JPS5863173A - Polycrystalline thin film transistor - Google Patents

Polycrystalline thin film transistor

Info

Publication number
JPS5863173A
JPS5863173A JP16237381A JP16237381A JPS5863173A JP S5863173 A JPS5863173 A JP S5863173A JP 16237381 A JP16237381 A JP 16237381A JP 16237381 A JP16237381 A JP 16237381A JP S5863173 A JPS5863173 A JP S5863173A
Authority
JP
Japan
Prior art keywords
polycrystalline
deposited
layer
substrate
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16237381A
Other languages
Japanese (ja)
Inventor
Takao Yonehara
隆夫 米原
Seishiro Yoshioka
吉岡 征四郎
Yoshio Sakuma
佐久間 純郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP16237381A priority Critical patent/JPS5863173A/en
Publication of JPS5863173A publication Critical patent/JPS5863173A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To obtain an MIS FET having a high carrier mobility by forming a polycrystalline semiconductor layer of columnar structure on non-crystalline or polycrystalline substrate and disposing electrodes to produce an electric field parallel to the axis of the columnar structure, thereby moving the carrier in a direction parallel to the axis of the column with good crystallinity and less defects. CONSTITUTION:5-layers are deposited in vacuum on an amorphous insulating substrate 15 made of like glass. Molybdenum is deposited as a source electrode 8, silicon is then deposited as a high density impurity-added semiconductor layer 9 in vacuum by an electron gun while evaporating N type impurity in a crucible, and only silicon is subsequently grown in polycrystal as no-addition semiconductor active layer 10. Again, an impurity addition is restarted, and a high density impurity-added semiconductor layer 11 is grown in the same method as the layer 9. Further, molybdenum is deposited in vacuum as the drain electrode 12 in the same manner as the source electrode 8. Then, as shown in Fig. b, it is etched by dry etching vertically to the substrate along the polycrystallie column, and an insulating layer such as nitrided silicon is formed by a plasma CVD as shown in Fig. c. A gate electrode 14 is eventually deposited as shown in Fig. d, thereby forming a polycrystalline MIS FET.

Description

【発明の詳細な説明】 本発明は多結晶半導体薄膜を用いた金属・絶縁物・半導
体電界効果トランジスタ(以下MIS FETと略す)
に関する。
[Detailed Description of the Invention] The present invention provides a metal/insulator/semiconductor field effect transistor (hereinafter abbreviated as MIS FET) using a polycrystalline semiconductor thin film.
Regarding.

従来MIS FETは81等の単結晶半導体基板を用い
、この基板中或いは表面に拡散、イオン注入等の方法に
よって不純物を注入して作製されていた。
Conventionally, MIS FETs have been manufactured by using a single crystal semiconductor substrate such as 81 and implanting impurities into the substrate or onto the surface thereof by methods such as diffusion and ion implantation.

その為ガラス等の基板を自由に選択することができず、
高価な単結晶半導体基板が必要であった。
Therefore, it is not possible to freely select substrates such as glass,
An expensive single crystal semiconductor substrate was required.

そこで非結晶或いは多結晶基板上に放電分解(Glov
 Discharge )或いは真空蒸着で作aされた
非晶質、多結晶半導体薄膜を用いた多結晶MIS FE
Tが知られている・この多結晶MIS FETの構造を
第1図に示す。図中1はソース電極、2はゲート電極、
6はドレイン電極、4は絶縁層、5は♂層、6は非晶質
或いは多結晶半導層、7は非結晶或いは多結晶基板であ
る。ここで第1図(a)はソース。
Therefore, discharge decomposition (Glov) is performed on an amorphous or polycrystalline substrate.
Discharge) or polycrystalline MIS FE using amorphous and polycrystalline semiconductor thin films made by vacuum evaporation.
The structure of this polycrystalline MIS FET is shown in Figure 1. In the figure, 1 is the source electrode, 2 is the gate electrode,
6 is a drain electrode, 4 is an insulating layer, 5 is a female layer, 6 is an amorphous or polycrystalline semiconductor layer, and 7 is an amorphous or polycrystalline substrate. Here, FIG. 1(a) is the source.

ドレイン、ゲート電極が薄膜表力に配置されたコクレー
ナー型を示し、 (b) t (a)はソース、ドレイ
ン電極は薄膜表面に、ゲートvL極は基板表面に配置さ
れた或いはその逆の構成を持つスタッガー型である。こ
れらの多結晶MIS Fli:Tは非結晶或いは多結晶
基板を用いて作成できるが、半導体中の多結晶粒界によ
る粒界散乱等の為単結晶M工S FETに比してキャリ
ア易動度が非常に低いという欠点がある。たとえば多結
晶シリコンを用いたものでキャリア易動度が1〜10 
(cJ/ V−eea ) 9度、非晶質シリコンを用
いたものでは約0.1 (cIa/V−sθC)のキャ
リア易動度でしか動作しない。
(b) t (a) shows a Cochraner type in which the drain and gate electrodes are placed on the thin film surface, and (a) shows a configuration in which the source and drain electrodes are placed on the thin film surface and the gate vL pole is placed on the substrate surface, or vice versa. It is a stagger type. These polycrystalline MIS Fli:T can be made using amorphous or polycrystalline substrates, but due to grain boundary scattering due to polycrystalline grain boundaries in the semiconductor, carrier mobility is lower than that of single-crystalline MIS FETs. The disadvantage is that it is very low. For example, those using polycrystalline silicon have carrier mobility of 1 to 10.
(cJ/V-eea) 9 degrees, and one using amorphous silicon operates only at a carrier mobility of about 0.1 (cIa/V-sθC).

本発明は非結晶或いは多結晶基板上に作製でき、高いキ
ャリア易動度を有するMIS Fli:Tの構造を提供
することを目的とする。
An object of the present invention is to provide a MIS Fli:T structure that can be fabricated on an amorphous or polycrystalline substrate and has high carrier mobility.

そこで本発明は非結晶もしくは多結晶基板上に柱状構造
の多結晶半導体層を形成し、その柱状構造の柱軸に平行
な電界が生ずるように電極を配置して、結晶性が良く、
欠陥が少ない柱軸に平行な方向にキャリアを移動させる
ことにより上記目的を達する多結晶MIS FETであ
る。
Therefore, in the present invention, a polycrystalline semiconductor layer with a columnar structure is formed on an amorphous or polycrystalline substrate, and electrodes are arranged so as to generate an electric field parallel to the columnar axis of the columnar structure.
This is a polycrystalline MIS FET that achieves the above objective by moving carriers in a direction parallel to the column axis with fewer defects.

以下本発明を図面を用いて説明する。第2図は多結晶基
板上に真空蒸着によって形成した多結晶シリコン薄膜の
断面の走査電子顕微鏡像の写真であり、倍率は第2図(
a)が3x10’倍、(b)が5X10’倍テアル。こ
のように柱径が数百オングストロームであり、基板表面
から1ミク胃ン程度の厚さまで一様な柱状構造で多結晶
半導体を成長させることができる。またここで結晶の<
110>  もしくは<100>方向は基板表面に垂直
である。本発明はこの柱状構造の柱軸に平行にキャリア
を移動させるものである。
The present invention will be explained below using the drawings. Figure 2 is a photograph of a scanning electron microscope image of a cross section of a polycrystalline silicon thin film formed by vacuum deposition on a polycrystalline substrate, and the magnification is as shown in Figure 2 (
a) is 3x10' times, (b) is 5x10' times. In this way, a polycrystalline semiconductor having a columnar diameter of several hundred angstroms and a uniform columnar structure can be grown from the substrate surface to a thickness of about 1 micrometer. Also here, the crystal <
The <110> or <100> direction is perpendicular to the substrate surface. The present invention moves the carrier parallel to the column axis of this columnar structure.

第3図は本発明の実施例をその作製過程に沿って示した
ものである。ここで8はソース電極、9111は高濃度
不純物添加層、10は半導体活性層、12はドレイン電
極、13は絶縁層、14はゲート電極、15は基板であ
る。第6図(,11が本発明の多結晶MIS FETで
ある。この多結晶MIS FETはキャリア易動度40
〜60 (crJ/V・sea )を示し、従来の多結
晶MIS FETに比べてより高速な動作をする。
FIG. 3 shows an embodiment of the present invention along its manufacturing process. Here, 8 is a source electrode, 9111 is a heavily doped layer, 10 is a semiconductor active layer, 12 is a drain electrode, 13 is an insulating layer, 14 is a gate electrode, and 15 is a substrate. Figure 6 (, 11 shows the polycrystalline MIS FET of the present invention. This polycrystalline MIS FET has a carrier mobility of 40
~60 (crJ/V·sea), and operates faster than conventional polycrystalline MIS FETs.

第6図において具体的な製造法の例を示すと、第6図(
a)の様に、ガラスの様な非晶質絶縁基板15上に5層
真空蒸着する。まずソース電極8としてモリブデンを0
.3之りロン蒸着し、次に基板温度を基板軟化温度以下
に保ち、高濃度不純物添加半導体層9として、ソース′
#L極8と半導体活性層10とのオーミック性接触を得
る為に、N型不純物(燐、ヒ素、アンチモン)をルッ〆
で蒸発させながらシリコンを電子銃で真空蒸着し、20
0オングストロームの厚さにi結晶成賞させる。引き続
き無添加半導体活性層10として、不純物添加を中断し
てシリコンのみを1.0ミタ四ンの厚さに多結晶成長さ
せる。再び不純物添加を再開し、高濃度不純物添加半導
体層11を半導体層9と同様な方法で、200オングス
トロームの厚さに成長させる。
Fig. 6 shows an example of a specific manufacturing method.
As shown in a), five layers are vacuum-deposited on an amorphous insulating substrate 15 such as glass. First, molybdenum was used as the source electrode 8.
.. 3. Next, the substrate temperature is kept below the substrate softening temperature, and the source '
#In order to obtain ohmic contact between the L pole 8 and the semiconductor active layer 10, silicon was vacuum-deposited using an electron gun while N-type impurities (phosphorus, arsenic, and antimony) were evaporated using a phosphor.
The i-crystal is grown to a thickness of 0 angstroms. Subsequently, as an additive-free semiconductor active layer 10, the addition of impurities is interrupted and only silicon is grown as a polycrystal to a thickness of 1.0 m4. The impurity addition is restarted again, and the highly doped semiconductor layer 11 is grown to a thickness of 200 angstroms in the same manner as the semiconductor layer 9.

更にソース電極8と同様にドレイン電極12として、モ
リブデンを0.2ミクロン真空蓋着する。上記5Mの金
属、半導体層を第3図(b)に示す様に、(C)に示す
様に窒化シリコン等の絶縁層を形成する。
Furthermore, similarly to the source electrode 8, a molybdenum film of 0.2 micrometers is vacuum-covered as a drain electrode 12. As shown in FIG. 3(b), an insulating layer of silicon nitride or the like is formed on the 5M metal and semiconductor layer as shown in FIG. 3(c).

最後に第6図(d)に示すゲート電極14を0.2 t
クロン蒸着し多結晶MIS FETを形成する。
Finally, the gate electrode 14 shown in FIG. 6(d) is
A polycrystalline MIS FET is formed by carbon evaporation.

以上説明したように本発明は安価に製造でき、かつ高速
な動作をするMIS FETである。
As explained above, the present invention is a MIS FET that can be manufactured at low cost and operates at high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)(b) (Q)は従来の多結晶MIS F
ETの構造を示す断面図、第2図(a) fl))は本
発明の半導体層断面の走査電子顕微鏡写真図、第3図(
a) (b) (cl (d)は本発明の実施例をその
作製過程に沿って説明した断面図。 図中、1.8はソース電極、2,14はゲート電極、3
,12はドレイン電極、4.13は絶縁層、5は1層、
6は非結晶或いは多結晶半導体層、7.15は非結晶或
いは多結晶基板、9.11i高濃度不純物添加層、10
は多結晶半導体活性層。 出願人 キャノン株式会社 (b) tμm αつ
Figure 1 (a), (b) (Q) shows conventional polycrystalline MIS F
A cross-sectional view showing the structure of ET, FIG.
a) (b) (cl) (d) is a cross-sectional view explaining an example of the present invention along the manufacturing process. In the figure, 1.8 is a source electrode, 2 and 14 are gate electrodes, and 3
, 12 is a drain electrode, 4.13 is an insulating layer, 5 is one layer,
6 is an amorphous or polycrystalline semiconductor layer, 7.15 is an amorphous or polycrystalline substrate, 9.11i is a high concentration impurity doped layer, 10
is a polycrystalline semiconductor active layer. Applicant: Canon Corporation (b) tμm α

Claims (1)

【特許請求の範囲】[Claims] 非結晶もしくは多結晶基板上に柱状構造の多結晶半導体
層を形成し、該柱状構造の柱軸に平行な電界を生じさせ
、電流担体を柱軸に平行に移動させることを特徴とする
金属拳絶縁物・半導体電界効果トランジスタ。
A metal fist characterized by forming a polycrystalline semiconductor layer with a columnar structure on an amorphous or polycrystalline substrate, generating an electric field parallel to the columnar axis of the columnar structure, and moving a current carrier parallel to the columnar axis. Insulator/semiconductor field effect transistor.
JP16237381A 1981-10-12 1981-10-12 Polycrystalline thin film transistor Pending JPS5863173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16237381A JPS5863173A (en) 1981-10-12 1981-10-12 Polycrystalline thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16237381A JPS5863173A (en) 1981-10-12 1981-10-12 Polycrystalline thin film transistor

Publications (1)

Publication Number Publication Date
JPS5863173A true JPS5863173A (en) 1983-04-14

Family

ID=15753335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16237381A Pending JPS5863173A (en) 1981-10-12 1981-10-12 Polycrystalline thin film transistor

Country Status (1)

Country Link
JP (1) JPS5863173A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874080A (en) * 1981-10-29 1983-05-04 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPS5874067A (en) * 1981-10-29 1983-05-04 Semiconductor Energy Lab Co Ltd Semiconductor device
JPS6012769A (en) * 1983-07-01 1985-01-23 Seiko Instr & Electronics Ltd Thin film transistor
JPS60164361A (en) * 1984-02-06 1985-08-27 Semiconductor Energy Lab Co Ltd Manufacture of insulated gate type semiconductor device
JPH01283879A (en) * 1988-05-11 1989-11-15 Nippon Telegr & Teleph Corp <Ntt> Thin film semiconductor device and manufacture thereof
US4924279A (en) * 1983-05-12 1990-05-08 Seiko Instruments Inc. Thin film transistor
US4949141A (en) * 1988-02-04 1990-08-14 Amoco Corporation Vertical gate thin film transistors in liquid crystal array
US5115289A (en) * 1988-11-21 1992-05-19 Hitachi, Ltd. Semiconductor device and semiconductor memory device
KR20020056348A (en) * 2000-12-29 2002-07-10 박종섭 Method of manufacturing a thin film transistor
JP2004128182A (en) * 2002-10-02 2004-04-22 Renesas Technology Corp Semiconductor integrated circuit device and its manufacturing method
US7932142B2 (en) 2007-11-14 2011-04-26 Elpida Memory, Inc. Transistor in a wiring interlayer insulating film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567481A (en) * 1979-06-29 1981-01-26 Ibm Field effect type transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567481A (en) * 1979-06-29 1981-01-26 Ibm Field effect type transistor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2564502B2 (en) * 1981-10-29 1996-12-18 株式会社半導体エネルギー研究所 Semiconductor device
JPS5874067A (en) * 1981-10-29 1983-05-04 Semiconductor Energy Lab Co Ltd Semiconductor device
JPS5874080A (en) * 1981-10-29 1983-05-04 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JP2564501B2 (en) * 1981-10-29 1996-12-18 株式会社半導体エネルギー研究所 Semiconductor device
US4924279A (en) * 1983-05-12 1990-05-08 Seiko Instruments Inc. Thin film transistor
JPS6012769A (en) * 1983-07-01 1985-01-23 Seiko Instr & Electronics Ltd Thin film transistor
JPS60164361A (en) * 1984-02-06 1985-08-27 Semiconductor Energy Lab Co Ltd Manufacture of insulated gate type semiconductor device
US4949141A (en) * 1988-02-04 1990-08-14 Amoco Corporation Vertical gate thin film transistors in liquid crystal array
JPH01283879A (en) * 1988-05-11 1989-11-15 Nippon Telegr & Teleph Corp <Ntt> Thin film semiconductor device and manufacture thereof
US5115289A (en) * 1988-11-21 1992-05-19 Hitachi, Ltd. Semiconductor device and semiconductor memory device
KR20020056348A (en) * 2000-12-29 2002-07-10 박종섭 Method of manufacturing a thin film transistor
JP2004128182A (en) * 2002-10-02 2004-04-22 Renesas Technology Corp Semiconductor integrated circuit device and its manufacturing method
US7932142B2 (en) 2007-11-14 2011-04-26 Elpida Memory, Inc. Transistor in a wiring interlayer insulating film

Similar Documents

Publication Publication Date Title
US4814842A (en) Thin film transistor utilizing hydrogenated polycrystalline silicon
US5180690A (en) Method of forming a layer of doped crystalline semiconductor alloy material
US4748485A (en) Opposed dual-gate hybrid structure for three-dimensional integrated circuits
JPH088357B2 (en) Vertical MOS transistor
US4808546A (en) SOI process for forming a thin film transistor using solid phase epitaxy
JPH05283691A (en) Thin film transistor and manufacture thereof
JP2000223419A (en) Method of forming single crystal silicon layer, and semiconductor device and manufacture thereof
US6242771B1 (en) Chemical vapor deposition of PB5GE3O11 thin film for ferroelectric applications
TWI239557B (en) Semiconductor on insulator apparatus and method
JPS5863173A (en) Polycrystalline thin film transistor
JPS63194326A (en) Manufacture of semiconductor device
US4868140A (en) Semiconductor device and method of manufacturing the same
US4994401A (en) Method of making a thin film transistor
JPH0395922A (en) Forming method for thin semiconductor film
JP2502789B2 (en) Method for manufacturing thin film transistor
JPH0563439B2 (en)
EP0275075A2 (en) Thin film transistor and method of making the same
JPH0614549B2 (en) Thin film transistor
JPS60152018A (en) Manufacture of semiconductor thin film crystal layer
KR19990013304A (en) How to crystallize amorphous membrane
KR100469503B1 (en) How to crystallize amorphous film
EP0043691B1 (en) Semiconductor device having a polycrystalline semiconductor film
JP2720473B2 (en) Thin film transistor and method of manufacturing the same
JP3130660B2 (en) Thin film transistor and method of manufacturing the same
JPS60245211A (en) Formation of soi structure