JPS586391A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS586391A
JPS586391A JP10259481A JP10259481A JPS586391A JP S586391 A JPS586391 A JP S586391A JP 10259481 A JP10259481 A JP 10259481A JP 10259481 A JP10259481 A JP 10259481A JP S586391 A JPS586391 A JP S586391A
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
heat
heat transfer
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10259481A
Other languages
Japanese (ja)
Inventor
Kuniyoshi Tsubouchi
邦良 坪内
Norio Yasugadaira
安ケ平 紀雄
Takeshi Sato
武 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10259481A priority Critical patent/JPS586391A/en
Publication of JPS586391A publication Critical patent/JPS586391A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/006Tubular elements; Assemblies of tubular elements with variable shape, e.g. with modified tube ends, with different geometrical features

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To prevent occurrence of an unstable flowing phenomenon within the interior of a heat transfer tube by providing a finned part and a bare tube in the tube length direction and the tube row direction of the heat transfer tube to make uniform the heat load distribution of the heat transfer tube. CONSTITUTION:A tube next is constituted by use of a U-shaped heat transfer tube 26 which is formed by fitting fins 7 to the upper side of the U-shaped tube, and the lower side of said U-shaped tube is formed into a bare tube 27. Accordingly, the heat load of the bare tube section becomes at least less than 1/2 that of the finned part, and the heat load at the inlet side of the tube row decreases. Since the heat load distribution within the tube nest is made uniform, the unstable flowing phenomenon of the condensate flow is prevented.

Description

【発明の詳細な説明】 本発明は、熱交換器に係り、特に加熱側及び被加熱側流
体としてガスあるいは蒸気を使用するに好適々多管式熱
交換器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat exchanger, and particularly to a shell-and-tube heat exchanger suitable for using gas or steam as the heating side and heated side fluids.

最近、各種プラント等において省エネルギの観点から排
熱回収用熱交換器、丙午器、1丁熱器等の熱交換器の利
用が盛んになりつつある。これらの熱交換器では、起動
時の熱衝撃や伝熱管の長手方向の温度分布の不均一等に
よって伝熱管が動いたり、変形したりする。4t+、:
に、管内で蒸気の相変化を利用する熱交換器では、二相
流が形成されるため流動状態が複雑となり、著しい場合
は不安流動現象を発生し、伝熱管の振動や変形、さらに
は熱交換器の性能劣化等の原因と々っている。
BACKGROUND ART Recently, heat exchangers such as heat exchangers for waste heat recovery, heat exchangers for heat exchangers, heat exchangers for heat exchangers, and heat exchangers for heat exchangers such as one-piece heat exchangers have been increasingly used in various plants and the like from the viewpoint of energy conservation. In these heat exchangers, the heat exchanger tubes move or deform due to thermal shock during startup or uneven temperature distribution in the longitudinal direction of the heat exchanger tubes. 4t+:
In addition, in heat exchangers that utilize the phase change of steam in the tubes, a two-phase flow is formed, which complicates the flow state and, in severe cases, causes unstable flow phenomena, causing vibrations and deformation of the heat transfer tubes, and even heat loss. This is believed to be the cause of deterioration in the performance of the exchanger.

ここで、このような熱交換器の欠点の発生原因について
、図を用いて具体的に説明する。
Here, the causes of such defects in the heat exchanger will be specifically explained using figures.

第1図は、本発明の対象となる熱交換器の一例として、
直交流型の多管式熱交換器の構成を模式的に説明したも
のである。すなわち、シェル1の内部に複数本のU字型
伝熱管2を内蔵するとともに、これら伝熱管2の13b
口端を管板3に取付け、さらに管板3をはさんで伝熱管
2に対向し、伝熱管2に流体を供給する仕切室6,8を
構成する鏡板4などから構成される熱交換器の例を示し
ている。鏡板3の内部には、伝熱管2に熱交換を行う前
の流体を供給する仕切り室6と熱交換後の流体を集合さ
せる仕切室8を構成する仕切板9が設けられ、一方シエ
ル1の内部には伝熱管2の保持と内部空間の仕切を目的
とした支持板15や、シェル1i11流体を案内する案
内板13及びじゃま板14などが設けられている。この
よう々型式の熱交換器において、加熱側流体として蒸気
を用い、その潜熱を放出することによって被加熱流体に
熱エネルギを伝達する場合、管内側を加熱流体、管外側
を被加熱流体とするのが一般的である。すなわち、加熱
側流体16は、鏡板4に設けられた入口管5から仕切室
6に入り、伝熱管2の内部を通過するに従い潜熱を放出
する。凝縮した加熱側流体17は、仕切室8に集められ
、鏡板4に設置された出口管10から系外へ排出される
。一方、被加熱側流体18は、シェル1の外殻に取付け
られた入口管11からシェル1の内部空間に入り、案内
板13によって流量分配され、伝熱管2の外側を通過す
ることによって受熱し、出口管14から排出される。特
に、この被加熱側流体18が、ガスあるいは蒸気など気
体の場合、伝熱管2の外側にフィン7が設けられること
が多い。これは、一般に気体が接触する管壁では熱伝達
率が小さくなるので、表面積を拡大することによって伝
熱量を増加させるためである。
FIG. 1 shows an example of a heat exchanger to which the present invention applies.
This is a schematic explanation of the configuration of a cross-flow type multi-tubular heat exchanger. That is, a plurality of U-shaped heat exchanger tubes 2 are built inside the shell 1, and 13b of these heat exchanger tubes 2
A heat exchanger consisting of an end plate 4 whose mouth end is attached to a tube plate 3, which faces the heat exchanger tube 2 with the tube plate 3 in between, and constitutes partition chambers 6 and 8 that supply fluid to the heat exchanger tube 2. An example is shown. Inside the end plate 3, a partition plate 9 is provided, which constitutes a partition chamber 6 for supplying fluid before heat exchange to the heat transfer tube 2 and a partition chamber 8 for collecting fluid after heat exchange. Inside, a support plate 15 for holding the heat transfer tube 2 and partitioning the internal space, a guide plate 13 and a baffle plate 14 for guiding the fluid of the shell 1i11, etc. are provided. In these types of heat exchangers, when steam is used as the heating fluid and heat energy is transferred to the heated fluid by releasing its latent heat, the inside of the tube is the heating fluid, and the outside of the tube is the fluid to be heated. is common. That is, the heating fluid 16 enters the partition chamber 6 from the inlet pipe 5 provided on the end plate 4, and releases latent heat as it passes through the inside of the heat transfer tube 2. The condensed heating fluid 17 is collected in the partition chamber 8 and discharged from the system through an outlet pipe 10 installed on the end plate 4. On the other hand, the heated fluid 18 enters the internal space of the shell 1 from the inlet pipe 11 attached to the outer shell of the shell 1, is distributed in flow rate by the guide plate 13, and receives heat by passing through the outside of the heat transfer tube 2. , is discharged from the outlet pipe 14. In particular, when the heated fluid 18 is a gas such as gas or steam, the fins 7 are often provided on the outside of the heat exchanger tube 2 . This is because the heat transfer coefficient is generally low in the tube wall that comes into contact with gas, so the amount of heat transfer is increased by expanding the surface area.

さて、このような構成の熱交換器において被加熱側流体
18の温度上昇ΔTを ΔT=(T−TIn)/(1PouL−TIn)ただし
、T :流体温度 TI、、:入日温度 Tout :出口温度 とし、菅列数Nを縮管列数NTで無次元化し、管列方向
の被加熱側流体の温度上昇ΔTの特性を表わすと、第2
図の実線六のようになる。図から判明するように被加熱
側流体のY黒度」二昇ΔTは、縮管列数の半分のところ
、すなわち【1字型伝熱管2では下側の管で約2/3以
上を占めることになる。
Now, in the heat exchanger having such a configuration, the temperature rise ΔT of the fluid to be heated 18 is calculated as ΔT=(T-TIn)/(1PouL-TIn), where T: fluid temperature TI, ,: entrance temperature Tout: exit temperature, the number of pipe rows N is made dimensionless by the number of contracted pipe rows NT, and the characteristic of the temperature rise ΔT of the fluid on the heated side in the direction of the pipe rows is expressed as follows:
It will look like the solid line 6 in the figure. As can be seen from the figure, the Y blackness of the fluid to be heated, ΔT, is at half the number of condensed tube rows, that is, [in the 1-shaped heat exchanger tube 2, the lower tube occupies about 2/3 or more. It turns out.

この温度上昇ΔTは、 ΔT=Q/AK ただし、1(:熱貫流率 A:伝熱面積 Q:伝熱量 の関係から、伝熱面積A及び熱貫流率Kが管列ごとに変
化が小さければ、伝熱量Qに比例することになるので、
伝熱量のほとんどは管群の下側で行われることを意味し
ている。したがって、伝熱量が少なければ問題を生ずる
ことはないが、伝熱量が大きい熱交換器や、伝熱管一本
当りの熱負荷の太き力熱交換器(伝熱管の長いものに相
当)では、伝熱管内の温度分布や凝縮水の流量が第3図
に示すようになり、伝熱管の信頼性の劣化につながるこ
とがある。図では、それぞれ管長方向に対する加熱側流
体温度、管壁温度及び凝縮液量の割合を示しているが、
第2図の伝熱管2のうち、外側にある伝熱管25のよう
に熱負荷の大きなものは、第3図の実線Aで示すような
特性を呈する。すなわち、第3図(C)の実線Aに示す
ように、管長の出口端近傍において伝熱管内部に凝縮液
流が満杯となって流下するJ:うになる。したがって、
加熱側流体はその領域で顕熱がうばわれ、第3図(a)
に示すような過冷却現象を生じ、さらに管壁温度も第3
図(I))に示すように管長方向に温度勾配が大きくな
る。このため、U字型伝熱管25の上側と下側で管壁の
温度差が大きくなり、熱変形の一因となる。一方、第4
図には伝熱管25の内部の凝縮液17の流動状況を示し
ているが、加熱側流体16は伝熱管25の内部で潜熱を
放出し、凝縮液17となるが、入口部近傍ではこの凝縮
液17が管内の下部に層状流19となって存在し、次第
に波状流20、スラグ流21、プラグ流22、気泡流2
3とカる。このような流動状況では、特にスラグ流21
、プラグ流22の占める領域が太きいと、負荷変動等に
伴って不安定流動現象を生じやすく、伝熱性能の劣化や
伝熱管の損傷につながる恐れがある。このため、従来技
術では、これらの欠点、特に不安定流動現象を防止する
ため、加熱側流体16を必要以上に流し、仕切室8に連
通する放出口24から掃気用の加熱側流体16を取り出
すことも多い。この場合、掃気された加熱側流体16の
保有する熱エネルギは無駄に消費されることになり、場
合によってはプラント性能を劣化させることもある。
This temperature increase ΔT is calculated as ΔT=Q/AK However, from the relationship of 1 (: heat transfer coefficient A: heat transfer area Q: heat transfer amount, if the heat transfer area A and heat transfer coefficient K change small for each tube row, , is proportional to the amount of heat transfer Q, so
This means that most of the heat transfer takes place below the tube bank. Therefore, if the amount of heat transfer is small, there will be no problem, but in a heat exchanger with a large amount of heat transfer or a heat exchanger with a large heat load per heat transfer tube (equivalent to a long heat transfer tube), The temperature distribution within the heat exchanger tube and the flow rate of condensed water become as shown in FIG. 3, which may lead to deterioration of the reliability of the heat exchanger tube. The figure shows the ratio of heating side fluid temperature, pipe wall temperature, and condensed liquid amount to the pipe length direction, respectively.
Among the heat exchanger tubes 2 in FIG. 2, those with a large heat load, such as the heat exchanger tube 25 on the outside, exhibit characteristics as shown by the solid line A in FIG. 3. That is, as shown by the solid line A in FIG. 3(C), the condensate flow becomes full inside the heat transfer tube near the outlet end of the tube length and flows downward. therefore,
Sensible heat is absorbed in the heating side fluid in that area, and the temperature rises as shown in Fig. 3(a).
The supercooling phenomenon shown in Fig. 2 occurs, and the tube wall temperature also increases to the 3rd level.
As shown in Figure (I), the temperature gradient increases in the tube length direction. For this reason, the temperature difference between the upper and lower sides of the U-shaped heat exchanger tube 25 increases, which becomes a cause of thermal deformation. On the other hand, the fourth
The figure shows the flow state of the condensate 17 inside the heat exchanger tube 25. The heating side fluid 16 releases latent heat inside the heat exchanger tube 25 and becomes the condensate 17. The liquid 17 exists in the lower part of the pipe as a laminar flow 19, and gradually forms a wavy flow 20, a slug flow 21, a plug flow 22, and a bubble flow 2.
It's 3. In such flow conditions, especially the slag flow 21
If the region occupied by the plug flow 22 is large, unstable flow phenomena are likely to occur due to load fluctuations, etc., which may lead to deterioration of heat transfer performance and damage to the heat transfer tubes. Therefore, in the prior art, in order to prevent these drawbacks, particularly unstable flow phenomena, the heating fluid 16 is allowed to flow more than necessary and the heating fluid 16 for scavenging is taken out from the discharge port 24 communicating with the partition chamber 8. Often. In this case, the thermal energy possessed by the scavenged heating fluid 16 is wasted, and in some cases, the plant performance may be degraded.

本発明の目的は、伝熱管内で相変化を利用する熱交換器
において、加熱流体を過度に流すことなく伝熱管内部の
不安定流動現象を回避するとともに、加熱側流体の過冷
却に起因する伝熱管の不具合を防1にして伝熱管の信頼
性の向」−に寄与できる熱交換器を提供することにある
An object of the present invention is to avoid unstable flow phenomena inside the heat exchanger tubes without excessively flowing the heating fluid in a heat exchanger that utilizes phase change within the heat exchanger tubes, and to avoid unstable flow phenomena caused by supercooling of the heating side fluid. It is an object of the present invention to provide a heat exchanger that can contribute to improving the reliability of heat exchanger tubes by preventing defects in the heat exchanger tubes.

本発明の特徴は、熱交換器を構成する伝熱管として、管
長方向にフィン付部と裸管部を組合せ、管巣のなかで熱
負荷の大きい部分を裸管部とし、熱負荷の小さい部分に
フィン付部を適用するように構成することにより、管束
を構成する伝熱管の熱負荷分布を均一化するとともに、
加熱側流体の過冷却を防止するような熱交換器技術を提
供することにある。
A feature of the present invention is that, as a heat exchanger tube constituting a heat exchanger, a finned section and a bare tube section are combined in the tube length direction, the section with a large heat load in the tube nest is the bare tube section, and the section with a small heat load is used as the bare tube section. By applying a finned part to the tube bundle, the heat load distribution of the heat exchanger tubes that make up the tube bundle is made uniform, and
An object of the present invention is to provide a heat exchanger technology that prevents overcooling of a heating fluid.

以下、本発明の具体的内容について実施例である熱交換
器を図面を用いて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a heat exchanger as an embodiment of the present invention will be described in detail with reference to the drawings.

本発明の対象となる熱交換器の一実施例として、第1図
に示す構成のように管内を加熱側流体が通過1〜、相変
化による潜熱を放出することによって管外の被加熱′l
111I流体を加熱する直交流型の多管式熱交換器を例
にとる。本発明では、フィン付伝熱管20代りに、第5
図に示すような1字管の上側をフィン7を取付け、下側
を裸管27とした[1字型伝熱管26を用いて管束を構
成するところに大きな特徴を有する。ところで、一般に
壁面からの放熱量Qbは、壁面と流体の温度差ΔT11
、表面積A、 b及び熱伝達率αt2とすると次式で与
えられる。
As an embodiment of the heat exchanger to which the present invention is applied, as shown in FIG.
Let us take as an example a cross-flow type shell-and-tube heat exchanger that heats 111I fluid. In the present invention, instead of the finned heat exchanger tube 20, the fifth
As shown in the figure, a fin 7 is attached to the upper side of the single-shaped tube, and a bare tube 27 is attached to the lower side [The main feature is that the tube bundle is constructed using the single-shaped heat exchanger tube 26. By the way, in general, the amount of heat dissipated from the wall surface Qb is determined by the temperature difference ΔT11 between the wall surface and the fluid.
, surface area A, b and heat transfer coefficient αt2, it is given by the following equation.

Qb=αbA−bΔT ++ 一方、フィン伺の壁面の場合、その放熱量Q。Qb=αbA−bΔT ++ On the other hand, in the case of a wall with fins, its heat radiation amount Q.

は、フィン根元壁1mと流体の温度差Z T I %表
面積A、r及び熱伝達率αfとする゛と、Q、−αfA
fφΔT+。
is the temperature difference between the fin root wall 1 m and the fluid Z T I % surface area A, r and heat transfer coefficient αf, and Q, −αfA
fφΔT+.

ただし、φ:フィン効率 で与えられる。ここで、フィンを付1=jだ場合と付け
ない場合の温度差ΔIll 、、ΔT1.と熱伝達率α
f、αbが変わらないものと仮定すると、放熱量の比は Q、−φA、 r Ql・   A、 b となり、裸管に比較してフィン付管の放熱量が大きいこ
とが分かる。実際にはΔT+キΔTb)及びαfキα1
1であるので となる。通常、フィン付管の表面積Afは、裸管の表面
積A bに比べて数倍のオーダになるので、したがって
、第5図のような伝熱管では、裸管部の熱負荷は、少な
くともフィン付部の1/2以下となる。このような伝熱
管26を用いて、第1図の熱交換器の管束を構成すると
、被加熱側流体の温度上昇ΔTは、第2図の破線Bに示
す傾向になることが容易に分かり、管列入口側の熱負荷
を減少することが可能となる。したがって、伝熱管26
の内部の加熱側流体温度も第3図(a)に示す破線Bと
なり、過冷却を防止できるので管壁温度は第3図(1〕
)の破線となり、管長方向の温度勾配が少なくなる。管
長方向の管壁温度勾配が著しく大きくなければ、熱変形
などが防止できることにつながる。さらに、管巣内の熱
負荷分布も均一化されるので、管内に占める凝縮液流も
第3図(C)の破線Bに示す」:うな分配にするととも
容易となり、凝縮液流の不安定流動現象を防止すること
が可能と々る。
However, φ is given by fin efficiency. Here, the temperature difference ΔIll, , ΔT1. and heat transfer coefficient α
Assuming that f and αb do not change, the ratio of the amount of heat dissipated is Q, -φA, r Ql·A, b, which shows that the amount of heat dissipated from the finned tube is larger than that from the bare tube. In reality, ΔT+KΔTb) and αfKα1
1, so it becomes. Normally, the surface area Af of a finned tube is on the order of several times the surface area Ab of a bare tube. less than 1/2 of that amount. When the tube bundle of the heat exchanger shown in FIG. 1 is constructed using such heat transfer tubes 26, it can be easily seen that the temperature rise ΔT of the fluid to be heated tends to be as shown by the broken line B in FIG. It becomes possible to reduce the heat load on the inlet side of the tube array. Therefore, the heat exchanger tube 26
The heating side fluid temperature inside the tube also becomes the dashed line B shown in Figure 3 (a), and since supercooling can be prevented, the tube wall temperature is as shown in Figure 3 (1).
), and the temperature gradient in the tube length direction is reduced. If the tube wall temperature gradient in the tube length direction is not extremely large, thermal deformation etc. can be prevented. Furthermore, since the heat load distribution within the tube bundle is also made uniform, the condensate flow within the tube is also easily distributed as shown by the broken line B in Figure 3 (C), and the condensate flow becomes unstable. It is possible to prevent flow phenomena.

一方、第6図は多管式熱交換器の一般的な形式に本発明
を適用した場合の実施例を示している。
On the other hand, FIG. 6 shows an embodiment in which the present invention is applied to a general type of shell-and-tube heat exchanger.

第5図に示した実施例では、U字・型伝熱管26の上側
にフィン細部を、下側に裸管部を配して構成したが、第
6図に示すような管外側の被加熱流体18が入口管11
から出口管12までの間で、案内板13’、13″で流
れをジグザグに通過させる場合には、図に示すように被
加熱側流体18の上流側に裸管部を、下流側にフィン付
部を配した伝熱管28を用いて、管巣を構成しても、前
述の実施例と同様の効果を発揮させることが可能となる
In the embodiment shown in FIG. 5, the fin details are arranged on the upper side of the U-shaped heat exchanger tube 26 and the bare tube section is arranged on the lower side. Fluid 18 is inlet pipe 11
When the flow is made to pass in a zigzag manner using the guide plates 13' and 13'' from Even if a tube nest is constructed using the heat exchanger tubes 28 provided with attached portions, it is possible to achieve the same effects as in the above-mentioned embodiments.

さらに、第7図に示すように加熱側管巣が二段に構成し
た熱交換器においても、一段目の管束を裸管30とし、
二段目の管束をフィン細管29で構成しても同様の効果
を得ることは容易に考えられる。
Furthermore, even in a heat exchanger in which the heating side tube bundle is configured in two stages as shown in FIG. 7, the first stage tube bundle is made of bare tubes 30,
It is easy to imagine that the same effect can be obtained even if the second-stage tube bundle is composed of fin tubes 29.

以上、本発明の実施例について図面を用いて具体的に説
明したが、本発明により得られる効果を列記すると次の
ようになる。
The embodiments of the present invention have been specifically described above with reference to the drawings, and the effects obtained by the present invention are listed as follows.

熱交換器に内蔵される管巣と構成する伝熱管の管長方向
及び管列方向に適宜フィン付部と裸管を構成することに
よって、加熱流体を過度に流すこと無く伝熱管の熱負荷
分布が均一することができ、伝熱管内部の不安定流動現
象を回避することが可能となり、さらに加熱側流体の過
冷却に起因する伝熱管の熱応力や熱変形の不具合を防止
し、伝熱管及び熱交換器の信頼性向上に大きく寄与する
ことができる。
By appropriately configuring finned portions and bare tubes in the tube length direction and tube row direction of the heat transfer tubes that make up the tube nest built into the heat exchanger, the heat load distribution of the heat transfer tubes can be adjusted without excessively flowing the heating fluid. This makes it possible to avoid unstable flow phenomena inside the heat transfer tube, and also prevents problems such as thermal stress and thermal deformation of the heat transfer tube caused by supercooling of the heating fluid. This can greatly contribute to improving the reliability of the exchanger.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来技術による熱交換器の一例を示す断面図
、第2図は熱交換器の被加熱側流体の熱的特性図、第3
図は加熱側流体の熱的特性図、第4図は従来技術による
伝熱管内部の流動状況を示す説明図、第5図d、本発明
の一実施例である熱交換器を構成する伝熱管の断面図、
第6図及び第7図は本発明の他の実施例である熱交換器
伝熱管を示す断面図である。 1・・・熱交換器シェル、2,25,26,28゜29
.30・・・伝熱管、3・・・管板、4・・・鏡板、6
゜8・・・仕切室、7・・・フィン、9・・・仕切板、
27・・・裸管、15・・・支持板。 代理人 弁理士 高橋明夫
FIG. 1 is a sectional view showing an example of a heat exchanger according to the prior art, FIG. 2 is a thermal characteristic diagram of the fluid on the heated side of the heat exchanger, and FIG.
The figure is a thermal characteristic diagram of the heating side fluid, Figure 4 is an explanatory diagram showing the flow situation inside the heat exchanger tube according to the conventional technology, and Figure 5 d is the heat exchanger tube constituting the heat exchanger which is an embodiment of the present invention. A cross-sectional view of
FIGS. 6 and 7 are cross-sectional views showing heat exchanger tubes according to other embodiments of the present invention. 1... Heat exchanger shell, 2, 25, 26, 28° 29
.. 30... Heat exchanger tube, 3... Tube sheet, 4... End plate, 6
゜8... Partition room, 7... Fin, 9... Partition plate,
27... Bare tube, 15... Support plate. Agent Patent Attorney Akio Takahashi

Claims (1)

【特許請求の範囲】 ]、複数のU字形伝熱管から構成される管巣を内蔵する
7エルと、U字形伝熱管の開放端を取付ける看板と、管
仮に対して伝熱管と対向し、伝熱管と連通ずる仕切室を
設ける鏡板とからなる熱交換器において、該伝熱管の管
長方向にフィン付部と裸管部を設けたことを特徴とする
熱交換器。 2、特許請求の範囲第1項記載の熱交換器において、U
字型伝熱管の」二流側をフィン付部とし、下流側を裸管
部によって構成したことを特徴とする伝熱管を内蔵する
熱交換器。 3、特許請求の範囲第1項記載の熱交換器において、被
加熱側流体の上流側を裸管部とし、下流側をフィン付部
と構成したことを特徴とする伝熱管を内蔵する熱交換器
[Scope of Claims] ], a 7L housing a tube nest composed of a plurality of U-shaped heat exchanger tubes, a signboard for attaching the open end of the U-shaped heat exchanger tubes, and a signboard facing the heat exchanger tubes with respect to the tube temporary, 1. A heat exchanger comprising a head plate having a partition chamber communicating with a heat exchanger tube, characterized in that a finned portion and a bare tube portion are provided in the longitudinal direction of the heat exchanger tube. 2. In the heat exchanger according to claim 1, U
1. A heat exchanger incorporating a heat exchanger tube, characterized in that the second flow side of the shape-shaped heat exchanger tube is a finned part, and the downstream side is a bare tube part. 3. The heat exchanger according to claim 1, characterized in that the upstream side of the fluid to be heated is a bare tube section, and the downstream side is a finned section. vessel.
JP10259481A 1981-06-30 1981-06-30 Heat exchanger Pending JPS586391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10259481A JPS586391A (en) 1981-06-30 1981-06-30 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10259481A JPS586391A (en) 1981-06-30 1981-06-30 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS586391A true JPS586391A (en) 1983-01-13

Family

ID=14331554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10259481A Pending JPS586391A (en) 1981-06-30 1981-06-30 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS586391A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020695A1 (en) * 2005-08-18 2007-02-22 Kabushiki Kaisha Toshiba Moisture separation heater
US20090000775A1 (en) * 2007-06-27 2009-01-01 Al-Hadhrami Luai M Shell and tube heat exchanger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020695A1 (en) * 2005-08-18 2007-02-22 Kabushiki Kaisha Toshiba Moisture separation heater
KR100922120B1 (en) 2005-08-18 2009-10-16 가부시끼가이샤 도시바 Moisture separation heater
US7857895B2 (en) 2005-08-18 2010-12-28 Kabushiki Kaisha Toshiba Moisture separation heater
US20090000775A1 (en) * 2007-06-27 2009-01-01 Al-Hadhrami Luai M Shell and tube heat exchanger
US8365812B2 (en) * 2007-06-27 2013-02-05 King Fahd University Of Petroleum And Minerals Shell and tube heat exchanger

Similar Documents

Publication Publication Date Title
US5033539A (en) Heat exchanger apparatus
JPS59122803A (en) Reheater for steam turbine
ITMI951001A1 (en) HEAT EXCHANGER
JP2576292B2 (en) Condenser and power plant using the same
JPS5844198B2 (en) Shell-and-tube heat exchanger
Moisseytsev et al. Heat exchanger options for dry air cooling for the sco2 brayton cycle
US4298058A (en) Tube bundle heat exchanger
JPS586391A (en) Heat exchanger
US4313490A (en) Heat exchanger
Kraus Heat exchangers
US3802498A (en) Shell and tube heat exchanger with central conduit
JPS59112197A (en) Heat exchanger
Ackerman et al. Heat transfer and draft loss performance of extended surface tube banks
US3224502A (en) Finned envelope heat exchanger
Gentry RODbaffle Heat Exchanger Design & Applications
JP2006090687A (en) Shell and tube heat exchanger
JPS5938598A (en) Plate type heat exchanger
JPS61190286A (en) Heat exchanger
JP2677661B2 (en) Moisture separation heater
JPH0614771U (en) Horizontal tube condenser
JPS6011005A (en) Reheater for steam turbine
JPS6222992A (en) Multi-tubular heat exchanger
Shende et al. Comparision of Heat Exchangers for Indirect Evaporative Cooling
JPS61110881A (en) Heat exchanger
JPH0672749B2 (en) Heat exchanger