JPS5863168A - Field effect type semiconductor device - Google Patents

Field effect type semiconductor device

Info

Publication number
JPS5863168A
JPS5863168A JP16093681A JP16093681A JPS5863168A JP S5863168 A JPS5863168 A JP S5863168A JP 16093681 A JP16093681 A JP 16093681A JP 16093681 A JP16093681 A JP 16093681A JP S5863168 A JPS5863168 A JP S5863168A
Authority
JP
Japan
Prior art keywords
substrate
type
semiconductor
gate
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16093681A
Other languages
Japanese (ja)
Inventor
Hideo Yoshino
吉野 秀男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16093681A priority Critical patent/JPS5863168A/en
Publication of JPS5863168A publication Critical patent/JPS5863168A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66992Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by the variation of applied heat

Abstract

PURPOSE:To remove the unstability of a field effect type semiconductor device when operated at cryogenic temperature by forming a p-n junction with semiconductor having no thermal carrier production at the operating temperature in the vicinity of the surface of a semiconductor substrate and stopping the majority carrier to flow to the substrate. CONSTITUTION:A field silicon oxidized film 5 of approx. 700nm and a gate silicon oxidized film 3 of approx. 50nm are formed on the prescribed region on a p type (100) silicon substrate 1 having 3.5X10<15>atoms/cm<3> of boron density, arsenic is added by an ion implantation method to a channel region, thereby forming an n type region 6. Thereafter, a polysilicon for a gate electrode is formed by the ordinary silicon gate step, and with the polysilicon as a mask for ion implantation arsenic is added to the source and drain region at approx. 10<21>atoms/cm<3>. Further, an Al electrode is removed through a through hole step. When the impurity is lower than 10<17>atoms/cm<3> at the cryogenic temperature, the carrier is frozen, and the n type layer 6 becomes semi-insulating, and no unstability of characteristics occur as the conventional MOSFET, and back gate effect is not presented at all.

Description

【発明の詳細な説明】 本発明は半導体装置、特に極低温において安定かつ高速
で動作する電界効果型の半導体装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to a field effect semiconductor device that operates stably and at high speed at extremely low temperatures.

従来の半導体装置は常温(300に、)付近で動作させ
るように設計、製造されておシ、例えば液体ヘリウム温
度(4,2K)で動作させようとすると、半導体装置と
して正常に動作しないか、もしくは全く動作しない。例
えばシリコンバイポーラトランジスタは、極低温ではシ
リコン中に添加された不純物は熱的にイオン化されない
ため、キャリアが発生せず(いわゆるキャリア凍結)全
くトランジスタ動作をしない。一方M工8型電界効果ト
ランジスタ(M工s FmT)に代表されるFETでは
高不純物濃度を有するためキャリア凍結が起らないソー
ス領域から半導体表面にキャリアが注入され、さらにゲ
ート下では半導体表面での電界効果によシ表面付近で不
純物がイオン化されキャリア凍結が解かれるため、極低
温でも動作可能である。
Conventional semiconductor devices are designed and manufactured to operate at around room temperature (300°C), but if you try to operate them at, for example, liquid helium temperature (4.2K), they may not function properly as a semiconductor device. Or it doesn't work at all. For example, in a silicon bipolar transistor, impurities added to silicon are not thermally ionized at extremely low temperatures, so no carriers are generated (so-called carrier freezing) and the transistor does not operate at all. On the other hand, in FETs such as the M-8 field effect transistor (M-S FmT), carriers are injected into the semiconductor surface from the source region where carrier freezing does not occur due to the high impurity concentration, and furthermore, below the gate, carriers are injected into the semiconductor surface. The electric field effect ionizes impurities near the surface and unfreezes the carriers, making it possible to operate even at extremely low temperatures.

このような電界効果型半導体装置を低温で動作させると
、(a)キャリアの移動度が向上する、(b)配線抵抗
が低減する。特に超電導材料を用いれば配線抵抗を零に
することができる。(c)半導体基板でキャリア凍結を
生じさせ半絶縁性にすることができ、電極、配線と接地
間の容量を著しく減少させることができる。以上の効果
は動作温度が低い程よシ大きな効果が得られる場合が多
く、したがって、極低温で動作させる電界効果型半導体
装置は高速で動作するという大きな利点を有する。
When such a field effect semiconductor device is operated at a low temperature, (a) carrier mobility is improved, and (b) wiring resistance is reduced. In particular, if a superconducting material is used, the wiring resistance can be reduced to zero. (c) Carrier freezing can be caused in a semiconductor substrate to make it semi-insulating, and the capacitance between electrodes, wiring and ground can be significantly reduced. The above effects are often more significant as the operating temperature is lower. Therefore, field effect semiconductor devices operated at extremely low temperatures have the great advantage of operating at high speed.

しかし、第1図に示す従来のM工8 FITにおいては
、以下に述べる極低温での特性の不安定性のため、信頼
性良く動作させることは不可能であった。
However, in the conventional M-8 FIT shown in FIG. 1, it was impossible to operate it with good reliability due to the instability of the characteristics at extremely low temperatures, which will be described below.

第1図において、p型シリコン基板1に印加される電圧
(VsUB)を零にし、n+拡散層2の一方(ドレイン
)に電圧(VD )を印加し、n+拡散層2の他方(ソ
ース)を接地した時の、ドレインを流れる電流(■D)
の、p型基板1に絶縁膜3を介してゲート電極4に与え
る電圧(vo)をパラメータとした4、2Kにおける工
っ−VD特性を第2図に示す。なお第1図における5は
フィールド酸化膜である。
In FIG. 1, the voltage (VsUB) applied to the p-type silicon substrate 1 is set to zero, the voltage (VD) is applied to one side (drain) of the n+ diffusion layer 2, and the other side (source) of the n+ diffusion layer 2 is applied. Current flowing through the drain when grounded (■D)
FIG. 2 shows the VD characteristics at 4.2 K, with the voltage (vo) applied to the gate electrode 4 on the p-type substrate 1 via the insulating film 3 as a parameter. Note that 5 in FIG. 1 is a field oxide film.

第2図から電圧・電流特性にヒステリシスが生じている
ことがわかるが、これは■。を固定してもVDの与え方
の履歴によシエ。が変化することを意味し、このM工1
9 FETを用いた回路は動作が不安定となることがわ
かる。また、vsUBを変化させると、通常はしきい値
電圧(vTH)が変化するが(いわゆるバックゲート効
果)、従来例の場合、vTHの変化が瞬時に起らず数秒
の時間遅れが生ずることがちった。これは同様kに回路
動作を不安定にするものであった。
From Figure 2, it can be seen that hysteresis occurs in the voltage/current characteristics, which is ■. Even if you fix it, it depends on the history of how to give the VD. This means that the M-work 1 changes.
It can be seen that the circuit using 9 FETs has unstable operation. Additionally, when vsUB is changed, the threshold voltage (vTH) usually changes (so-called back gate effect), but in the conventional case, the change in vTH does not occur instantaneously, and a time delay of several seconds may occur. Fell. This similarly made the circuit operation unstable.

以上の不安定性は第3図に示した第1図点線8に沿った
バンド図を用いて説明できる。半導体基板1に対して、
ゲート絶縁膜3を介してゲート電極4に正の電圧を印加
すると、半導体基板lの表面では電界効果によシ反転層
が形成され電子(・で示す)が誘起され、同時にその領
域では不純物のイオン化が起シ、発生した正孔(0で示
す)は電位勾配に沿って半導体基板1に移動する。この
ため半導体基板1は半絶縁性から導体に変化し、そのた
め前述のバックゲート効果が生ずるようになるわけであ
るが、この時供給される正孔の量が限定されるため瞬時
には変化せず通常は長い時定数をもって特性が変化する
The above instability can be explained using the band diagram along the dotted line 8 in FIG. 1 shown in FIG. For the semiconductor substrate 1,
When a positive voltage is applied to the gate electrode 4 through the gate insulating film 3, an inversion layer is formed on the surface of the semiconductor substrate l due to the field effect, and electrons (indicated by Ionization occurs, and the generated holes (indicated by 0) move to the semiconductor substrate 1 along the potential gradient. For this reason, the semiconductor substrate 1 changes from a semi-insulating property to a conductor, which causes the aforementioned back gate effect, but since the amount of holes supplied at this time is limited, the change does not occur instantaneously. Characteristics usually change with a long time constant.

またこの半導体表面での電界による正孔の発生は、ドレ
イン近傍で大きな電界が印加されたシするとさらに変調
され、第2図に示した様な複雑な不安定性を示す。
Further, the generation of holes due to the electric field on the semiconductor surface is further modulated when a large electric field is applied near the drain, resulting in complicated instability as shown in FIG.

本発明はこれら極低温で動作させた時の電界効果型半導
体装置の不安定性を除去するため、半導体基板表面付近
に動作温度では熱的なキャリア発生がない半導体により
 p−n接合を設け、多数キャリアが半導体基板中に流
れ込むのを阻止したもので、その目的は極低温で安定か
つ高速で動作する半導体装置を提供するにある。
In order to eliminate the instability of field effect semiconductor devices when operated at extremely low temperatures, the present invention provides a large number of p-n junctions near the surface of the semiconductor substrate using a semiconductor that does not generate thermal carriers at operating temperatures. This prevents carriers from flowing into the semiconductor substrate, and its purpose is to provide a semiconductor device that operates stably and at high speed at extremely low temperatures.

以下実施例に基づき本発明の詳細な説明する。The present invention will be described in detail below based on Examples.

第4図は本発明第1の実施例の電界効果型半導体装置の
断面図である。本発明第1の実施例の特徴とするところ
は半導体基板1の表面のチャネルを含むように半導体基
板と逆の導電形の牛導体層6を設けたことにある。なお
第1図に示した従来例と同様の機能を有する部分は同一
符号を付して説明は省略する。以下その作用を説明する
。第5図(a)は第4図中に示した破線7に沿った部分
のバンド図で、vG=Ov、v8UB=Ovの場合であ
る。
FIG. 4 is a sectional view of a field effect semiconductor device according to the first embodiment of the present invention. The feature of the first embodiment of the present invention is that a conductor layer 6 of a conductivity type opposite to that of the semiconductor substrate is provided so as to include the channel on the surface of the semiconductor substrate 1. Note that parts having the same functions as those of the conventional example shown in FIG. 1 are designated by the same reference numerals, and explanations thereof will be omitted. The effect will be explained below. FIG. 5(a) is a band diagram of a portion along the broken line 7 shown in FIG. 4, in the case of vG=Ov and v8UB=Ov.

常温においてはこの様な構造を用いるとvG= OVで
n領域を電流が流れるが、極低温では不純物濃(5) 度が10  atomθ/1yn3程度以下の場合、キ
ャリア凍結するのでn形層6は半絶縁性となっておシ、
またソースn+領域2からn形層6へはポテンシャル障
壁があるので、Voに正の電圧を印加し、上記ポテンシ
ャル障壁を下げなければソース・ドレイン間に電流は流
れない。従って、第4図に示すMO8FIn’rは■。
At room temperature, if such a structure is used, a current flows through the n region with vG = OV, but at extremely low temperatures, when the impurity concentration (5) is below about 10 atoms θ/1yn3, carriers freeze, so the n-type layer 6 It is semi-insulating,
Further, since there is a potential barrier from the source n+ region 2 to the n-type layer 6, no current will flow between the source and drain unless a positive voltage is applied to Vo to lower the potential barrier. Therefore, MO8FIn'r shown in FIG. 4 is ■.

〉0で電流が流れる、いわゆるエンハンスメント型とし
て動作する。電圧V。をゲート電極4に印加しても半導
体表面以外は半絶縁性であるので電界はほとんど半導体
表面に印加され、vG〉0の場合は第5図(b)に示す
ように表面が蓄積状態と々シ、V、 < Oの場合は、
第5図(Q)に示すように、表面で反転が生じ正孔が発
生するが、これは表面反転層とn影領域とのポテンシャ
ル障壁のため、基板側には流出しない。従って基板には
多数キャリアである正孔の供給がなく、基板は半絶縁性
のままとなる。そのため、従来のMOS FETのよう
に特性の不安定性がなく、またバックゲート効果は全く
現われなくなる。
It operates as a so-called enhancement type in which current flows when >0. Voltage V. Even if vG is applied to the gate electrode 4, the area other than the semiconductor surface is semi-insulating, so most of the electric field is applied to the semiconductor surface, and when vG>0, the surface is in an accumulation state as shown in FIG. 5(b). If C, V, < O, then
As shown in FIG. 5(Q), inversion occurs on the surface and holes are generated, but these holes do not flow out to the substrate side because of the potential barrier between the surface inversion layer and the n-shadow region. Therefore, the substrate is not supplied with holes, which are majority carriers, and the substrate remains semi-insulating. Therefore, unlike conventional MOS FETs, there is no instability in characteristics, and no back gate effect appears at all.

次に以上第1の実施例をさらに具体的に述べる。Next, the first embodiment will be described in more detail.

(6) ボロン濃度3.5 X 10  atom8/αs の
p形(100)シリコン基板1上に約700 nm の
フィールドシリコン酸化膜5、ならびに約50nmのゲ
ートシリコン酸化膜3を所定の領域に形成し、ついでイ
オン注入法によシ、加速電圧110にθV、注入量2.
6 X 10’a t、Om87−Rの条件で砒素をチ
ャネル領域に添加しn影領域6を形成した。その後は通
常のシリコンゲート工程によシ、ゲート電極用ポリシリ
コンを形成し、これをイオン注入マスクとして、ソース
・ドレイン領域に砒素を約10atom8/crn3添
加した。
(6) A field silicon oxide film 5 of about 700 nm and a gate silicon oxide film 3 of about 50 nm are formed in predetermined areas on a p-type (100) silicon substrate 1 with a boron concentration of 3.5 x 10 atoms/αs. Then, by ion implantation, the acceleration voltage was 110 θV, and the implantation amount was 2.
Arsenic was added to the channel region under the conditions of 6×10'at and Om87-R to form the n-shaded region 6. Thereafter, polysilicon for a gate electrode was formed by a normal silicon gate process, and using this as an ion implantation mask, about 10 atoms/crn3 of arsenic was added to the source/drain regions.

さらに、スルーホール工程を経て、へ1電極を取シ出し
た。
Furthermore, the first electrode was extracted through a through-hole process.

以上の様にして製造した第1の実施例を4,2にで動作
させた時の工っ−vTll特性を第6図に示す。第2図
で見られた(従来のMOS、lTにおける不安定性は全
く見られず、安定に通常のPET動作していることがわ
かる。また第7図Aに同じく第1の実施例を4.2にで
動作させた時のしきい値電圧のバックゲート電圧(V8
UB )依存性を示すが、全くバックゲート効果がない
ことがわかる。比較のため、従来例の4.2Kにおける
VBUB依存性をBに示したが、室温で動作させた時と
ほぼ等しいバックゲート効果がある。以上のことよシ、
木簡1の実施例ではキャリア凍結した基板への多数キャ
リアの流れ込みは無いことが明らかとなシ、これにょシ
特性の安定化が達成でき、同時に半絶縁性基板が得られ
るようになった。
FIG. 6 shows the t-vTll characteristics when the first embodiment manufactured as described above was operated at 4.2. It can be seen that the instability seen in FIG. 2 (conventional MOS and IT) is not seen at all, and normal PET operation is stable. Also, FIG. The back gate voltage of the threshold voltage (V8
It can be seen that there is no backgate effect at all, although it shows dependence (UB). For comparison, the VBUB dependence at 4.2K of the conventional example is shown in B, and there is a back gate effect that is almost the same as when operating at room temperature. That's all,
In the example of Wooden Slab 1, it is clear that there is no flow of majority carriers into the frozen substrate, and thus the characteristics can be stabilized, and at the same time, a semi-insulating substrate can be obtained.

なお第1の実施例において、導電形を各々逆にしても同
様に動作可能であることはいうまでもない。また本実施
例の場合、基板は半絶縁性のままであるので、基板不純
物濃度はMOS PET動作には関与せず、キャリア凍
結を起こす範囲の任意の不純物#度となっていればよい
。またチャネル表面の基板に対して逆導電形の層も、電
流の流れ始める機構がポテンシャルバリアのみで決まり
、かつキャリア凍結の起こる極低温ではフェルミレベル
は伝導帯もしくは価電::□子帯の端と不純物レベルの
間に入るため、不純物濃度がM2S FFtT特性に及
ぼす影響は少ない。そのため、不純物濃度のゆらぎの影
響を受けにくいという利点をもつ。
In the first embodiment, it goes without saying that the same operation is possible even if the conductivity types are reversed. Further, in the case of this embodiment, since the substrate remains semi-insulating, the impurity concentration of the substrate does not play a role in MOS PET operation, and may be any impurity concentration within the range that causes carrier freezing. In addition, in a layer of conductivity type opposite to the substrate on the channel surface, the mechanism in which current begins to flow is determined only by the potential barrier, and at extremely low temperatures where carriers freeze, the Fermi level is the edge of the conduction band or valence band. The impurity concentration has little effect on the M2S FFtT characteristics. Therefore, it has the advantage of being less susceptible to fluctuations in impurity concentration.

次に本発明第2の実施例の断面構造図を第8図に示し、
以下説明する。これは、極低温にてキャリア凍結を起こ
すような不純物濃度(ここではリン濃度I×10Ill
crn−3)ヲ持つn形半導体基板ll上にフィールド
酸化膜15.ゲート絶縁膜13 、および極低温でもキ
ャリア凍結を起こさない高不純物濃度(ここでは砒素濃
度1 ×10”crn−”)を持つr膨拡散層からなる
ソース・ドレイン領域12を有し、チャネルと々る半導
体表面近傍にp形の層16を持つ構造となっている。こ
こでp形層16は極低温でキャリア凍結する不純物濃度
を選ぶ必要があシ、本実施例ではI X 10” ff
i”−”とした。
Next, a cross-sectional structural diagram of the second embodiment of the present invention is shown in FIG.
This will be explained below. This is the impurity concentration that causes carrier freezing at extremely low temperatures (here, the phosphorus concentration I x 10Ill).
crn-3) Field oxide film 15. It has a gate insulating film 13 and a source/drain region 12 made of an r-swelled diffusion layer with a high impurity concentration (arsenic concentration 1×10"crn-" in this case) that does not cause carrier freezing even at extremely low temperatures. The structure has a p-type layer 16 near the surface of the semiconductor. Here, it is necessary to select an impurity concentration for the p-type layer 16 that freezes carriers at an extremely low temperature, and in this example, I x 10" ff
i"-".

この様な構造とすると、ゲート電圧V。が零のときは第
9図(a)に示す様なバンド図(ここで第9図  1の
バンド図は第8図波1s17に沿った部分を示している
。)となシ、p形層16およびn形基板】lはキャリア
が凍結して半絶縁性となっている。そして、p形層表面
では半導体とゲート電極との仕事関数差等の影響でわず
かにバンドが変形しているが、電界が弱いので半絶縁性
のままであるため、(9) チャネルは形成されず、ソース・ドレイン間に電流は流
れない。vG〉0のときは、第9図(1,)に示すよう
に、p形層16表面で電界によるキャリア凍結の解除、
ソースからの電子の注入が起こシ、あるVG=vTHで
ソース・ドレイン間に電流が流れ始める。このときp形
層16で正孔が発生しp形層は半絶縁性ではなくなるが
、p形層16表面反転層内の電子は表面付近よシ基板側
には流出しないよシル形層16表面はキャリア凍結が解
除されるが、これはn形基板11には影響せず、またソ
ース・ドレイン間に電流は流れない。
With this structure, the gate voltage V. When is zero, the band diagram as shown in Figure 9(a) (Here, the band diagram in Figure 9 1 shows the part along the wave 1s17 in Figure 8) is the p-type layer. 16 and n-type substrate] The carrier of l is frozen and becomes semi-insulating. At the surface of the p-type layer, the band is slightly deformed due to the work function difference between the semiconductor and the gate electrode, but because the electric field is weak, it remains semi-insulating, so a channel is not formed (9). No current flows between the source and drain. When vG>0, as shown in FIG. 9 (1,), the carriers are unfrozen by the electric field on the surface of the p-type layer 16,
Electron injection from the source occurs, and a current begins to flow between the source and drain at a certain VG=vTH. At this time, holes are generated in the p-type layer 16 and the p-type layer becomes non-semi-insulating, but the electrons in the inversion layer on the surface of the p-type layer 16 do not flow out from near the surface to the substrate side. Although carrier freeze is released, this does not affect the n-type substrate 11, and no current flows between the source and drain.

以上説明したように、本発明第2の実施例によれば、基
板は常に半絶縁性のままであるので、従来例のような基
板への多数キャリア流出による不安定性は現われず、ま
た基板が半絶縁性であるためのすでに説明した利点をも
たらす。なお第2の実施例においても、各々導電形を逆
にして動作可能であることはいうまでもない。
As explained above, according to the second embodiment of the present invention, since the substrate always remains semi-insulating, instability due to majority carrier outflow to the substrate as in the conventional example does not occur, and the substrate It offers the already mentioned advantages of being semi-insulating. It goes without saying that the second embodiment can also operate with the conductivity types reversed.

(lO) 次に第10図に、本発明筒1の実施例と類似のnチャネ
ル型FEiTと、本発明筒2の実施例と類似であるが、
これをpチャネル型に変更したPETとで相補型MO8
(0−MOS )インバータを構成した第3の実施例を
示す。なお第10図において、第4図および第8図と同
様のものは同一符号を用いて説明は省略する。図中n−
FITはnチャネルITで、p −FETはpチャネル
FET、aは入力端子、bは出力端子、Voは電源を示
す。p形波散層22は第8図におけるn+形拡散層12
と同様の機能を持ち、n形半導体層26は第8図におけ
るp形半導体層16と同様の機能を持つもので、pチャ
ネル型FET用に導電型を変更したものである。このよ
うな構成を用いれば、従来の半導体基板上に形成した0
−MOSインバータでは不可欠であった、深い拡散層(
ウェル)が不用となり、深い拡散層形成に伴う諸問題例
えば高温長時間熱拡散による結晶欠陥の発生等が除去で
き歩留り向上が図れるという利点がある。同時にすでに
説明してきたように、基板の半絶縁化によシ高速動作が
可能となる。
(lO) Next, FIG. 10 shows an n-channel FEiT similar to the embodiment of the tube 1 of the present invention and an embodiment of the tube 2 of the present invention, but
Complementary type MO8 with PET changed to p-channel type
A third embodiment is shown in which a (0-MOS) inverter is configured. Note that in FIG. 10, parts similar to those in FIGS. 4 and 8 are denoted by the same reference numerals, and explanations thereof will be omitted. n- in the figure
FIT is an n-channel IT, p-FET is a p-channel FET, a is an input terminal, b is an output terminal, and Vo is a power supply. The p-type diffusion layer 22 is the n+ type diffusion layer 12 in FIG.
The n-type semiconductor layer 26 has the same function as the p-type semiconductor layer 16 in FIG. 8, but has a different conductivity type for a p-channel FET. If such a configuration is used, the 0
-Deep diffusion layer (which is essential for MOS inverters)
This method has the advantage that the problems associated with forming a deep diffusion layer, such as the generation of crystal defects due to long-term thermal diffusion at high temperatures, can be eliminated and the yield can be improved. At the same time, as already explained, high-speed operation becomes possible by making the substrate semi-insulating.

以上説明したように、本発明はキャリア凍結が起こるよ
うな極低温において、多数キャリアの基板への流出を防
止し、多数キャリアの流出に伴うFFtT%性の不安定
性を除去し、基板を半絶縁性として用いることを可能に
したものである。
As explained above, the present invention prevents the majority carriers from flowing into the substrate at extremely low temperatures where carrier freezing occurs, eliminates the instability of FFtT% due to the majority carriers flowing out, and makes the substrate semi-insulating. This made it possible to use it as a sex.

そのため、半導体装置の低温動作によるキャリア移動度
の向上、配線抵抗の低減等に加え、半絶縁性基板による
配線容量の低減化が可能となシ、同時に安定動作するF
ETが得られるようになったため、信頼性が高く、高速
で動作する半導体装置を提供できるようになった。
Therefore, in addition to improving carrier mobility and reducing wiring resistance due to low-temperature operation of semiconductor devices, it is possible to reduce wiring capacitance by using semi-insulating substrates, and at the same time, stable operation of F
Since ET has become available, it has become possible to provide semiconductor devices that are highly reliable and operate at high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電界効果型半導体装置の断面図、第2図
は従来の電界効果型半導体装置の特性図、第3図は従来
の電界効果型半導体装置のバンド図、第4図は本発明筒
[1′□の実施例の断面図、第5図(a)。 (l11) 、 (C)は本発明筒1の実施例のバンド
図、第6図は本発明筒1の実施例の特性図、第7図は従
来および本発明筒1の実施例のバンクゲート特性を比較
した図、第8図(a) I (b) 、 (c)は本発
明筒2の実施例の断面構造図、第9図は本発明筒2の実
施例のバンド図、第10図は本発明筒3の実施例の断面
図を示す。 1・・・p形半導体基板、2・・ソース・ドレイン領域
、3・・ゲート絶縁膜、4・・・ゲート電極、5・・・
フィールド酸化膜、6・・・n形半導体層、11・・・
n形半導体基板、12・・・ソース・ドレイン領域、1
3・・・ゲート絶縁膜、14・・・ゲート電極、15・
・・フィールド酸化膜、16・・・p形半導体層、22
・・・ソース・ドレイン領域、26・・・n形半導体層
特許出願人 (13) 因 ■     (01)y6<〉’1.d区    (H
A△)M3!い9/1 丁10図 手続補正書(方式) %式% 1、事件の表示 昭和56年 特許願 第160936号2、発明の名称 電界効果型半導体装置 3、補正をする者 事件との関係   特許出願人 名 称   (422)0本電信電話公社4、代理人 5、補正命令の日付 昭和57年2月4日 (発送日昭和57年2月23日)
6、補正の対象    ::。 明細書の1図面の簡単な説明」の欄 7、補正の内容
Fig. 1 is a cross-sectional view of a conventional field effect semiconductor device, Fig. 2 is a characteristic diagram of a conventional field effect semiconductor device, Fig. 3 is a band diagram of a conventional field effect semiconductor device, and Fig. 4 is a bookmark diagram of a conventional field effect semiconductor device. A sectional view of an embodiment of the invention tube [1'□, FIG. 5(a). (l11), (C) is a band diagram of the embodiment of the invention tube 1, FIG. 6 is a characteristic diagram of the embodiment of the invention tube 1, and FIG. 7 is a bank gate of the conventional and embodiment of the invention tube 1. Figures 8 (a), 1 (b), and 10 (c) are diagrams comparing the characteristics; FIG. The figure shows a sectional view of an embodiment of the tube 3 of the present invention. DESCRIPTION OF SYMBOLS 1...p-type semiconductor substrate, 2...source/drain region, 3...gate insulating film, 4...gate electrode, 5...
Field oxide film, 6... n-type semiconductor layer, 11...
n-type semiconductor substrate, 12...source/drain region, 1
3... Gate insulating film, 14... Gate electrode, 15.
...Field oxide film, 16...p-type semiconductor layer, 22
...Source/drain region, 26...n-type semiconductor layer Patent applicant (13) Cause■ (01)y6<>'1. Ward d (H
A△)M3! 9/1 Figure 10 Procedural Amendment (Method) % Formula % 1. Indication of the case 1982 Patent Application No. 160936 2. Name of the invention Field-effect semiconductor device 3. Person making the amendment Relationship with the case Patent Applicant name (422) 0 Telegraph and Telephone Public Corporation 4, Agent 5, Date of amendment order: February 4, 1980 (Shipping date: February 23, 1980)
6. Target of correction::. Column 7 of “Brief explanation of one drawing of the specification”, contents of amendment

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に形成したソース領域およびドレイン領域
およびそれらの領域間のチ、ヤネルを制御するゲート電
極を有する半導体装置において、第1の導電形を有し動
作温度では不純物の熱的なイオン化によるキャリアの発
生がない半導体基板と、前記半導体基板とp−n接合を
形成し前記チャネルを含むように配された、動作温度で
は不純物の熱的なイオン化によるキャリアの発生がない
半導体層を具備したことを特徴とする電界効果型半導体
装置。
In a semiconductor device having a source region and a drain region formed on a semiconductor substrate and a gate electrode for controlling channels between these regions, the semiconductor device has a first conductivity type and at an operating temperature, carriers are generated by thermal ionization of impurities. a semiconductor substrate in which no carriers are generated due to thermal ionization of impurities at an operating temperature, the semiconductor layer being arranged to form a p-n junction with the semiconductor substrate and including the channel; A field effect semiconductor device characterized by:
JP16093681A 1981-10-12 1981-10-12 Field effect type semiconductor device Pending JPS5863168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16093681A JPS5863168A (en) 1981-10-12 1981-10-12 Field effect type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16093681A JPS5863168A (en) 1981-10-12 1981-10-12 Field effect type semiconductor device

Publications (1)

Publication Number Publication Date
JPS5863168A true JPS5863168A (en) 1983-04-14

Family

ID=15725434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16093681A Pending JPS5863168A (en) 1981-10-12 1981-10-12 Field effect type semiconductor device

Country Status (1)

Country Link
JP (1) JPS5863168A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055667A (en) * 1983-08-12 1985-03-30 エイ・ティ・アンド・ティ・コーポレーション Field effect solid device, high speed electronic switching device and its operating method
EP0656662A2 (en) * 1993-11-30 1995-06-07 Siliconix Incorporated A bidirectional blocking lateral mosfet with improved on-resistance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122381A (en) * 1975-04-18 1976-10-26 Fujitsu Ltd Semiconductor device for ultra low temperature

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122381A (en) * 1975-04-18 1976-10-26 Fujitsu Ltd Semiconductor device for ultra low temperature

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055667A (en) * 1983-08-12 1985-03-30 エイ・ティ・アンド・ティ・コーポレーション Field effect solid device, high speed electronic switching device and its operating method
EP0656662A2 (en) * 1993-11-30 1995-06-07 Siliconix Incorporated A bidirectional blocking lateral mosfet with improved on-resistance
EP0656662A3 (en) * 1993-11-30 1995-08-02 Siliconix Inc A bidirectional blocking lateral mosfet with improved on-resistance.

Similar Documents

Publication Publication Date Title
US6306691B1 (en) Body driven SOI-MOS field effect transistor and method of forming the same
US4219829A (en) Field effect transistor having a surface channel and its method of operation
Kistler et al. Detailed characterization and analysis of the breakdown voltage in fully depleted SOI n-MOSFET's
US4216490A (en) Static induction transistor
Kamgar Subthreshold behavior of silicon MOSFETs at 4.2 K
KR900000584B1 (en) Semiconductor integrated circuit device
JPS60231375A (en) Superconductive transistor
Thompson et al. Thin-film transistors on a-Si: H
JPS5863168A (en) Field effect type semiconductor device
Keshavan et al. MONOS memory element
US5422510A (en) MOS transistor with non-uniform channel dopant profile
JPS60247974A (en) Semiconductor device
Young et al. Operation of SOI CMOS devices at liquid-nitrogen temperature
Yau Arguments for electron conduction in silicon nitride
Richman The effect of gold doping upon the characteristics of MOS field-effect transistors with applied substrate voltage
Gildenblat Low-temperature CMOS
De La Hidalga-W et al. Effect of the forward biasing the source-substrate junction in n-metal–oxide–semiconductor transistors for possible low power complementary metal–oxide–semiconductor integrated circuits’ applications
Plummer Low temperature CMOS devices and technology
JPS6055667A (en) Field effect solid device, high speed electronic switching device and its operating method
EP0283878A1 (en) Field effect transistor
JPS6134266B2 (en)
JPH0329326A (en) Junction field-effect transistor
JPS6378574A (en) Manufacture of semiconductor device
Gautier et al. Operation of short-channel depletion-mode MOS devices at liquid-nitrogen temperature
Dierickx et al. Operation of majority and minority carrier MOSFET's at liquid helium temperature