JPS5864035A - Characteristic improving method for polycrystalline silicon - Google Patents

Characteristic improving method for polycrystalline silicon

Info

Publication number
JPS5864035A
JPS5864035A JP56162964A JP16296481A JPS5864035A JP S5864035 A JPS5864035 A JP S5864035A JP 56162964 A JP56162964 A JP 56162964A JP 16296481 A JP16296481 A JP 16296481A JP S5864035 A JPS5864035 A JP S5864035A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
hydrogen
plasma
silicon
hydrogen plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56162964A
Other languages
Japanese (ja)
Inventor
Tamotsu Hatayama
畑山 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56162964A priority Critical patent/JPS5864035A/en
Publication of JPS5864035A publication Critical patent/JPS5864035A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve the characteristics of a polycrystalline silicon by a method wherein, when a hydrogen plasma processing is performed on the polycrystalline silicon, a cathode consisting of silicon is arranged in plasma gas, and the density of plasma is enhanced. CONSTITUTION:The hydrogen gas introduced into a vacuum container 1 generates hydrogen plasma 3 by the discharge of a high frequency coil 2. The hydrogen plasma 3 is generated by the high frequency power of 1kW output coming from the high frequency coil 2. At first, the polycrystalline silicon 4 to be plasma-processed is placed on a susceptor 5, and the vacuum container 1 is evacuated simultaneously with the commencement of heating of the polycrystalline silicon 4. After said vacuum container 1 has once been evacuated to 10<-5> Torr or below, hydrogen gas is introduced until 1Torr is reached, and wait in that state until the temperature of the polycrystalline silicon 4 comes up to 300 deg.C. After the temperature has reached 300 deg.C and stabilized, hydrogen plasma is generated and, at the same time, a hydrogen plasma processing is performed for one hour while applying power of 100V in between the polycrystalline silicon 4 and a single crystal silicon 6.

Description

【発明の詳細な説明】 本発明は、多結晶シリコンの%性改善方法に関する。[Detailed description of the invention] The present invention relates to a method for improving the percent properties of polycrystalline silicon.

従来“から多結晶シリコンは、低価格太陽電池用として
早期実現性の十分に高いものとして有望視されてきた。
Polycrystalline silicon has long been viewed as a promising material for use in low-cost solar cells as it has a high possibility of early realization.

しかし、多結晶シリコンの粒界には多量の結晶欠陥や不
純物の集積による高密度の局在単位が存在するため、そ
の粒界ではキャリヤのライフタイムが低下し、従りてキ
ャリヤの拡散長が極端に低下するなどして、いろいろな
電気的性質に対して障書となりている。
However, the grain boundaries of polycrystalline silicon have a high density of localized units due to the accumulation of a large number of crystal defects and impurities, so the lifetime of carriers decreases at the grain boundaries, and the diffusion length of carriers decreases. It becomes an obstacle to various electrical properties, such as extremely low levels.

これらの欠陥を減少させる1つの手段としては、真空容
器内の低圧下において、多結晶シリコン章水素プラズマ
ガス中で処理する方法が知られている。このグツズ!処
理によれば、粒界に存在する未結合手が水素化され欠陥
が減少し、且つ不純物が水素化し蒸発するなどの効果の
ために、キャリヤのライフタイムが大きくなるなどして
電気的性質を改善することができる。しかし従来のグツ
ズ!処理においては、電気的性質改善に限度があり、特
に粒界に高密度に存在する欠陥を集中的に減少させるこ
とはでtkない等の欠点がある。
As one means for reducing these defects, a method is known in which polycrystalline silicon is treated in hydrogen plasma gas under low pressure in a vacuum container. This stuff! Through processing, dangling bonds existing at grain boundaries are hydrogenated, defects are reduced, and impurities are hydrogenated and evaporated, resulting in longer carrier lifetimes and improved electrical properties. It can be improved. But traditional guts! In the treatment, there is a limit to the improvement of electrical properties, and in particular, there are drawbacks such as the inability to intensively reduce defects present in a high density at grain boundaries.

不発明は上記したことに鑑みて匁されたものであシ、比
軟的簡単に多結晶シリコンの特性を改善させるととので
きる方法を提供するものである。
The present invention has been developed in view of the above-mentioned problems, and it is an object of the present invention to provide a method by which the properties of polycrystalline silicon can be improved relatively easily.

不発明は、多結晶シリコンを水素プラズマ処理するに際
し、プラズマガス中にシリコンからなる陰極を配置し、
この陰極からの電子放出に・ よシノラズマ密度を高め
ることによシ、効果的に多結晶シリコンの特性を改善す
ることを特徴としている。
The invention is that when polycrystalline silicon is treated with hydrogen plasma, a cathode made of silicon is placed in the plasma gas,
It is characterized by effectively improving the properties of polycrystalline silicon by increasing the electron emission from the cathode and by increasing the cynolasma density.

第17図は本発明の一実施11の装置を示す断面模式図
である。1は真空容器であル、この中に導入された水素
ガスは、高周波コイル2により放電して水素シラーie
wJが発生する。試料である多結晶シリコン4は、ヒー
ターを具備したサセプタ5に支持されている。プラズマ
3中にはこの多結晶シリコン4に対向して単結晶シリコ
ン6が配置されている。そして単結晶シリコン6を陰極
、多結晶シリコン4を陽極として、それぞれ石英管r、
、y2の中に通したpt線818鵞によシ、外部の直流
電源9から所定のバイアス電圧を印加させる構成となっ
ている。
FIG. 17 is a schematic cross-sectional view showing an apparatus according to an eleventh embodiment of the present invention. Reference numeral 1 denotes a vacuum vessel, into which hydrogen gas is discharged by a high frequency coil 2 and becomes a hydrogen silane.
wJ occurs. A sample of polycrystalline silicon 4 is supported by a susceptor 5 equipped with a heater. Single crystal silicon 6 is placed in plasma 3 opposite polycrystalline silicon 4 . Then, using the single crystal silicon 6 as a cathode and the polycrystalline silicon 4 as an anode, the quartz tube r,
, y2, a predetermined bias voltage is applied from an external DC power supply 9 to the PT wire 818 passed through the wires 818 and y2.

上記構成管用いたへ体的な処理方法を詳述すると、水素
プラズマ3は高周波コイル2による出力1 kWの高量
−波電力で発生させる。初めにプラズマ処理すべき多結
晶シリコン4をサセプタ5上にのせて、多結晶シリコン
4の加熱を開始すると同時に真空容器1の排気を行なう
。1度10  Tart以下に排気した後、水素ガスを
〆 IT・11になるまで導入して、前記多結晶シリコン4
0温度が300℃に達するまで待期する。
To explain in detail the method of treating the body using the above-mentioned component tubes, the hydrogen plasma 3 is generated by a high-frequency coil 2 with a high-volume wave power of 1 kW output. First, polycrystalline silicon 4 to be plasma-treated is placed on susceptor 5, and heating of polycrystalline silicon 4 is started, and at the same time, vacuum container 1 is evacuated. After evacuation to 10 Tart or less, hydrogen gas was introduced until the temperature reached 11, and the polycrystalline silicon 4
Wait until the zero temperature reaches 300°C.

300℃に達して温度が安定してから、水素ゾラズマ3
を発生させると同時に、多結晶シリコン4と単結晶シリ
コン6の間に電圧100Vを印加しながら、1時間の水
素プラズマ処理を行なりた。
After reaching 300℃ and stabilizing the temperature, hydrogen Zolazma 3
At the same time as generating hydrogen, hydrogen plasma treatment was performed for one hour while applying a voltage of 100 V between polycrystalline silicon 4 and single crystal silicon 6.

本実施例によれば、水素グラベマ処理中に陰極である単
結晶シリコン6からの電子放出によりて水素シラtマの
密度が増大し、この結果、・効果的に多結晶シリコン4
0粒界の未結合手や不純物等の水素化が増大する。この
ために結晶欠陥や不純物の集積による局在単位が大幅に
減少し、多結晶シリコン4のキャリヤのライフタイムが
向上するなど特性を大きく改善することができた。
According to this embodiment, the density of the hydrogen silica increases due to electron emission from the monocrystalline silicon 6 serving as the cathode during the hydrogen grabema treatment, and as a result, the density of the hydrogen silica 4 is effectively increased.
Hydrogenation of dangling bonds and impurities at zero grain boundaries increases. As a result, localized units due to crystal defects and impurity accumulation are significantly reduced, and characteristics such as the lifetime of carriers in polycrystalline silicon 4 are increased, and other characteristics can be greatly improved.

不発明の方法によシ、水素プラズマ処理を施こした多結
晶シリコンを用いて太陽電池を製作した例を次に説明す
る。基板はキャスティング法によシ得られたP@多結晶
シリコン(B−dope 。
Next, an example in which a solar cell was manufactured using polycrystalline silicon subjected to hydrogen plasma treatment using an uninvented method will be described. The substrate is P@polycrystalline silicon (B-dope) obtained by a casting method.

2.30−国)であ如、とれにP2O膜をCVD法によ
り形成させたのち、Pを拡散させてP−−接合を形成さ
せた。その後に、上記実施例と同様の水素プラズマ処理
を施ヒした。得られた太陽電池の光起電力特性を一定し
第2図にI−V特性を示した。これはソーラシミ、レー
タを用いたAM 1 (1,OOmW/as” )下で
の%性である。カーブ1は水素プラズマ処理を全く施こ
していない場合の特性で、変換効率は7.8−でありた
2.30-Country), a P2O film was formed by the CVD method, and then P was diffused to form a P--junction. Thereafter, the same hydrogen plasma treatment as in the above example was performed. The photovoltaic force characteristics of the obtained solar cell were kept constant, and the IV characteristics are shown in FIG. This is the % characteristic under AM 1 (1,00mW/as”) using a solar stain and a rotor.Curve 1 is the characteristic when no hydrogen plasma treatment is performed, and the conversion efficiency is 7.8- It was.

カーブbは従来よ〕知られている水素プラズマ処理(3
00℃)を1時間施こした場合の特性で変換効率は8.
6%と向上している。カーブCは本実施例によるもので
、水素プラズマ処理中(300℃)K/4イアス電圧を
100V印加した場合の特性であ)、その効果は大きく
変換効率が10.21という値を示した。さらKまた、
電極(例えばkl電極)を形成した後に、同様のプラズ
マ処理な施こすこと罠よ)、特性の向上を計ることが可
能であり、変換効率10.2チが10、フ嘔とさらに向
上した。これらの結果から、本発明によるバイアス電圧
を印加させながらの、水素プラズマ処理による効果は明
白である。
Curve b shows the conventionally known hydrogen plasma treatment (3
00℃) for 1 hour, the conversion efficiency is 8.
This has improved to 6%. Curve C is based on this example, and is the characteristic when a K/4 Iass voltage of 100 V was applied during hydrogen plasma treatment (300° C.), and the effect was large and the conversion efficiency showed a value of 10.21. Sara K also,
By performing similar plasma treatment after forming the electrode (for example, the KL electrode), it was possible to improve the characteristics, and the conversion efficiency was further improved from 10.2 to 10. From these results, the effect of hydrogen plasma treatment while applying a bias voltage according to the present invention is clear.

なお、不発明は上記した各実施例に限定されるものでは
ない。例えば、陽極と陰極の間に印加するバイアス電圧
は20〜100vの範囲で必要に応じて選択できる。ま
た多結晶シリコンの熱処理温度も350℃以下の範囲で
選択すれはよい。プラズマガスに磁場を印加させること
も有効でアシ、さらに長寿命のラジカルを利用すること
によシ、放電室と基板とを分離したゾラズマ流輸送法を
用いた装置でも本発明を適用できる。その他、本発明の
要旨を逸脱しない範囲で、種々変形形して実施すること
ができる。
Note that the invention is not limited to each of the above-described embodiments. For example, the bias voltage applied between the anode and the cathode can be selected from a range of 20 to 100 V as necessary. Further, the heat treatment temperature for polycrystalline silicon may also be selected within a range of 350° C. or less. It is also effective to apply a magnetic field to the plasma gas, and by using long-lived radicals, the present invention can also be applied to an apparatus using the Zolazma flow transport method in which the discharge chamber and the substrate are separated. In addition, various modifications can be made without departing from the gist of the present invention.

以上詳述したように本発明によれば、多結晶シリコンの
粒界に高密度に存在する結晶欠陥や不純物の業種による
高密度の局在単位を容易に且つ大幅に減少させることが
でき、多結晶シリコンの特性を大きく改善することがで
きる。
As described in detail above, according to the present invention, it is possible to easily and significantly reduce the crystal defects and impurity industries that are present in a high density at the grain boundaries of polycrystalline silicon, and to reduce the high density localized units caused by the industry. The properties of crystalline silicon can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は不発明の一実施例の装置を示す断面模式図、第
2図は本発明の方法を実施した多結晶シリ′コン太陽電
池の光起電力特性を従来例と比較して示す図である。 1・・・真空容器、2・・・高濁波コイル、3・・・水
素プラズマ、4・・・多結晶シリコン(陽極)、5・・
・サセプタ、6・・・単結晶シリコン(陰極)、717
m・・・石英管、8t  t 8B =Pt線、9・・
・1ktiL電源。 出願人代理人  弁理士 鈴 江 武 彦第1図 2 211 0   0.2   0.4   0.6   0,8
Voc  (V)
FIG. 1 is a schematic cross-sectional view showing a device according to an embodiment of the present invention, and FIG. 2 is a diagram showing the photovoltaic characteristics of a polycrystalline silicon solar cell in which the method of the present invention is implemented in comparison with a conventional example. It is. 1... Vacuum vessel, 2... High turbidity wave coil, 3... Hydrogen plasma, 4... Polycrystalline silicon (anode), 5...
・Susceptor, 6... Single crystal silicon (cathode), 717
m...Quartz tube, 8t t 8B = Pt wire, 9...
・1ktiL power supply. Applicant's agent Patent attorney Takehiko Suzue Figure 1 2 211 0 0.2 0.4 0.6 0,8
Voc (V)

Claims (1)

【特許請求の範囲】 (1)多結晶シリコンを水素プラズマ処理してその特性
を改善する方法において、前記水素プラズマガス中にシ
リコンからなる陰極を配置し、この陰極からの電子放出
によシプラズマ密度を高めるようKしたことを特徴とす
る多結晶シリコンの特性改善方法。 12)処理すべき多結晶シリコンを陽極として、陰極と
の間に20〜toovのバイアス電圧を印加するように
した特許請求の範鱈第1項記載の多結晶シリコンの特性
改善方法。 (3)水素デラでマ処理中に同時に多結晶シリコンを@
’f01!c以下・礁度で熱処−理すゐようにした輸許
請求の範囲第1項記載の多結晶シリコンの特性改善方法
[Scope of Claims] (1) In a method for improving the properties of polycrystalline silicon by treating it with hydrogen plasma, a cathode made of silicon is disposed in the hydrogen plasma gas, and electron emission from the cathode causes a plasma density to increase. 1. A method for improving the properties of polycrystalline silicon, characterized in that K is adjusted to increase . 12) A method for improving the characteristics of polycrystalline silicon as set forth in claim 1, wherein a bias voltage of 20 to 0.0V is applied between the polycrystalline silicon to be treated as an anode and a cathode. (3) At the same time, polycrystalline silicon is removed during machining with hydrogen
'f01! A method for improving the properties of polycrystalline silicon according to claim 1, wherein the polycrystalline silicon is heat-treated at a temperature of less than c.
JP56162964A 1981-10-13 1981-10-13 Characteristic improving method for polycrystalline silicon Pending JPS5864035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56162964A JPS5864035A (en) 1981-10-13 1981-10-13 Characteristic improving method for polycrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56162964A JPS5864035A (en) 1981-10-13 1981-10-13 Characteristic improving method for polycrystalline silicon

Publications (1)

Publication Number Publication Date
JPS5864035A true JPS5864035A (en) 1983-04-16

Family

ID=15764621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56162964A Pending JPS5864035A (en) 1981-10-13 1981-10-13 Characteristic improving method for polycrystalline silicon

Country Status (1)

Country Link
JP (1) JPS5864035A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017000162T5 (en) 2016-10-25 2018-07-05 Mitsubishi Heavy Industries Machine Tool Co., Ltd. peeling wheel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017000162T5 (en) 2016-10-25 2018-07-05 Mitsubishi Heavy Industries Machine Tool Co., Ltd. peeling wheel

Similar Documents

Publication Publication Date Title
US4298629A (en) Method for forming a nitride insulating film on a silicon semiconductor substrate surface by direct nitridation
US5133986A (en) Plasma enhanced chemical vapor processing system using hollow cathode effect
US5397737A (en) Deposition of device quality low H content, amorphous silicon films
TW492076B (en) Method and device for producing solar cells
JP2010056242A (en) Antireflective film forming method, and antireflective film forming apparatus
JP4936297B2 (en) Plasma processing apparatus, plasma processing method, and semiconductor device
JPS5864035A (en) Characteristic improving method for polycrystalline silicon
JP3936391B2 (en) Substrate temperature controlled plasma deposition method
JP5488051B2 (en) Plasma CVD apparatus and silicon thin film manufacturing method
US4835006A (en) Process for the passivation of crystal defects
JP3486590B2 (en) Deposition film forming equipment
JP2009117569A (en) Reflection preventive film forming method, and reflection preventive film forming device
JPH08506215A (en) Microwave excitation method for manufacturing high quality semiconductor materials
JP2009272428A (en) Antireflective film coating method and antireflective film coating apparatus
JP2006128391A (en) Crystalline silicon substrate treatment method and photoelectric conversion element
JPH0645254A (en) Method and apparatus for manufacturing amorphous silicon film
JP3486292B2 (en) Cleaning method of metal mesh heater
JPH07300395A (en) Method for reducing amount of hydrogen adsorbed to diamond surface
JP2016197651A (en) Thin film and forming method of the same
JP2009164518A (en) Antireflection film forming method, antireflection film forming apparatus, and solar cell
JP2001274157A (en) Semiconductor element manufacturing method and apparatus
JP3059297B2 (en) Method for forming amorphous silicon-based semiconductor thin film
JP3991446B2 (en) Thin film forming equipment
JP3584896B2 (en) Method for forming crystalline silicon film and apparatus for forming crystalline silicon film
JPH07273041A (en) Formation of semiconductor thin film