials satisfy all of the above-mentioned characteristics; for example, 8 (!813.5trs30
4 does not have sufficient strength and sea resistance, 5US347 has problems with weldability and SCC resistance of welded parts, and 5US347 has problems with weldability and SCC resistance of welded parts.
321 has the drawbacks of poor SCC resistance of welded parts and insufficient strength. This is why there is a demand for the development of new materials with excellent high-temperature strength, SCC resistance, and weldability. In addition, in order to meet the above-mentioned conditions of use at high temperatures and high pressures, it is desired that a high degree of toughness be maintained even during long-term use at high temperatures.

本発明は上記要請に応えた新規高温用ステンレス鋼下、
Mn 8. Q %以下、Or 2 oチを越え、30
%以下、Ni 6〜12チ、残部Feおムび不可避の不
純物からなLかっその金属組織が面積率5〜30%のフ
ェライトと残部オーステナイトの2相組織であって、こ
れを温度1130〜1250℃に加熱保持したのち急冷
する溶体化処理が施こされた点にある。
The present invention is a new high-temperature stainless steel base that meets the above requirements.
Mn8. Q% or less, or more than 30%
% or less, Ni 6 to 12%, balance Fe, and unavoidable impurities.The metal structure of L is a two-phase structure of ferrite with an area ratio of 5 to 30% and the balance austenite, and it is heated at a temperature of 1130 to 1250%. The point is that it has been subjected to solution treatment, which involves heating and holding it at ℃ and then rapidly cooling it.

以下、本発明ステンレス鋼について詳しく説明する。Hereinafter, the stainless steel of the present invention will be explained in detail.

本発明における化学成分限定理由は次のとおりである。The reason for limiting the chemical components in the present invention is as follows.

C:0.20チ以下 Cは強度向上に有効な元素であシ、本発明が指向する約
400’C前後の高温用途において高い高温強度を得る
には、できるダは含有量を多くすることが好ましい。し
かし、その反面、耐SCC性や一般耐食性並びに溶接性
の低下を伴ない、約0.20チをこえると耐SCC性の
低下が著しくなシ、また長時間使用後の靭性劣化が顕著
となる。
C: 0.20 C or less C is an effective element for improving strength, and in order to obtain high high temperature strength in high temperature applications of around 400'C, which is the aim of the present invention, it is possible to increase the content. is preferred. However, on the other hand, it is accompanied by a decrease in SCC resistance, general corrosion resistance, and weldability, and when the thickness exceeds about 0.20 inch, the SCC resistance decreases significantly, and the toughness deteriorates significantly after long-term use. .

よって、0.2o%を上限とする。もっとも、耐SCC
性は、後記のように鋼組織のフェライト量との関連性を
も有するのであって、上記C量(0,20ts以下)で
あれば、本発明のフェライト量の規定によって良好な耐
8cc性を確保することができる。なお、耐8cc性を
重視すれば、C量は低い程よく、約O,OS%以下、特
に約0.03−以下が望ましいが、高温用途での実用上
の強度を確保するためには、約0.054を下限とする
のがよい。
Therefore, the upper limit is set at 0.2o%. However, SCC resistance
As described later, the strength also has a relationship with the amount of ferrite in the steel structure, and if the above C amount (0.20 ts or less), good 8cc resistance can be achieved by the regulation of the amount of ferrite according to the present invention. can be secured. In addition, if emphasis is placed on 8cc resistance, the lower the C content, the better, and it is preferably about O,OS% or less, especially about 0.03% or less, but in order to ensure practical strength in high-temperature applications, about It is preferable to set the lower limit to 0.054.

Sl:B、0@以下、Mn:a、ol以下S1およびM
nは特に本発明合金を特徴づけるものではないが、合金
溶製時の脱酸(Mnについては、脱酸のほかに脱硫)お
よび鋳造性確保を目的として通常、それぞれ約0.2チ
以上加えられる。
Sl: B, 0@ or less, Mn: a, ol or less S1 and M
Although n does not particularly characterize the alloy of the present invention, it is usually added at least about 0.2 h each for the purpose of deoxidizing during alloy melting (for Mn, desulfurization in addition to deoxidizing) and ensuring castability. It will be done.

しかし、8.0チをこえてもそれらの効果の増加は殆ん
どないばかジか、特に8iについては、長時間使用後の
靭性の低下を助長し、好ましくない。よって、それぞれ
3.0%を上限とする。
However, there is almost no increase in these effects even if the thickness exceeds 8.0, and especially 8i, it promotes a decrease in toughness after long-term use, which is not preferable. Therefore, the upper limit is set at 3.0% for each.

cr:20%を越え、30%以下 Orは高温使用に必要な耐酸化性の確保のみならず、フ
ェライトフォーマとして、後記Ni量との関係において
、オーステナイト/フェライト組織における所要量のフ
ェライトを形成するのに必要である。特に、本発明では
、前記のように高温強度を考慮口てC量の上限を比較的
高い値に設定しているので、Cによる耐SCCの低下傾
向を補償するために、通常のステンレス鋼よりも高いレ
ベルのC!riiが望まれる。この点よシ、20チを越
え込合有量とする。但し、その量が多すぎると、かえっ
て靭性の低下、並びに過剰のフェライト量の生成を招来
するので、30チを上限とする。
cr: more than 20% and less than 30% Or not only ensures the oxidation resistance necessary for high-temperature use, but also forms the required amount of ferrite in the austenite/ferrite structure as a ferrite former in relation to the amount of Ni described below. It is necessary for In particular, in the present invention, the upper limit of the C content is set to a relatively high value in consideration of high-temperature strength as described above, so in order to compensate for the tendency for the SCC resistance to decrease due to C, it is necessary to Also a high level C! rii is desired. From this point on, let's assume that the total amount exceeds 20 cm. However, if the amount is too large, the toughness will deteriorate and an excessive amount of ferrite will be produced, so the upper limit is set at 30 inches.

Ni:6〜12チ Niは一般耐食性の向上、並びにフェライトフォーマで
ある前記Orに対するオーステナイトフォーマとしてフ
ェライト/オーステ≠イト組織の形成に必要な元素であ
る。その含有量は、耐食性の確保、および前記Cr量と
のバランスの点輯よシ、少くとも6チを必要とする。し
かし、Niは高価な元素であシ、多量の使用は不経済で
あるばかシか、12チをこえると、オーステナイト量が
過度に増加し、必要なフェライト量が得られなくなるの
で、12チを上限とする。
Ni: 6 to 12% Ni is an element necessary for improving general corrosion resistance and forming a ferrite/austenite structure as an austenite former for the above-mentioned Or, which is a ferrite former. The content needs to be at least 6 to ensure corrosion resistance and balance with the Cr content. However, Ni is an expensive element, and it is uneconomical to use a large amount.If the Ni content exceeds 12%, the amount of austenite will increase excessively, making it impossible to obtain the necessary amount of ferrite, so use 12%. Upper limit.

P、B、その他の不可避的に混入する不純物は骨灰的に
低いことが望ましいが、この種の鋼に通常許容される範
囲内であれば存在してかまわない。
It is desirable that P, B, and other unavoidably mixed impurities be as low as bone ash, but they may be present within the range normally allowed for this type of steel.

例えばPは約0.04チ以下、8は約0.o4チ以下で
あれば、特に支障はない。
For example, P is about 0.04 inch or less, and 8 is about 0.04 inch or less. If it is o4chi or less, there is no particular problem.

本発明合金はオーステナイト/フェライトの2相組織を
有し、そのフェライト量は面積率で5〜30tsである
ことを要する。フェライト相は耐SCC性および溶接性
の向上に寄与する。高温強度を犠牲にしてC量を低く、
例にば0.05%以下に制限すれば、特にフェライト相
の助けをかシずとも、耐SCC性や溶接性を一定のレベ
ルに保つことも可能であるが、本発明では前記のととぐ
、高温強度確保のた゛め、C量上限を比較的高く設定し
ているので、C量に伴なう耐8CC性、溶接性の低下を
防止するために、フェライト量の下限を5チとするので
ある。ただし、このように有効なフェライトも、30チ
をこえると、靭性の低下が著しくなり、特に鋭敏化処理
や高温長時間使用における靭″性の劣化が大きくなる。
The alloy of the present invention has a two-phase structure of austenite/ferrite, and the amount of ferrite is required to be 5 to 30 ts in terms of area ratio. The ferrite phase contributes to improving SCC resistance and weldability. Lower C content at the expense of high-temperature strength,
For example, if the content is limited to 0.05% or less, it is possible to maintain SCC resistance and weldability at a certain level without the aid of the ferrite phase, but in the present invention, the above-mentioned In order to ensure high-temperature strength, the upper limit of C content is set relatively high.In order to prevent the deterioration of 8CC resistance and weldability due to the C content, the lower limit of ferrite content is set to 5 CH. be. However, even with such effective ferrite, when the thickness exceeds 30 mm, the toughness decreases significantly, especially during sensitization treatment or long-term use at high temperatures.

よってその上限を30チとするのである0むろん、この
2相組織におけるフェライト量5〜30チの制御は、上
記各元素、特にCrとNiの含有量を前記規定の範囲で
適宜バランスさせることによシ行なわれる。
Therefore, the upper limit is set at 30. Of course, controlling the amount of ferrite in this two-phase structure from 5 to 30 is achieved by appropriately balancing the contents of each of the above elements, especially Cr and Ni, within the specified range. It is done well.

本発明合金は、これに高温度域での加熱保持ののち急冷
(水冷でよい)する熱処理が施こされることを要する。
The alloy of the present invention needs to be subjected to a heat treatment in which it is heated and maintained in a high temperature range and then rapidly cooled (water cooling may be sufficient).

その熱処理にセける加熱温度は、少くとも1130℃で
なければならない。これを、もし通常のステンレス鋼に
適用される温度1100℃±25℃程度の固溶化処理に
従ったのでは、目的を達成し得ないばかシか、かえって
高温長時間使用後の靭性が極端に劣化するのであシ、上
記のように1130℃以上の加熱保持後、急冷すること
によって、はじめて各合金元素の機能が発揮され、上記
靭性の劣化を生ず、ることなく、所期の材料特性を得る
ことができる。・これを金属組織にて比較すると第1図
〜第5図のごとくである(いづれも倍率:200倍、腐
食:10チしゆう酸に七電解エツチング)。第1図は、
鋳放し組織(鋳造まま)、第2図は加熱温度1100℃
、第3図は同1130℃、第4図は同1200℃、第5
図は同125’0℃であシ、いづれも3時間の加熱保持
後、水冷して得られた組織である。すなわち、鋳放し組
織(第1図)ではネットワーク状であるフェライト相が
、熱処理によシ分断され、加熱温度の上昇とともに丸味
を帯びた形状に変化している。
The heating temperature for the heat treatment must be at least 1130°C. If this were to be subjected to solution treatment at a temperature of about 1100°C ± 25°C, which is applied to ordinary stainless steel, the purpose would not be achieved, or the toughness after long-term use at high temperatures would become extremely poor. However, as mentioned above, by heating and holding at 1130°C or higher and then rapidly cooling, the functions of each alloying element are exhibited for the first time, and the desired material properties are achieved without causing the above-mentioned deterioration of toughness. can be obtained.・Comparing the metallographic structures, the results are as shown in Figures 1 to 5 (magnification: 200x, corrosion: 7-electrolytic etching in 10% oxalic acid). Figure 1 shows
As-cast structure (as-cast), Figure 2 shows heating temperature of 1100℃
, Figure 3 is 1130℃, Figure 4 is 1200℃, Figure 5 is 1200℃.
The figure shows the structure obtained by heating at 125'0°C and cooling with water after holding the temperature for 3 hours. That is, the ferrite phase, which is network-like in the as-cast structure (FIG. 1), is divided by the heat treatment and changes into a rounded shape as the heating temperature increases.

その丸味の程度は、従来の固溶化処理に相当する加熱温
度(第2図)では十分でない。本発明合金は分断された
フェライト相が第3図〜第5図に示される程度に丸味を
帯びていることを要するのであシ、このため、加熱温度
は少くとも1130℃でなければならない。ただし、加
熱温度が1250℃をこえると、−高温度の割には効果
の向上はなく、熱経済上不利であるばかシか、本来5〜
30チの範囲にあったフェライト量が大きく変化し、本
発明の目的が達成されなくなる。よって、1250℃を
上限とする。
The degree of roundness is not sufficient at the heating temperature (Fig. 2) corresponding to conventional solution treatment. The alloy of the present invention requires that the divided ferrite phase be rounded to the extent shown in FIGS. 3 to 5, and therefore the heating temperature must be at least 1130 DEG C. However, if the heating temperature exceeds 1250℃, there is no improvement in the effect despite the high temperature, which is disadvantageous in terms of thermoeconomics, or it should be
The amount of ferrite that was in the range of 30 inches changes greatly, and the object of the present invention cannot be achieved. Therefore, the upper limit is set at 1250°C.

次に、実施例を挙げて本発明ステンレス鋼について具体
的に説明する0 実施例 各種化学成分組成の合金を溶製し、遠心力鋳造管(外径
200mmX肉厚20mmX長さ40・00mm)を鋳
造した。各供試管材の成分組成およびフェライト量を第
1表に示す。供試隘1〜4は本発明規定の化学成分組成
およびフェライト量を有するもの、供試1’&xll〜
16は比較材である。比較材のうち、N[LllはJI
S  80.S13相当材である。
Next, the stainless steel of the present invention will be specifically explained with reference to examples.0Example: Alloys with various chemical compositions were melted and centrifugally cast tubes (outer diameter 200 mm x wall thickness 20 mm x length 40.00 mm) were made. Cast. Table 1 shows the composition and amount of ferrite of each sample tube material. Test samples 1 to 4 have the chemical composition and amount of ferrite specified in the present invention, and test samples 1'&xll~
16 is a comparison material. Among the comparative materials, N[Lll is JI
S 80. It is a material equivalent to S13.

第  1  表 上記各供試管材よシ試験片を採取し、供試集1〜4およ
び12〜16については、本発明に従い、温度1150
℃に加熱保持(保持時間3Hr)l、たのち水冷する熱
処理を施した。%11(JIS5C8ia相当)に対し
ては、この合金に行なわれる通常の固溶化処理(、但し
、1100℃×3Hr・水冷)を行なった。
Table 1 Test pieces were collected from each of the above-mentioned test tube materials, and test pieces 1 to 4 and 12 to 16 were heated to 1150°C according to the present invention.
A heat treatment was performed by holding the sample at 1° C. (holding time: 3 hours) and then cooling it with water. %11 (equivalent to JIS 5C8ia) was subjected to the usual solid solution treatment (1100° C. x 3 hours, water cooling) performed on this alloy.

各試験片について、450℃高温引張試験による高温強
度の測定、並びに耐SCC性の評価を行なった。結果を
第2表に示す。
For each test piece, high-temperature strength was measured by a 450°C high-temperature tensile test, and SCC resistance was evaluated. The results are shown in Table 2.

ただし、耐SCC性評価は粒界腐食試験にて行なった(
耐SCC性は、はぼ耐粒界腐食性に対応し、その良否で
評価することができる)。なお、その粒界腐食試験は、
予め試験片を650℃に2時間加熱保持後、徐冷する鋭
敏化処理に付したのち、ASTM  A262E法の規
定に準拠して行慕った。表中、「○」はその曲げ試験で
異常がなかったこと、「×」はクラックが発生したこと
を表わす。
However, SCC resistance evaluation was performed by intergranular corrosion test (
SCC resistance corresponds to intergranular corrosion resistance and can be evaluated based on its quality.) In addition, the intergranular corrosion test is
The test piece was previously subjected to a sensitization treatment in which the test piece was heated and held at 650° C. for 2 hours and then slowly cooled, and then processed in accordance with the provisions of ASTM A262E method. In the table, "○" indicates that there was no abnormality in the bending test, and "x" indicates that cracks occurred.

更に、供試材陥1〜4およびfjhll(SC813相
当)について、熱処理温度が靭性に及ぼす影響を第3表
に示す0いづれも、熱処理の加熱保持時間は3Hrで、
加熱後の急冷は水冷によった。表中の数値は、400℃
に1000時間加熱保持する時効を与えたのち、温度θ
℃で測定された衝撃値(k!! ” / cJ )vf
ある(試片、:2m+nVノツチ付き)。
Furthermore, Table 3 shows the influence of heat treatment temperature on toughness for sample materials 1 to 4 and fjhl (equivalent to SC813). In both cases, the heating holding time of the heat treatment was 3 Hr,
Rapid cooling after heating was performed by water cooling. The values in the table are 400℃
After aging by heating and holding for 1000 hours, the temperature θ
Impact value (k!!”/cJ) measured in °C
Yes (sample, with 2m+nV notch).

第2表 第 3 表  衝撃値 (ゆm/cI4)前記第2表に
示されるように、本発明合金は、耐SCC性に何ら問題
はなく、かつ高温強度にもすぐれている。これに対し、
比較材N1111〜16は1.高温強度と耐SCC性の
両者を共に満たすことができない。すなわち、t’lh
l’1(80813相当)は、高温強度が低く、またフ
ェライト量が少いため耐SCC性も良くない。N[L1
2は、Cr量、フェライト量が低いため、高温強度、耐
SCC性のいづれにも問題がある。隘13は、C量が比
較的高いので強度は良好であるが、耐800性が悪い。
Table 2 Table 3 Impact Value (Yum/cI4) As shown in Table 2 above, the alloy of the present invention has no problem with SCC resistance and has excellent high temperature strength. On the other hand,
Comparative materials N1111 to 16 were 1. Both high temperature strength and SCC resistance cannot be satisfied. That is, t'lh
l'1 (equivalent to 80813) has low high-temperature strength and low SCC resistance due to the small amount of ferrite. N[L1
No. 2 has problems in both high-temperature strength and SCC resistance because the Cr content and ferrite content are low. No. 13 has a relatively high C content, so the strength is good, but the 800 resistance is poor.

N14は、Ni量は本発明規定の上限を大きくこえない
が、Cr量が多すグるため、フェライト量が過剰となっ
て、強度は高い、ものの、耐SCC性が悪い。また、別
途性なった試験によれば靭性にも劣る。ll!l15は
、N1量が下限値に満たないため、フェライト量が過剰
となシ、耐8CC性が悪く、また靭性も良くない。N[
L16は、Ni量が上限値をこえるにもかかわらず耐S
CC性はよい。しかし、高温強度が低く、本発明合金に
及ばない。
In N14, the amount of Ni does not greatly exceed the upper limit specified in the present invention, but the amount of Cr is large, so the amount of ferrite is excessive, and although the strength is high, the SCC resistance is poor. Furthermore, according to a separate test, it is inferior in toughness. ll! In l15, since the amount of N1 is less than the lower limit, the amount of ferrite is excessive, the 8CC resistance is poor, and the toughness is also poor. N [
L16 has good S resistance even though the Ni content exceeds the upper limit.
CC properties are good. However, the high temperature strength is low and is inferior to the alloy of the present invention.

更に、上記第3表から明らかなように、本発明合金は所
定の熱処理をうけることによシ良好な靭性を具備する。
Furthermore, as is clear from Table 3 above, the alloys of the present invention exhibit good toughness when subjected to a prescribed heat treatment.

すなわち、本発明合金は、1100℃程度の温度に加熱
保持する従来一般の固溶化処理を適用したのでは、靭性
の改善を期待することはできず、本発明の規定によJ)
1130〜1250℃の高温での熱処理を経てはじめて
高度の靭性が得られることがわかる。しかも、高温高圧
下で長時間使用されても、なお十分な靭性が保たれ、工
業材料として極めてすぐれている。
In other words, the alloy of the present invention cannot be expected to improve its toughness if it is subjected to conventional solid solution treatment in which it is heated and held at a temperature of about 1100°C.
It can be seen that a high degree of toughness can only be obtained through heat treatment at a high temperature of 1130 to 1250°C. Moreover, even when used for long periods of time under high temperature and high pressure, it still maintains sufficient toughness, making it an excellent industrial material.

なお、本発明合金は、前記のごとく溶接性をも考慮して
化学成分゛組成を定めたものであるから、溶接性も問題
はなく、別途行なった溶接性試験において従来材と同等
もしくはそれ以上の好結果を確認することができた。
As mentioned above, the chemical composition of the alloy of the present invention was determined taking weldability into consideration, so there was no problem with weldability, and in a separate weldability test, it was found to be equivalent to or better than conventional materials. We were able to confirm good results.

以上のように本発明に係る高温用ステンレス鋼は、高温
強度、耐SCC性、並びに溶接性のいづれにもすぐれ、
かつ高温長時間使用後にも十分な靭性を失なわないので
、重油脱硫装置用配管ぜ料をはじめ、高温・高圧下で用
いられ、かつ耐8CC性が要求される各種装置用材料と
して極めて好適である。
As described above, the high-temperature stainless steel according to the present invention has excellent high-temperature strength, SCC resistance, and weldability.
In addition, it does not lose sufficient toughness even after long-term use at high temperatures, making it extremely suitable as a material for various equipment that is used at high temperatures and high pressures and requires 8CC resistance, including piping materials for heavy oil desulfurization equipment. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は合金の金属組織を示す図面代用写真(
倍率:200)である。 特許出願人  久保田鉄工株式会社 代理人 弁理士 宮 崎 新 八 部
Figures 1 to 5 are photographs (substitute for drawings) showing the metallographic structure of the alloy.
Magnification: 200). Patent applicant Kubota Iron Works Co., Ltd. Agent Patent attorney Arata Miyazaki

Claims (1)

【特許請求の範囲】[Claims] (1)  00.20 S以下、8i9,9%以下、M
n 9.Qチ以下、Cr 29 %をこえ、30チ以下
、N16〜12チ、残部Feおよび不可避の不純物から
なり、5〜30%(面積率)のフェライトとオーステナ
イトの2相組織を有し、かつ麺皮1130〜1250℃
で加熱保持および急冷の熱処理が施こされたことを特徴
とする高温強度、耐応力腐食割九性および溶接性等にす
ぐれた高温用ステンレス序。
(1) 00.20 S or less, 8i9.9% or less, M
n9. Noodles have a two-phase structure of ferrite and austenite of 5 to 30% (area ratio), consisting of Qchi or less, Cr exceeding 29%, 30chi or less, N16 to 12chi, the balance Fe and unavoidable impurities. Skin 1130-1250℃
A high-temperature stainless steel with excellent high-temperature strength, stress corrosion resistance, weldability, etc., which is characterized by having undergone heat treatment of heating holding and rapid cooling.
JP16372081A 1981-10-14 1981-10-14 Stainless steel for high temperature use with superior strength at high temperature, stress corrosion cracking resistance and weldability Granted JPS5864356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16372081A JPS5864356A (en) 1981-10-14 1981-10-14 Stainless steel for high temperature use with superior strength at high temperature, stress corrosion cracking resistance and weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16372081A JPS5864356A (en) 1981-10-14 1981-10-14 Stainless steel for high temperature use with superior strength at high temperature, stress corrosion cracking resistance and weldability

Publications (2)

Publication Number Publication Date
JPS5864356A true JPS5864356A (en) 1983-04-16
JPS6325053B2 JPS6325053B2 (en) 1988-05-24

Family

ID=15779367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16372081A Granted JPS5864356A (en) 1981-10-14 1981-10-14 Stainless steel for high temperature use with superior strength at high temperature, stress corrosion cracking resistance and weldability

Country Status (1)

Country Link
JP (1) JPS5864356A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338558A (en) * 1986-08-04 1988-02-19 Nisshin Steel Co Ltd High strength nonmagnetic stainless steel having superior workability
KR100381521B1 (en) * 1998-12-29 2003-07-16 주식회사 포스코 Ideal stainless steel for high heat input welding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338558A (en) * 1986-08-04 1988-02-19 Nisshin Steel Co Ltd High strength nonmagnetic stainless steel having superior workability
KR100381521B1 (en) * 1998-12-29 2003-07-16 주식회사 포스코 Ideal stainless steel for high heat input welding

Also Published As

Publication number Publication date
JPS6325053B2 (en) 1988-05-24

Similar Documents

Publication Publication Date Title
EP0545753B1 (en) Duplex stainless steel having improved strength and corrosion resistance
JP7059357B2 (en) Duplex stainless clad steel sheet and its manufacturing method
EP1141432A1 (en) Corrosion resistant austenitic stainless steel
WO2010090041A1 (en) Ferrite stainless steel with low black spot generation
KR20100060026A (en) Austenitic stainless steel
TW201031764A (en) Ferritic-austenitic stainless steel
KR20090078813A (en) Duplex stainless steel alloy and use of this alloy
JP6513495B2 (en) Duplex stainless steel and duplex stainless steel pipe
JP4312408B2 (en) Corrosion resistant austenitic alloy
JPS6358214B2 (en)
US5296054A (en) Austenitic steel
JP2019026940A (en) Two-phase stainless steel welded joint
JPS5864356A (en) Stainless steel for high temperature use with superior strength at high temperature, stress corrosion cracking resistance and weldability
JPH0674490B2 (en) Austenitic stainless steel for seawater resistance
CA2355109C (en) Corrosion resistant austenitic stainless steel
JP3779043B2 (en) Duplex stainless steel
JP4592173B2 (en) Martensitic stainless steel welded structure with excellent fire resistance
JP4570221B2 (en) Martensitic stainless steel with excellent fire resistance
JP2009203518A (en) Dual phase stainless steel having excellent uniform corrosion resistance
JPH0676638B2 (en) High strength Ni-Cr alloy with excellent corrosion resistance and heat resistance
JP2002194466A (en) Nickel based alloy clad steel and its production method
JP2668116B2 (en) Austenitic stainless steel with excellent corrosion resistance in hot water
JP2020100859A (en) Two-phase stainless welded channel steel, and method of producing the same
JPH0577727B2 (en)
JPH0874001A (en) Stainless steel welding material for high temperature-high concentration sulfuric acid excellent in selective corrosion resistance and cold workability