JPS5863837A - Optical fluid analyzer - Google Patents

Optical fluid analyzer

Info

Publication number
JPS5863837A
JPS5863837A JP57155300A JP15530082A JPS5863837A JP S5863837 A JPS5863837 A JP S5863837A JP 57155300 A JP57155300 A JP 57155300A JP 15530082 A JP15530082 A JP 15530082A JP S5863837 A JPS5863837 A JP S5863837A
Authority
JP
Japan
Prior art keywords
refractive index
light
diffraction grating
light source
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57155300A
Other languages
Japanese (ja)
Other versions
JPS633255B2 (en
Inventor
スチ−ブン・ウエ−ド・デツプ
グレン・タヴア−ニア・シンサボツクス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of JPS5863837A publication Critical patent/JPS5863837A/en
Publication of JPS633255B2 publication Critical patent/JPS633255B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/4133Refractometers, e.g. differential

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 発明の背景 本発明は流体試料の屈折率を測定するための光学的分析
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION BACKGROUND OF THE INVENTION The present invention relates to an optical analysis device for measuring the refractive index of a fluid sample.

液体又は気体の屈折率を測定するための種々の技術がこ
れまでに提案されている。その1つの技術はプリズムを
用い、臨界角を測定する必要がある。またMcGraw
−Hi11社1957年刊行のJenkins及びWh
 i t e著” Fundamentalsof  
0ptics ”第6版の257頁以下に、干渉縞の変
位の決定に基づいた屈折率測定技術が示されている。ま
た他の技術は屈折率の整合を必要とする。それらの技術
は普通測定を行なうために操作する人が手動的及び/又
は視覚的に介在する必要があり、従って低速で、扱いに
くく且つ低分解能である。
Various techniques have been proposed for measuring the refractive index of liquids or gases. One technique uses a prism and requires measuring a critical angle. Also McGraw
-Jenkins and Wh published by Hi11 in 1957
Author: Fundamentalsof
0ptics" 6th edition, pages 257 et seq., refractive index measurement techniques based on the determination of the displacement of interference fringes are presented. Other techniques also require matching of the refractive index. requires manual and/or visual intervention by the operator to perform the process, and is therefore slow, cumbersome, and has low resolution.

最も関連の深い先行技術は米国特許第3499712号
明細書であって、この文献は透明な試料保持器中に設け
られたセル(あるいは貯蔵器)中に導入された液体試料
の屈折率を測定するための装置を開示している。このセ
ルは、「液体が充填材料と接触するとき、少なくとも数
個の液体−同体界面を与える」透明材料の物体(例えば
球)が充填される。この装置は、セルが液体で満たされ
た時の光の正味の透過量(光の強度)な測定する。
The most relevant prior art is U.S. Pat. No. 3,499,712, which measures the refractive index of a liquid sample introduced into a cell (or reservoir) provided in a transparent sample holder. Discloses a device for. This cell is filled with objects (eg, spheres) of transparent material that "provide at least some liquid-solid interfaces when the liquid comes into contact with the filling material." This device measures the net amount of light transmitted (light intensity) when the cell is filled with liquid.

しかしながらその装置は、屈折率の変化に対して高い感
度を有し、所定の屈折率値からのずれに注目及び/又は
修正することを可能にする画期的な回折構造体を用いて
いない。
However, that device does not use innovative diffractive structures that are highly sensitive to changes in the refractive index and allow deviations from a predetermined refractive index value to be noted and/or corrected.

1970年6月刊行のI BM  ’l”echnic
all)isclosure  Bulletin、V
ow、15.p、121は、屈折率を測定すべき媒質中
に浸漬された回折格子を用℃・た回折屈折計を開示して
いる。この装置は、屈折率を計算するのに角度θ及びθ
′従ってX及びX′の測定を必要とし、また回折光及び
透過光の強度の差を感知及び利用していない。
IBM 'l”echnic published June 1970
all) isclosure Bulletin, V
ow, 15. 121 discloses a diffraction refractometer using a diffraction grating immersed in the medium whose refractive index is to be measured. This device uses angles θ and θ to calculate the refractive index.
'Therefore, it is necessary to measure X and X', and the difference in intensity between diffracted light and transmitted light is not sensed and utilized.

発明の要約 本発明は、液体であっても気体であっても流体(3) の屈折率を迅速に測定するための単純、効率的且つ非機
械的な装置に係る。この装置は本質的にはホログラフィ
ック屈折計であって、既知の屈折率を持つ周期的構造体
によって回折された光の回折効率の関数として流体試料
の屈折率を決定する。
SUMMARY OF THE INVENTION The present invention relates to a simple, efficient and non-mechanical device for rapidly measuring the refractive index of fluids (3), whether liquid or gas. This device is essentially a holographic refractometer that determines the refractive index of a fluid sample as a function of the diffraction efficiency of light diffracted by a periodic structure of known refractive index.

本発明によれば、既知の屈折率を有する透明部材であっ
てその第1及び第2の部分の間に未知の屈折率を持つ流
体試料を受は入れろためのセルを画定するものを用いた
光学的流体分析装置が与えられる。第1の部分は、セル
に面する内側の表面上に回折格子が形成されている。光
源は、回折格子との入射角がブラッグ条件を満足するよ
うに位置付けられる。第1の検出手段は回折格子によっ
て回折され試料を透過した、光源からの光の強度を感知
し、第2の検出手段は回折格子を透過した光の強度を感
知する。第1及び第2の検出手段が発生した信号に応答
する装置は、試料の屈折率に関する出力を与える。
According to the invention, a transparent member having a known index of refraction is used which defines between a first and second portion thereof a cell for receiving a fluid sample having an unknown index of refraction. An optical fluid analysis device is provided. The first part has a diffraction grating formed on its inner surface facing the cell. The light source is positioned such that the angle of incidence with the diffraction grating satisfies the Bragg condition. The first detection means senses the intensity of the light from the light source that has been diffracted by the diffraction grating and transmitted through the sample, and the second detection means senses the intensity of the light that has passed through the diffraction grating. A device responsive to the signals generated by the first and second detection means provides an output relating to the refractive index of the sample.

(4) 良好な実施例の説明 下記の良く知られた式は周期的な正弦波状の構造体の回
折効率ηを定める。
(4) Description of a Preferred Embodiment The following well-known equation defines the diffraction efficiency η of a periodic sinusoidal structure.

但し第1図に示すように、 λ −照明光の波長 θ。−構造体に関する光の入射角 d −正弦波状構造体の連続したノードの間の間隔、即
ち周期 △n−構造体のノードとアンチノードとの間の屈折率(
即ちnlとn2との間)の差 t −構造体の厚さ 第2図に示すように、本発明を実施した光学的流体分析
装置は、透明部材12の正弦波状の表面11の形に形成
された、順次のノ←・13間の間隔即ち周期d及び格子
の厚さtを有する透明回折格子10から構成される。部
材12及びそれに結合された他の透明部材13は既知の
屈折率n1を有する透明構造体の2つの部分を構成する
。部材12.16は回折格子10の正弦波状表面11に
よって部分的に画定されたセル14を形成する。また図
示していないが、決定すべき未知の屈折率n2を有する
液体又は気体の物質をセル14中に導入するための手段
も設けられている。
However, as shown in FIG. 1, λ - the wavelength θ of the illumination light. - the angle of incidence d of the light with respect to the structure - the spacing between successive nodes of the sinusoidal structure, i.e. the period Δn - the refractive index between the nodes and antinodes of the structure (
(i.e. between nl and n2) - the thickness of the structure As shown in FIG. The transparent diffraction grating 10 is composed of a transparent diffraction grating 10 having a sequential spacing or period d between 0 and 13 and a grating thickness t. The member 12 and the other transparent member 13 connected thereto constitute two parts of a transparent structure with a known index of refraction n1. The elements 12 , 16 form a cell 14 partially defined by the sinusoidal surface 11 of the diffraction grating 10 . Although not shown, means are also provided for introducing into the cell 14 a liquid or gaseous substance having an unknown refractive index n2 to be determined.

波長λ及び強度■の光は光源15、好ましくは通常のヘ
リウム・ネオン・レーザ又はアルゴン・レーザによって
4先られる。光源15からの光は次式のブラッグ条件を
満足するように入射角θ。
Light of wavelength λ and intensity ■ is directed by a light source 15, preferably a conventional helium-neon laser or an argon laser. The light from the light source 15 has an incident angle θ such that it satisfies the Bragg condition of the following equation.

で回折格子100表面11V入射する。11V is incident on the surface of the diffraction grating 100.

λ==2ndsinθo(2) 回折効率ηは次式で与えられる。λ==2ndsinθo(2) Diffraction efficiency η is given by the following equation.

但し■1は回折格子10によって回折された光の強度、
Ioは回折格子10を透過した光の強度である。
However, ■1 is the intensity of the light diffracted by the diffraction grating 10,
Io is the intensity of light transmitted through the diffraction grating 10.

0次及び1次の回折光の強度■。及び11を感知するた
めに、フォト・ダイオード等の1対の検出器16及び1
7を設けられる。これらの検出器は通常の弁別回路18
に信号を供給し、回路18はそれらの信号を組み合せて
電圧Vを与える。電圧■から△nは次式によって決定で
きる。
Intensity of 0th and 1st order diffracted light■. and 11, a pair of detectors 16 and 1, such as photodiodes,
7 can be provided. These detectors are equipped with a conventional discrimination circuit 18.
and circuit 18 combines the signals to provide a voltage V. The voltage ■ to Δn can be determined by the following equation.

但し1(は定数である。However, 1( is a constant.

説明のために、屈折率の変化△n = 0.02であり
、格子の厚さLが4μの構造体12.13が488nm
の波長λの光により20°の入射角ρ1゜で照明される
と仮定する。この条件の下で回折効率ηはり、 073
 (7,3%)に等しい。
For illustration, the structure 12.13 with a change in refractive index Δn = 0.02 and a grating thickness L of 4 μ is 488 nm
Assume that it is illuminated by light of wavelength λ at an incident angle ρ1° of 20°. Under this condition, the diffraction efficiency η is 073
(7,3%).

比較対照のため、もし屈折率整合技術を月見・た場合を
想定すると、屈折率差002の界面から反射される光の
効率ηは次式の通りであって約3桁小さい。
For comparison, if we assume that the refractive index matching technique is applied to the moon, the efficiency η of light reflected from the interface with the refractive index difference 002 is as follows, which is about three orders of magnitude smaller.

(7) 本発明の実施した装置は、セル14を充填又はセルを連
続的に流れる液体又は気体の屈折率の測定に用℃・るこ
とかできる。もし部材13の内壁19が回折格子10の
正弦波表面11に事実上接する程度にセル140寸法が
小さいならば、未知又は可変な屈折率を有する物質は毛
細管作用によって構造12.13中に導入される。セル
14の体積は、表面11の溝が充填されれば良いので非
常に小さくても良い。
(7) The apparatus according to the present invention can be used to measure the refractive index of a liquid or gas that fills the cell 14 or flows continuously through the cell. If the cell 140 dimensions are small enough that the inner wall 19 of the member 13 is virtually tangent to the sinusoidal surface 11 of the grating 10, a substance with an unknown or variable index of refraction can be introduced into the structure 12.13 by capillary action. Ru. The volume of the cell 14 may be very small as long as the grooves on the surface 11 are filled.

ここで述べた分析装置は、流体媒質の状態を表示するた
めに使用する事、又は流体を所定の条件に維持するため
にあるパラメータを調整するためのザーボ・システムと
共に用いる事もできる。例えばこの装置は電解質の電荷
の状態をモニタするために使用する事ができる。完全に
帯電した電解質と完全に放電した電解質との間の屈折率
の差は約△n = 0.02程度である。従って帯電状
態に整(8) 合した屈折率を有する透明構造体12.13を設ければ
回折は生じない力釈放電が起きれば光が回折され、帯電
状態を表わす電圧信号が得られる。
The analyzer described herein can also be used to indicate the condition of a fluid medium or with a servo system to adjust certain parameters to maintain a fluid at a predetermined condition. For example, the device can be used to monitor the state of charge of an electrolyte. The difference in refractive index between a fully charged electrolyte and a fully discharged electrolyte is of the order of approximately Δn = 0.02. Therefore, if transparent structures 12 and 13 having refractive indexes matched to the charged state are provided, no diffraction will occur.If force release occurs, light will be diffracted and a voltage signal representing the charged state will be obtained.

完全に放電した状態では、13%の光が1次回折光にな
る。
In a completely discharged state, 13% of the light becomes first-order diffracted light.

光源として通常のレーザ15を用(・れば非常に正確な
システムが得られる。しかしながら好ましければ、ブラ
ッグ条件を満足するように位置ずけられた発光ダイオー
ド(図示せず)でレーザ15を置き換えてもよい。とい
うのはコヒーレンスの欠除は単に像のぼけを生じるだけ
であって、効率の重大な損失を生じないからである。ま
た検出器16.17は、(部材12.130寸法が許せ
ば)図示したように部材16の外側表面上に取り付けて
も良い。しかしながらもし好ましければ、検出器16.
17は部材12.13から分離しても良い。回折格子1
0は、好ましくはフォトレジスト又は同様の材料の表面
レリーフとしてホログラフィ記録し、その後で適当な屈
折率の透明代用品にプレス又は複製する事によって製造
される。
A very accurate system can be obtained by using a conventional laser 15 as the light source. However, if preferred, the laser 15 can be replaced by a light emitting diode (not shown) positioned to satisfy the Bragg condition. Detectors 16, 17 may also be replaced since the lack of coherence will only result in image blurring and not significant loss of efficiency. (if the detectors 16.
17 may be separate from member 12.13. Diffraction grating 1
0 is preferably produced by holographic recording as a surface relief in photoresist or similar material, followed by pressing or duplication into a transparent substitute of appropriate refractive index.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光源からの光が回折格子によって透過及び回折
される様子を示す図、 第2図は本発明の実施例の光学的流体分析装置の図であ
る。 10・・・・回折格子、11・・・・正弦波状の表面、
12.16・・・・透明部材、14・・・・セル、15
・・・・光源、16.17・・・・検出器。 出 、1 人 インターナジョブフレ・ビジネス・マシ
ーンズ・コーオレーション代理人弁理士  岡  1)
 次  生(外1名)
FIG. 1 is a diagram showing how light from a light source is transmitted and diffracted by a diffraction grating, and FIG. 2 is a diagram of an optical fluid analysis device according to an embodiment of the present invention. 10... Diffraction grating, 11... Sinusoidal surface,
12.16...Transparent member, 14...Cell, 15
...Light source, 16.17...Detector. 1 person: Patent attorney Oka representing Internajobure Business Machines Corporation 1)
Next student (1 other person)

Claims (1)

【特許請求の範囲】 未知の屈折率を有する流体試料を受は入れるための領域
を画定し、該領域に面する内側表面上に回折格子の形成
された、既知の屈折率を有する透明部材と、 回折条件を満足するように上記回折格子に関する入射角
が位置付けられた光源と、 上記回折格子によって回折された、上記光源からの光の
強度を感知するだめの第1の検出装置と、上記回折格子
を透過した、上記光源からの光の強度を感知するための
第2の検出装置と、上記第1及び第2の検出装置の発生
した信号に応答して上記試料の屈折率に関係する出力を
与える装置とを含む 光学的流体分析装置。
What is claimed is: a transparent member having a known refractive index defining a region for receiving a fluid sample having an unknown refractive index and having a diffraction grating formed on an inner surface facing the region; , a light source whose incidence angle with respect to the diffraction grating is positioned so as to satisfy a diffraction condition; a first detection device for sensing the intensity of light from the light source diffracted by the diffraction grating; a second detection device for sensing the intensity of light from the light source transmitted through the grating; and an output related to the refractive index of the sample in response to signals generated by the first and second detection devices. and an optical fluid analysis device.
JP57155300A 1981-09-30 1982-09-08 Optical fluid analyzer Granted JPS5863837A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/307,269 US4436420A (en) 1981-09-30 1981-09-30 Optical fluid analyzing apparatus and method
US307269 1981-09-30

Publications (2)

Publication Number Publication Date
JPS5863837A true JPS5863837A (en) 1983-04-15
JPS633255B2 JPS633255B2 (en) 1988-01-22

Family

ID=23188978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57155300A Granted JPS5863837A (en) 1981-09-30 1982-09-08 Optical fluid analyzer

Country Status (4)

Country Link
US (1) US4436420A (en)
EP (1) EP0075653B1 (en)
JP (1) JPS5863837A (en)
DE (1) DE3273423D1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6440051U (en) * 1987-09-07 1989-03-09
WO2004097379A1 (en) * 2003-04-28 2004-11-11 Alps Electric Co. Ltd. Concentration measuring optical member and concentraton measuring unit equipped with this optical member and fuel cell
JP2005502065A (en) * 2001-09-13 2005-01-20 アクセラ バイオセンサーズ インコーポレーテッド Method and apparatus for calibration based on diffraction of light
JP2015500462A (en) * 2011-12-01 2015-01-05 バイオサーフィット、 ソシエダッド アノニマ Photometric measuring device and photometric measuring method
JP2019508685A (en) * 2016-01-26 2019-03-28 デンマーク テクニクス ユニヴェルスィテイト Cuvette and method for measuring refractive index with a spectrophotometer

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082629A (en) * 1989-12-29 1992-01-21 The Board Of The University Of Washington Thin-film spectroscopic sensor
US5167149A (en) * 1990-08-28 1992-12-01 Schlumberger Technology Corporation Apparatus and method for detecting the presence of gas in a borehole flow stream
US5201220A (en) * 1990-08-28 1993-04-13 Schlumberger Technology Corp. Apparatus and method for detecting the presence of gas in a borehole flow stream
JPH0462142U (en) * 1990-10-03 1992-05-28
US5422714A (en) * 1993-06-07 1995-06-06 Corning Incorporated Device for comparing the refractive indices of an optical immersion liquid and a reference glass
US5502560A (en) * 1994-07-22 1996-03-26 University Of Washington Analytical sensor using grating light reflection spectroscopy
SE506546C2 (en) * 1996-03-07 1998-01-12 Octagon Ab bubble detector
US7408632B2 (en) * 2004-02-20 2008-08-05 Transform Pharmaceuticals, Inc. Miscibility determination of a combination of liquids
ITAN20070019A1 (en) * 2007-04-18 2008-10-19 Riccardo Castagna SPECTROPHOTOMETRIC REFRACTOMETER
US20090097016A1 (en) * 2007-10-10 2009-04-16 Olympus Corporation Culture vessel and cellular thickness measurement method
US8305631B2 (en) * 2008-10-01 2012-11-06 Vistaprint Technologies Limited Image processing to reduce image printing time based on image dimension and print pass thresholds of print apparatus
WO2012023481A1 (en) 2010-08-19 2012-02-23 シチズンホールディングス株式会社 Refractive index measurement device and refractive index measurement method
JP6232378B2 (en) * 2011-08-16 2017-11-15 ウオーターズ・テクノロジーズ・コーポレイシヨン Differential refractive index detection flow cell
US20190310189A1 (en) * 2016-12-08 2019-10-10 Koninklijke Philips N.V. Apparatus and method for determining a refractive index
US10718661B2 (en) 2017-06-14 2020-07-21 Texas Instruments Incorporated Integrated microfabricated vapor cell sensor with transparent body having two intersecting signal paths
CN111226107B (en) * 2017-10-18 2023-03-28 马克斯-普朗克科学促进学会 Method and apparatus for comparing optical properties of two liquids
JP7436494B2 (en) * 2018-10-26 2024-02-21 コペンハーゲン・ナノシステムズ・アンパルツセルスケープ Method for evaluating optical properties of liquids

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6440051U (en) * 1987-09-07 1989-03-09
JP2005502065A (en) * 2001-09-13 2005-01-20 アクセラ バイオセンサーズ インコーポレーテッド Method and apparatus for calibration based on diffraction of light
WO2004097379A1 (en) * 2003-04-28 2004-11-11 Alps Electric Co. Ltd. Concentration measuring optical member and concentraton measuring unit equipped with this optical member and fuel cell
JP2004325364A (en) * 2003-04-28 2004-11-18 Alps Electric Co Ltd Optical member for measuring concentration, concentration measuring unit provided with the optical member, and fuel cell equipped with the concentration measuring unit
JP2015500462A (en) * 2011-12-01 2015-01-05 バイオサーフィット、 ソシエダッド アノニマ Photometric measuring device and photometric measuring method
JP2019508685A (en) * 2016-01-26 2019-03-28 デンマーク テクニクス ユニヴェルスィテイト Cuvette and method for measuring refractive index with a spectrophotometer

Also Published As

Publication number Publication date
EP0075653B1 (en) 1986-09-24
DE3273423D1 (en) 1986-10-30
US4436420A (en) 1984-03-13
EP0075653A1 (en) 1983-04-06
JPS633255B2 (en) 1988-01-22

Similar Documents

Publication Publication Date Title
JPS5863837A (en) Optical fluid analyzer
Creath Step height measurement using two-wavelength phase-shifting interferometry
Naydenova et al. A visual indication of environmental humidity using a color changing hologram recorded in a self-developing photopolymer
Brandenburg Differential refractometry by an integrated-optical Young interferometer
TWI297767B (en) Measuring apparatus and method using surface plasmon resonance
FR2355436A7 (en) OPTICAL MEASURING INSTRUMENT IMMERSION PROBE WITH TWO LIGHT BEAMS
US4167335A (en) Apparatus and method for linearizing a volume loading measurement utilizing particle scattering
Lucchetta et al. Optical measurement of flow rate in a microfluidic channel
Tamulevičius et al. Total internal reflection based sub-wavelength grating sensor for the determination of refractive index of liquids
ITAN20070019A1 (en) SPECTROPHOTOMETRIC REFRACTOMETER
US20060005615A1 (en) Method and apparatus for evanescent field measuring of particle-solid separation
US7024060B2 (en) Method and apparatus for continuous measurement of the refractive index of fluid
Hinsch Holographic interferometry of surface deformations of transparent fluids
Lu et al. Liquid refractometer based on immersion diffractometry
US5110208A (en) Measurement of average density and relative volumes in a dispersed two-phase fluid
SU741121A1 (en) Interference refractometer
JPS59178321A (en) Optical converter used as gravimeter
JPS607221B2 (en) Dispersion measurement method for glass materials
JP2932829B2 (en) Wavelength fluctuation measurement device
Hård et al. Laser heterodyne apparatus for roughness measurements of polished surfaces
RU2545169C1 (en) Storage battery electrolyte density controller
SU928204A1 (en) Optical component of disturbed total internal reflection
Popov et al. Measurement of surface dew by optical sensor
SU405059A1 (en) DIFFERENTIAL REFRACTOMETER
Tarjányi et al. Holographic optical element for monitoring the small change of an object's dimensions