JPS5864344A - Manufacture of molten ferrosilicon in shaft furnace - Google Patents

Manufacture of molten ferrosilicon in shaft furnace

Info

Publication number
JPS5864344A
JPS5864344A JP16270081A JP16270081A JPS5864344A JP S5864344 A JPS5864344 A JP S5864344A JP 16270081 A JP16270081 A JP 16270081A JP 16270081 A JP16270081 A JP 16270081A JP S5864344 A JPS5864344 A JP S5864344A
Authority
JP
Japan
Prior art keywords
coke
iron
iron ore
furnace
starting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16270081A
Other languages
Japanese (ja)
Inventor
Masao Onozawa
昌男 小野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16270081A priority Critical patent/JPS5864344A/en
Publication of JPS5864344A publication Critical patent/JPS5864344A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To attain a higher silicon yield and a lower coke ratio in the manufacture of molten ferrosilicon by charging a siliceous starting material, coke and iron ore into a furnace and by blowing a gas with high O2 concn., by specifying the method of feeding the iron ore and the siliceous starting material. CONSTITUTION:A siliceous starting material such as silica, coke and iron ore are charged into a furnace, and by blowing a gas contg. >=70% O2 into the hearth, a part burning at a high temp. is formed to obtain molten ferrosilicon. At this time, more than halves of silicon and iron in the product are fed from briquettes of a finely pulverized uniform mixture of the siliceous starting material with the iron ore or from siliceous iron ore. For example, the siliceous starting material and the iron ore are finely pulverized, briquetted with a binder, and charged. Thus, a higher silicon yield and a lower coke ratio can be attained. The reason is considered to be that iron silicate which is a compound contg. iron oxide formed by the partial reduction of iron ore with silicic acid as the principal component of silica is melted in the early stage because of the low m.p. and droplets of the molten iron silicate are directly reduced on the surface of coke heated to a high temp.

Description

【発明の詳細な説明】 しいフェロシリコンの製造方法に関するものである。[Detailed description of the invention] The present invention relates to a method for manufacturing new ferrosilicon.

主として鉄鋼製造に用いる合金鉄のうち普通鋼′一の製
造に多量に用いられるのは、高炭素フェロマンガン、フ
ェロシリコン、シリコマンガンテアル。
Among the ferroalloys mainly used in steel manufacturing, high carbon ferromanganese, ferrosilicon, and silicomanganese are used in large quantities in the manufacturing of ordinary steel.

これらのうち高炭素フェロマンガンは古くシャフト炉で
製造され、現在も一部で行われているが、これを除くと
現在はほとんど電気炉で製造されている。フェロシリコ
ンについては、電気還元を用いない単純なシャフト炉に
よシ製造された例はほとんどなく、シリコy/を当たシ
約/.2θθOKWHの電力を要するから、アルミニウ
ムと並んで電気の塊シであるということができる。
Among these, high carbon ferromanganese was manufactured in shaft furnaces in ancient times, and is still produced in some cases today, but other than this, most of them are now manufactured in electric furnaces. As for ferrosilicon, there are few examples of it being produced in a simple shaft furnace that does not use electrical reduction. Since it requires a power of 2θθOKWH, it can be said to be a lump of electricity along with aluminum.

これは主要な原料である珪石等を金属シリコンに還元す
るために非常な高温と多くの熱量を必要とするからであ
る。
This is because extremely high temperatures and a large amount of heat are required to reduce the main raw material, such as silica stone, into metallic silicon.

本発明者は、シリコン原料例えば通常フェロシリコン製
造に用いられる珪石に多量のコークスを混合してシャツ
)Fに装入し、羽口から常温または予熱した酸素富化空
気を送って溶解を行った。
The present inventor mixed a large amount of coke with a silicon raw material, for example, silica stone, which is normally used in the production of ferrosilicon, and charged the mixture into Shirt F, and melted it by sending room-temperature or preheated oxygen-enriched air through the tuyere. .

試験は内径/θmφ、高さ3mのシャフト炉を用い深冷
分離装置で空気から製造した純酸素を送風機からの空気
で稀釈した酸素富化空気を酸素純分として毎時gθθN
nVhの割合で送シこみ操業成績を調べた。酸素濃度は
、/θθチ、9θ%、7θ%、 30%および33%の
5条件を用いた。そのようにして得られた運転成績の一
部を第1表に示す。
The test was conducted using a shaft furnace with an inner diameter of /θmφ and a height of 3m, and oxygen-enriched air obtained by diluting pure oxygen produced from air with a cryogenic separator with air from a blower was used as the pure oxygen content, gθθN per hour.
The performance of pumping and pumping operations was examined based on the nVh ratio. Five oxygen concentration conditions were used: /θθchi, 9θ%, 7θ%, 30%, and 33%. Table 1 shows some of the operating results obtained in this way.

第1表 珪石スクラップ法の運転成績例※珪石の5i0
2を/θθチとしてフェロシリコンへの歩留を計算した
Table 1 Example of operational results of silica scrap method *5i0 of silica
The yield to ferrosilicon was calculated using 2 as /θθchi.

※※運転時間゛に対するガス温度のバラツキの+λσを
最高とした。
※※The +λσ of the gas temperature variation with respect to the operating time was set as the highest.

第1表のデータは電気入力を直接多量−に用らずにコー
クスを用いてフェロシリコンをつくったという点では満
足はできたが、珪素歩留が低く、コークス比が高いこと
は不満足なものであった。低い珪素歩留は、スラグまた
はダストとして炉外に排出されるためであり、その量は
フェロシリコン/を当たシ乙jo梅程度にのぼることが
分った。
The data in Table 1 is satisfactory in that ferrosilicon was produced using coke without directly using a large amount of electrical input, but it is unsatisfactory in that the silicon yield is low and the coke ratio is high. Met. The low silicon yield is due to the fact that it is discharged outside the furnace as slag or dust, and it was found that the amount of silicon is about the same as that of ferrosilicon.

そこでこの問題を解決するため各種媒溶材などを用いて
みたが、鉄鉱石を細粒にし珪石と混合して装入すれば、
コークス比の若干の低下がみられることが分った。この
結果にヒントを得て鉄鉱石と珪酸原料を微粉砕して粘結
材を加えてブリケットとしたものや、これが化合物とし
て結合している珪酸鉄鉱を用いてみたところ著しい成績
の向上がみられた。珪石および鉄鉱石を夫々/θθメツ
シュ以下に粉砕し、重量比で珪石37S、鉄鉱石/、バ
インダ7としてコバルチンθ2Sを混合して通常の製造
法で20vanのペレットを得た。このコンの製造試験
を行った成績を第2表に示す。
Therefore, we tried using various solvents to solve this problem, but if iron ore was made into fine particles and mixed with silica stone and charged,
It was found that a slight decrease in coke ratio was observed. Taking a hint from this result, we tried using briquettes made by finely pulverizing iron ore and silicate raw materials and adding a caking agent, and using iron ore silicate, which is a compound in which iron ore and silicate raw materials are combined, and a remarkable improvement in performance was observed. Ta. Silica stone and iron ore were each crushed to a mesh size of /θθ mesh or less, and silica stone 37S, iron ore /, and cobaltin θ2S as a binder 7 were mixed in a weight ratio to obtain 20 van pellets using a normal manufacturing method. Table 2 shows the results of a manufacturing test for this container.

第2表 ペレット法の運転成績例 ※珪石の5iOzを108  としてフェロシリコンへ
の歩留を計算した。
Table 2 Example of operation results for pellet method *The yield to ferrosilicon was calculated assuming 5iOz of silica stone as 108.

※※運転時凹に対するガス温度のノくラツキの+2σを
最高とした。
※※+2σ of the gas temperature fluctuation with respect to concavity during operation was set as the highest.

第1表と第−表のデータにもとづいて酸素濃度とSt濃
度、コークス比、炉頂ガス温度の関係を第7.2図11
C示ス。コークス比は、フェロシリコン/を当たシでな
く、フェロシリコン中のシリコン/を当たシに必要なコ
ークス量で示した。図において同一の酸素濃度ではペレ
ット法はコークス比はかなり低い、Si歩留は格段に高
い。珪石−スクラップ法もペレット法も酸素濃度7θチ
を限界として急速にコークス比、Si歩留とも悪化する
Based on the data in Table 1 and Table 1, the relationship between oxygen concentration, St concentration, coke ratio, and furnace top gas temperature is shown in Figure 7.2.
Show C. The coke ratio is expressed not by the amount of coke needed to hit the silicon in the ferrosilicon, but by the amount of coke required to hit the silicon in the ferrosilicon. In the figure, at the same oxygen concentration, the pellet method has a considerably lower coke ratio and a much higher Si yield. In both the silica-scrap method and the pellet method, both the coke ratio and the Si yield rapidly deteriorate when the oxygen concentration reaches the limit of 7θ.

また第2図をみると珪石−スクラップ法、ペレット法と
も酸素濃度が低下すると炉頂ガス温度は著しく上昇する
。酸素濃度7θチの操業では炉頂温度はせいぜい最高S
θθ℃であるが、酸素濃度が更に低下すると炉頂ガス温
度は更に急上昇することが分る。
Further, as shown in FIG. 2, in both the silica-scrap method and the pellet method, when the oxygen concentration decreases, the furnace top gas temperature increases significantly. In operation at an oxygen concentration of 7θ, the furnace top temperature is at most S
θθ°C, but it can be seen that as the oxygen concentration further decreases, the furnace top gas temperature further increases rapidly.

当然ながら高温のガスを取扱うには耐火物ライニングを
施せばよいのであるが、後述するように本シャフト炉は
原料であiコークス等を装入するとき大気と遮断するた
めライニングがあるとシールが不良になる。しかしライ
ニングなしの構造とすると装置がいたみやすくなる。
Naturally, in order to handle high-temperature gases, a refractory lining would be sufficient, but as will be explained later, when this shaft furnace is charged with raw materials such as coke, it is sealed from the atmosphere, so the lining creates a seal. breaking bad. However, if the structure is without lining, the device will be easily damaged.

従ってコークス比、St歩凧および炉頂ガスのいづれの
観点からしても酸素濃度は7θチ以上とすることが好ま
しいことが分った。また珪石と鉄鉱石を粉砕してペレッ
トとして装入するペレット法が珪石とスクシン〆を装入
する方法に比して大幅に成績がよいことが明らかになっ
た。
Therefore, it has been found that it is preferable to set the oxygen concentration to 7θ or higher from the viewpoints of coke ratio, St rate, and top gas. It was also revealed that the pellet method, in which silica stone and iron ore are crushed and charged as pellets, has significantly better results than the method in which silica stone and succinite are charged.

、こうした差の生ずる理由は明らかでないが、珪石の主
成分である珪酸の鉄鉱石が部分還元して生ずる酸化鉄と
の化合物である珪酸鉄が低融点であるため早い段階に融
解し、・生じた珪酸鉄の融滴が高温のコークスの表面で
直接還元されるためと思われる。
The reason for this difference is not clear, but iron silicate, which is a compound with iron oxide produced by partial reduction of silicic acid iron ore, which is the main component of silica stone, has a low melting point, so it melts at an early stage. This is thought to be because the molten iron silicate droplets are directly reduced on the surface of the high-temperature coke.

そこでコークスの粒度をかえて試験してみた。Therefore, we conducted tests by changing the particle size of the coke.

これまで述べた実験では、コークスはすべて粒度30〜
!Omm  の高炉用塊コークスを用いているが、一般
にはフェロアロイ製造ではブリーズコークスとして細粒
のものを用いており、安価でもあるからである。試験は
/θ〜30mm、3θ〜j Omm 。
In the experiments described so far, all coke had a particle size of 30~
! Omm blast furnace lump coke is used, but fine-grained breeze coke is generally used in ferroalloy production, and is also inexpensive. The test was /θ~30mm, 3θ~j Omm.

50〜/θθmmの三種類のコークスを用い、前述の炉
に2θチ酸素の送風にθθVAf送って前述したペレッ
トヲ用いて5i7j%以上のフェロシリコンの得られる
条件を調べた。結果は下記のとおりである。
The conditions for obtaining ferrosilicon of 5i7j% or more were investigated using three types of coke of 50 to /θθmm, sending θθVAf to the above-mentioned furnace to blow 2θ oxygen, and using the above-mentioned pellets. The results are as follows.

コークス粒度の影響 コークス粒度 /θ〜3θmrn  3θ〜SorIL
msθ〜/θθmmコークス比    11.’17 
   32/     3θS珪素歩留     79
.2    93.0   93乙上記から見られるよ
うに/θ〜3θ馴のものは著しくコークス比が高く々っ
て不良である。コークス粒度は粗い方がよいが、少なく
とも30mm以上の粒度が必要なことが分る。
Effect of coke particle size Coke particle size /θ~3θmrn 3θ~SorIL
msθ~/θθmm coke ratio 11. '17
32/ 3θS silicon yield 79
.. 2 93.0 93 B As can be seen from the above, those in the /θ to 3θ range have extremely high coke ratios and are therefore poor. Although it is better for the coke particle size to be coarse, it is clear that a particle size of at least 30 mm or more is required.

実施例/ ゛第3図に示したフローシートの構成で、内径/θmφ
 高さ3mの耐火物で内張されたシャフト炉を用い、モ
レキュラ・シーブ型酸素発生装置によって空気から製造
された純度デθ%の酸素含有ガスを、酸素としてざθO
Nd/hの割合で炉に通じた。炉上部からは予め製造さ
れた既述のペレットと、粒度3θ〜30mmの高炉用コ
ークスを重是比で大孔/:/の割合で交互に装入した。
Example/゛With the flow sheet configuration shown in Fig. 3, the inner diameter/θmφ
Using a shaft furnace lined with refractories with a height of 3 m, an oxygen-containing gas with a purity of θ% produced from air by a molecular sieve type oxygen generator is used as oxygen.
It passed into the furnace at a rate of Nd/h. From the upper part of the furnace, the above-mentioned pellets manufactured in advance and blast furnace coke with a particle size of 3θ to 30 mm were alternately charged in a ratio of large holes /:/ in terms of weight ratio.

装入は二重のシール弁を交互に開閉して大気と気密にし
て行った。酸素は水冷した羽口から炉内に導入する。
Charging was performed by alternately opening and closing double seal valves to ensure airtightness from the atmosphere. Oxygen is introduced into the furnace through water-cooled tuyeres.

還元によって生じたフェロシリコンは炉底部に溜るので
、間欠的に耐火物の出湯口を開いて炉外に取り出して鋳
鉄製鋳型上で凝固せしめた。
Since the ferrosilicon produced by the reduction accumulated at the bottom of the furnace, the refractory spout was opened intermittently to take it out of the furnace and solidify it on a cast iron mold.

運転データを整理すると、フェロシリコンの生産率は毎
時419 / kg/hであシ、ベレット供°給率は毎
時/ / 3 ’l’4、コークス供給率は//ggk
qで7エロシリコン中のSt濃度は7マ2チである。従
ってSi/を当たり必要コークスは32/lとなる。炉
頂ガスは平均22.2℃で、毎時3θgAν生成した。
Organizing the operating data, the ferrosilicon production rate is 419/kg/h, the pellet supply rate is //3'l'4/hour, and the coke supply rate is //ggk/hour.
The St concentration in 7 erosilicon is 7 x q. Therefore, the required coke per Si/l is 32/l. The furnace top gas had an average temperature of 22.2°C and produced 3θgAv/hour.

このガスを第3図の測定点で分析したところ、コ乙、2
.2Kcal/’t−の発熱量を有することが分った。
When this gas was analyzed at the measurement points shown in Figure 3, it was found that
.. It was found that it had a calorific value of 2 Kcal/'t-.

生成ガスの有する顕熱を含めてSt / を当た9の炉
頂ガスの有する潜顕熱は/、33fX107 Kcal
/ls iとなる。更にシャフト炉から生成するガス中
には硫黄分がグθtlNrr?含まれていることが分っ
た。このガスを燃焼すると802として燃焼ガス中に約
θ/vo1%含まれることになる。これは第2表の酸素
濃度ンθチのケースである。
The latent sensible heat of the furnace top gas of 9, including the sensible heat of the generated gas, is /, 33fX107 Kcal
/ls i. Furthermore, there is a sulfur content in the gas generated from the shaft furnace. It was found that it was included. When this gas is combusted, about θ/vo1% of the 802 is contained in the combustion gas. This is the case for the oxygen concentration θ in Table 2.

実施例2 第3図に示した装置を用い、実施例/と同じ操業条件を
採用した。たソ装入物はs−2θmm  に破砕したF
e2.!;、/’llr、 5iO2J5!/’*、 
A203θグ3チを主成分とする珪酸鉄鉱を/時間当た
シダ6θ階、同じ粒度の珪石を/時間当たシjグθり混
入し、/時間当たシXコθ0陽のコークスと分割して交
互に装入した。得られたフェロシリコン中のSi 濃度
ハフj/チであり、時間当たジグ67吟の生産率であっ
た。
Example 2 The apparatus shown in FIG. 3 was used, and the same operating conditions as in Example 2 were adopted. The raw material was crushed to s-2θmm.
e2. ! ;, /'llr, 5iO2J5! /'*、
Iron silicate, whose main component is A203θ, is mixed with 6θ per hour, silica of the same particle size is mixed with 6θ per hour, and divided with coke of 6θ per hour. and charged alternately. The Si concentration in the obtained ferrosilicon was Huffj/chi, and the production rate was 67 gin per hour.

データからSi/を当だシコークスは3417t を要
することになる。また珪石を/θθ%5i02  で計
算してStの歩留は9//%となる。
A sicoke that calculates Si/ from the data will require 3417t. Further, when calculating silica stone by /θθ%5i02, the yield of St is 9//%.

実施例2はフェロシリコン中の鉄+珪素のうち丁度半量
が珪酸鉄鉱から供給されている。原料としては珪石の方
が多いが、鉄ははソ/θθチ歩留ったとみられるからで
ある。実施例2のコークス比、3グアt/lai  は
、実施例/の32 / t/l s i 第1表の対応
例3乙j t/l s iに比してはソウ間あ成績であ
る。またSt歩留9//%は、それぞれ93θ饅g6.
2チに比し、中間よシは可成改善されている。
In Example 2, exactly half of the iron+silicon in ferrosilicon is supplied from pyrite. This is because silica is more common as a raw material, but iron seems to have a higher yield. The coke ratio of Example 2, 3gua t/lai, is much lower than that of Example 32/t/l s i in Table 1, corresponding example 3 t/l s i . In addition, the St yield is 9//%, 93θ bung6.
Compared to the 2nd wheel, the middle distance has been significantly improved.

このように本実施例方法とスクラップ珪石法を比較する
と、Si歩留、コークス比とも改善されている。この方
法は実施例/の方法とスクラップ−珪石法との折衷案で
ある。
As described above, when the method of this embodiment is compared with the scrap silica method, both the Si yield and the coke ratio are improved. This method is a compromise between the method of Example 1 and the scrap-silica method.

さて実施例/からみるようにシャフト炉から出るガスは
硫黄分を多く含む。また可燃分を含むダストも多く発生
する。ガスは一酸化炭素が多く極めて多量の熱量を有す
る。これら本システムにおけるシャフト炉の特性を考慮
して実機設備としては第7図のよう々装置構成とするこ
とが望ましいことが分った。即ち本シャフト炉には酸素
発生機からの酸素が直接供給される。シャフト炉は燃焼
室まで大気に対し気密に構成され、珪石コークススクラ
ップ等の原料は炉に大気をできるだけ持ち込まないよう
な方法で供給される。このことは通常の電気炉によるフ
ェロシリコン製造方法と異なり粗粒のコークスを大量に
使用できることがら、炉内での棚吊シ、棚落ちが少ない
ことによって生ずる利点である。炉から生じた可燃ガス
は、燃焼室で空気と混合されて燃焼し、ボイラで熱回収
され、乾式電気集塵機で除塵したのち、脱硫され、誘引
送風機を経て煙突から大気放散する。本構成は本発明方
式の実施設備として、発生する大量の熱量を発電によっ
て回収すること。シャフト炉の操業の安全性を利用する
点で最適である。本構成の修正方法としてはシャフト炉
のあとに乾式の粗除塵機を設置すること、乾式電気集塵
機と脱硫設備の順序をかえて、脱硫設備を前置し湿式電
気集塵機を後置すること、誘引排風機をやめ、酸素発生
機の圧力で煙突までガスを押し流すことなどが考えられ
る。
Now, as seen from Example/, the gas discharged from the shaft furnace contains a large amount of sulfur. Also, a lot of dust containing combustible substances is generated. The gas contains a lot of carbon monoxide and has an extremely large amount of heat. In consideration of these characteristics of the shaft furnace in this system, it has been found that it is desirable to have the equipment configuration as shown in FIG. 7 as an actual equipment. That is, the shaft furnace is directly supplied with oxygen from the oxygen generator. The shaft furnace is configured to be airtight from the atmosphere up to the combustion chamber, and raw materials such as silica coke scrap are supplied in a manner that prevents the introduction of the atmosphere into the furnace as much as possible. This is an advantage that arises from the fact that a large amount of coarse coke can be used, unlike the conventional ferrosilicon production method using an electric furnace, and there is less shelf hanging and shelf falling in the oven. The combustible gas generated from the furnace is mixed with air in the combustion chamber and combusted, the heat is recovered in the boiler, the dust is removed by a dry electrostatic precipitator, the gas is desulfurized, and it is released into the atmosphere from the chimney via an induced blower. This configuration is a facility for implementing the method of the present invention, in which a large amount of generated heat is recovered by power generation. It is optimal in terms of utilizing the operational safety of a shaft furnace. The modification method for this configuration is to install a dry type coarse dust remover after the shaft furnace, change the order of the dry type electrostatic precipitator and desulfurization equipment, and place the desulfurization equipment in front and the wet type electrostatic precipitator after it. Possible options include turning off the exhaust fan and using the pressure from the oxygen generator to push the gas up the chimney.

さてこの様な実機フローシートでガスの熱回収を行えば
第3表の様な原料原単位で操業することになる。第3表
は実施例/の実験成績から得られる実機の原料単位であ
る。第3表には一般の7エロシリコンの電気炉製造にお
ける製造成績例を比較のため示す。第3表からみると一
般の電気炉法はSi/を当たり、 /、2,3θθKW
Hを要するのに本方法ではコークスは約9倍使うものの
、使用電力量は回収電力によってカバーされる。第3表
の値を出願時の市価により単価を乗じて運転コストを算
出すると、コストは本法では電炉法に比して”2.j〜
り3となる。コストは評価の方法、立地条件、経済状勢
で相対的な利、不利は変るものの、このように大きいコ
ストの差は多少の条件変化で変わるものでなく、はとん
どの場合その利点が発揮でき、本方法の本質的効果とみ
ることができる。
Now, if gas heat recovery is performed using such an actual flow sheet, the operation will be performed at the raw material consumption rate shown in Table 3. Table 3 shows the raw material units of the actual machine obtained from the experimental results of Example/. Table 3 shows examples of production results in electric furnace production of general 7-ero silicon for comparison. From Table 3, the general electric furnace method hits Si/, /, 2,3θθKW
Although this method uses about 9 times as much coke as it requires H, the amount of electricity used is covered by the recovered electricity. Calculating the operating cost by multiplying the values in Table 3 by the unit price by the market price at the time of application, the cost for this method is "2.j~" compared to the electric furnace method.
It becomes 3. Although the relative advantages and disadvantages of costs change depending on evaluation methods, location conditions, and economic conditions, such large cost differences do not change even with slight changes in conditions, and in most cases the advantages cannot be realized. This can be seen as an essential effect of this method.

本方法は従来知られていないフェロシリコンの非電炉製
造方法を70チ以上の酸素を含むガスを用い、適当なシ
ャフト炉寸法と粗粒のコークスを用いて実現しうろこと
を示したものでその経済的効果が大きい。
This method is a method of producing ferrosilicon in a non-electric furnace, which was previously unknown, using a gas containing 70 cm or more of oxygen, appropriate shaft furnace dimensions, and coarse coke. It has a large economic effect.

フェロアロイ製造におけるシャ、フト炉法の例を調べて
みるとフェロマンガンについては、シャフト炉法が行わ
れているが、マンガンは珪素ト異なり、酸化物から還元
するのに間接還元を含み、また直接還元もイブθθ℃で
できる矛;、珪素はすべて直接還元で約/SSθ℃を要
し、この差はフェロアロイとしてみると、鉄の融点”を
こえるか、こえないかの差でちり、きわめて大きい差と
なっている。
Looking at examples of shaft furnace and shaft furnace methods in the production of ferroalloys, we find that the shaft furnace method is used for ferromanganese, but manganese is different from silicon and involves indirect reduction to reduce it from oxides, as well as direct reduction. Reduction can also be done at θθ℃; all silicon requires about /SSθ℃ for direct reduction, and when viewed as a ferroalloy, this difference is extremely large as it is the difference between whether it exceeds the melting point of iron or not. There is a difference.

また単位重量当たり還元に必要な熱量は、珪素ではマン
ガンの約X<Z倍であり、これらの差は類似というより
本質的に異なる分野といえる。。
Further, the amount of heat required for reduction per unit weight of silicon is about X<Z times that of manganese, and these differences can be said to be essentially different fields rather than similarities. .

更にフェロシリコンの電炉製造において鉄鉱石と珪石原
料を団塊として供給することも知られているが、これは
電炉内での還元機構を重視したものであることはよく知
られている。シャフト炉では高温帯が広く広がり、赤熱
したコークス上に珪酸鉄が溶融滴下して直接的に還元さ
れるものである。電気炉と、コークスを多用するシャフ
ト炉では類似のものを入れても作用はまったく異なって
いる。
Furthermore, it is known that iron ore and silica raw materials are supplied in the form of nodules in the production of ferrosilicon in an electric furnace, but it is well known that this method places emphasis on the reduction mechanism within the electric furnace. In a shaft furnace, the high temperature zone spreads widely, and iron silicate melts and drips onto the red-hot coke and is directly reduced. Electric furnaces and shaft furnaces that use a lot of coke have completely different effects even though they are similar.

グ図面の簡単な構成 第1図は酸素ざθθ慟Vh供給のパイロットプラント実
験から得られた、珪石−スクラップ法と本発明のベレッ
ト法における、送風酸素濃度と成品中Si濃度およびコ
ークス比の関係図である。第2図は同じく酸素にθθW
/h供給のパイユツトプラント実験から得られた、送風
酸素濃度と炉頂ガス温度の関、検図である。第3図は実
験設備のフローシート、第9図は実機を想定した場合の
フローシートである。
Fig. 1 shows the relationship between the blown oxygen concentration, the Si concentration in the product, and the coke ratio in the silica-scrap method and the pellet method of the present invention, which were obtained from a pilot plant experiment in which oxygen gas θθ and Vh were supplied. It is a diagram. Figure 2 also shows θθW for oxygen.
This is a diagram showing the relationship between the blown oxygen concentration and the furnace top gas temperature, obtained from a pipette plant experiment with a /h supply. Figure 3 is a flow sheet for the experimental equipment, and Figure 9 is a flow sheet assuming an actual machine.

第1m 1t−tL&(%) 第211I ・征fl/L(%)1st m 1t-tL&(%) 211I ・Conquest fl/L (%)

Claims (1)

【特許請求の範囲】[Claims] シャフト炉に珪石等の珪酸含有原料、コークス、及び鉄
鉱石を装入し溶融フェロシリコンを製造するに際し、成
品珪素分および成品鉄分の過半量を微粉砕した珪酸原料
と鉄鉱石との均一混合された団塊、または珪酸鉄鉱から
供給するようにし、かつ、炉床部に高温の燃焼部を形成
するため酸素7θチ以上を含有するガスを導入すること
を特徴とするシャフト炉による溶融フェロシリコンの製
造方法。
When producing molten ferrosilicon by charging silicic acid-containing raw materials such as silica stone, coke, and iron ore into a shaft furnace, the silicic acid raw material in which the majority of the silicon content and iron content of the finished product is pulverized and the iron ore are uniformly mixed. Production of molten ferrosilicon using a shaft furnace, which is supplied from nodules or iron silicate, and which introduces a gas containing 7θ or more of oxygen to form a high-temperature combustion zone in the hearth. Method.
JP16270081A 1981-10-14 1981-10-14 Manufacture of molten ferrosilicon in shaft furnace Pending JPS5864344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16270081A JPS5864344A (en) 1981-10-14 1981-10-14 Manufacture of molten ferrosilicon in shaft furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16270081A JPS5864344A (en) 1981-10-14 1981-10-14 Manufacture of molten ferrosilicon in shaft furnace

Publications (1)

Publication Number Publication Date
JPS5864344A true JPS5864344A (en) 1983-04-16

Family

ID=15759635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16270081A Pending JPS5864344A (en) 1981-10-14 1981-10-14 Manufacture of molten ferrosilicon in shaft furnace

Country Status (1)

Country Link
JP (1) JPS5864344A (en)

Similar Documents

Publication Publication Date Title
US5728193A (en) Process for recovering metals from iron oxide bearing masses
JPH0429732B2 (en)
CA2659559C (en) A method for the commercial production of iron
US3663202A (en) Process for manufacture of pig iron or steel
JPS5864344A (en) Manufacture of molten ferrosilicon in shaft furnace
JP3336131B2 (en) Method for recovering zinc from zinc-containing dust
US1829124A (en) Metallurgical process
JPH0144772B2 (en)
JPH0130888B2 (en)
JPS63195207A (en) Production of molten iron
JPH0242884B2 (en)
JPS63118026A (en) Operating method for zinc blast furnace
JPH01247535A (en) Method for recovering valuable metal from by-product in production of stainless steel
US2536020A (en) Method of making silvery iron from blackband ore
JP2837282B2 (en) Production method of chromium-containing hot metal
US908234A (en) Process of reducing ores.
JPS6154098B2 (en)
JPS5867843A (en) Method and apparatus for preparing molten ferrosilicon by shaft furnace
JPS59110711A (en) Method for cooling furnace wall of shaft type fusion reduction furnace
JPS58104152A (en) Manufacture of high silicon alloy with shaft furnace
JPS60155640A (en) Reducing method of chromium ore
JPS58120762A (en) Manufacture of high silicon alloy
JPH01240628A (en) Method of recovering valuable metal from by-product of stainless steel production
JPH0723501B2 (en) Hot metal manufacturing method
JPH0372127B2 (en)