JPS5863109A - Transformer - Google Patents

Transformer

Info

Publication number
JPS5863109A
JPS5863109A JP16135281A JP16135281A JPS5863109A JP S5863109 A JPS5863109 A JP S5863109A JP 16135281 A JP16135281 A JP 16135281A JP 16135281 A JP16135281 A JP 16135281A JP S5863109 A JPS5863109 A JP S5863109A
Authority
JP
Japan
Prior art keywords
cooling duct
winding
duct
cooling
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16135281A
Other languages
Japanese (ja)
Other versions
JPS632126B2 (en
Inventor
Masami Ikeda
池田 正已
Tsuneji Teranishi
常治 寺西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP16135281A priority Critical patent/JPS5863109A/en
Publication of JPS5863109A publication Critical patent/JPS5863109A/en
Publication of JPS632126B2 publication Critical patent/JPS632126B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformer Cooling (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

PURPOSE:To provide a transformer with large capacity and dielectric strength, and freed from cavitation and static electricity discharge, by a method wherein both end portions of a cooling duct are put out of both ends of a leaf coil insulating sheet and expanded in the circumferential direction. CONSTITUTION:A cooling duct 7 has expanded tubiform portion 17 at the both ends, so refrigerant carriers gather from all over the liquid path 19 to the cubiform portion 17 of which sectional area is large. The refrigerant carriers, then, flow out to a insulating pipe 12 via a joint 21. Due to this large sectional area of the cubiform portion 17, the flowing speed of the refrigerant carriers around the joint 21 can be lowered, and cavitation and static electricity discharge used to be caused by increment of the refrigerant carriers flowing speed can be prevented, as well as the cooling duct is protected from erosion.

Description

【発明の詳細な説明】 本発明は金属シートと絶縁シートを重ねて巻回してなる
箔巻巻線を備え、この巻線内に冷却。
DETAILED DESCRIPTION OF THE INVENTION The present invention includes a foil-wound wire formed by overlapping and winding a metal sheet and an insulating sheet, and cools the inside of this winding.

ダクトを設けた変圧器に関する、 一般に箔巻巻線を備えた変圧器は、占積率が良く小形・
軽量であるために低電圧小容量の変圧器だけでなく、近
時は高低圧大電流にも適用することが考えられており、
この場合の重要な問題点は冷却能力の向上と絶縁耐力の
向上にある。
Concerning transformers with ducts, transformers with foil-wound windings generally have a good space factor and are small and compact.
Because it is lightweight, it is being considered to be applied not only to low-voltage, small-capacity transformers, but also to high-low-voltage, large-current transformers.
The important issues in this case are improvement of cooling capacity and dielectric strength.

第1図は従来の大容量の変圧器の一例を示している。タ
ンクl内に設けた鉄心ffQ主脚にアルミニウムシート
などからなる金属シート3と樹脂フィルムなどからなる
絶縁シーM’&重ね合せて巻くことにより、公知の箔巻
巻線方式の却ダクトを設ける。例えば低圧巻線5には1
個の、高圧巻線6には複数個の冷却ダクト7を夫々内蔵
する。そして、冷却ダクト2内にはフロン113やFc
ysなどの冷媒をポンプ8により流し、各巻線5.6内
の発熱を冷媒の蒸発潜也らにポンプ8で冷却ダクト7に
送り込むとい′う循環冷却回路が構成されている。また
巻線5゜6の上下端側に設けられたステンレス嗣からな
る4液%’IIは絶縁パイプ12’ae介して冷却ダク
ト2に接続され、巻線5,6内で゛それと略々りl内に
は絶縁油や8F、ガスなどの絶呻媒体が封入され、巻線
5.6が絶縁されている。な2、低圧巻線5は絶縁パイ
プ15を介して鉄心lの主脚の外周に巻付けられ、高圧
巻線6は絶縁バリヤ16を介して低圧巻線6の外周に柿
付けられている。また、第1図に8いては本発明と直接
間りのない@線のリード線やこれらをタンク!外部に引
出すブッシングなどは省略されている。
FIG. 1 shows an example of a conventional large capacity transformer. A well-known foil-wound winding duct is provided by overlapping and winding a metal sheet 3 made of an aluminum sheet or the like and an insulating sheet M' made of a resin film or the like around the main leg of the iron core ffQ provided in the tank l. For example, the low voltage winding 5 has 1
A plurality of cooling ducts 7 are built into each of the high voltage windings 6. In the cooling duct 2, there is Freon 113 and Fc.
A circulating cooling circuit is constructed in which a refrigerant such as ys is passed by a pump 8, and the heat generated in each winding 5.6 is sent to the cooling duct 7 by the pump 8 to evaporate the refrigerant. In addition, the 4-liquid %'II made of stainless steel provided on the upper and lower ends of the windings 5 and 6 is connected to the cooling duct 2 through the insulated pipe 12'ae, and is approximately A high-temperature medium such as insulating oil, 8F, or gas is sealed inside the coil, and the windings 5 and 6 are insulated. 2. The low voltage winding 5 is wound around the outer periphery of the main leg of the iron core 1 via an insulating pipe 15, and the high voltage winding 6 is wound around the outer periphery of the low voltage winding 6 via an insulating barrier 16. Also, in Figure 1, 8 shows the @ line lead wires that are directly connected to the present invention, and the tank! Bushings that can be pulled out to the outside are omitted.

このような冷却方式の変圧器は、冷却の蒸発舗熱を利用
しているので、優れた冷却特性を有してgり大容量変圧
器には有頃であるが、しかしながら従来構造の変圧器で
はまだいくつかの問題点があり、これが特に大容量変圧
器に適用する上で障害となっている。
Transformers with this cooling method utilize evaporative heat for cooling, so they have excellent cooling characteristics and are suitable for large capacity transformers. However, transformers with conventional structures However, there are still some problems, which are obstacles to its application to large-capacity transformers.

その問題点の一つは高圧巻線6と各巻線5゜6の上下側
に設けた金属シールド板13との間の絶縁に問題がある
。第1図で示す高圧巻線6は内側端ば接続の中性点側で
あり、金属シート3を巻き上げる外周側はど電位が高く
なり最外側がライン端子となる段絶縁がとられるのが一
般である。その点この変圧器の絶縁は原理的には合理的
であるが、高圧巻線6と金属シールド板13との間の第
1図の上下垂直方向の電界制御がなされない欠点がある
。これを電界分布図で表わしたのが第2図である。この
図は巻線の上部のみを表わしている。第2図に8いて点
線で示した等醒位面は、高圧巻線6から出てライン端に
設けた静電シールド材14をつつむ形になって高圧巻線
6の上下端や静電シールド材14の縁の電位傾度を高め
る形となっている。
One of the problems is the insulation between the high voltage winding 6 and the metal shield plates 13 provided above and below each winding 5.6. The high-voltage winding 6 shown in Figure 1 has an inner end connected to the neutral point, and the outer end where the metal sheet 3 is wound has a higher potential, and the outermost end is the line terminal, which is generally insulated in stages. It is. In this respect, although the insulation of this transformer is rational in principle, it has the disadvantage that electric field control in the vertical vertical direction shown in FIG. 1 between the high voltage winding 6 and the metal shield plate 13 is not performed. FIG. 2 shows this in an electric field distribution diagram. This figure shows only the upper part of the winding. The equal-level planes indicated by dotted lines at 8 in FIG. 2 extend from the high-voltage winding 6 and wrap around the electrostatic shielding material 14 provided at the end of the line. The shape increases the potential gradient at the edge of the material 14.

また、高圧巻線6の間に内蔵された金属製の冷却ダクト
2の端部はダクト中央部と同様に薄いものであり、しか
もこのダクト端部は巻線6の金職シート3より突出しく
但し絶縁シート4は金属シート3より幅寸法が大であり
、ダクト端部は絶縁シート4の端部より外方には突出し
ていない。)ているので、電界が著しく集中し非常に低
い部分放電開始電圧となる。さらに、冷却ダクト2とつ
ながる絶縁パイプ12の沿面が弱点となる。これらの点
が原因となって巻線端部と金属シールド板13との間の
絶縁がどうしても弱くなり、そのために絶縁距離を大き
くとったり、あるいはタンク1内に封入する8F6ガス
の封入圧力を高めて絶縁強度を高めるなどの方策がなさ
れている。このため、変圧器の外形寸法が大きくなると
ともに重量が増大し、またタンクを高耐圧構造とする必
要があって、ひいては変圧器コス)Y高める欠点があっ
た。
Furthermore, the ends of the metal cooling duct 2 built in between the high-voltage windings 6 are thin like the central part of the duct, and moreover, the ends of the duct protrude beyond the metal sheet 3 of the windings 6. However, the width of the insulating sheet 4 is larger than that of the metal sheet 3, and the end of the duct does not protrude outward from the end of the insulating sheet 4. ), the electric field becomes extremely concentrated, resulting in a very low partial discharge inception voltage. Furthermore, the creeping surface of the insulating pipe 12 connected to the cooling duct 2 becomes a weak point. Due to these points, the insulation between the end of the winding and the metal shield plate 13 inevitably becomes weak, so it is necessary to increase the insulation distance or increase the pressure of the 8F6 gas sealed in the tank 1. Measures are being taken to increase insulation strength. For this reason, the outer dimensions of the transformer become larger and the weight increases, and the tank needs to have a high voltage-resistant structure, which has the disadvantage of increasing the transformer cost.

また他の問題点は、冷却ダクト2の端部はダクト中央部
と同様に+→+←←厚さが小さく一面積が小さいために
、ダクト端部における絶縁モ。
Another problem is that the ends of the cooling duct 2 have a small thickness and a small area like the central part of the duct, so insulation at the ends of the duct is poor.

パイプ12と接続する接続口の周辺の冷媒の流束が、冷
却ダクト7を流れる冷媒の流速に比して数10倍にも増
大し、接続口周辺でキャビテーションが生じ、また冷媒
の静電量が高まり冷媒中で放電を引き起す欠点を有する
ことである。
The flux of the refrigerant around the connection port that connects to the pipe 12 increases by several tens of times compared to the flow rate of the refrigerant flowing through the cooling duct 7, causing cavitation around the connection port and increasing the electrostatic capacity of the refrigerant. It has the disadvantage of causing electrical discharge in the refrigerant.

このため、キャビテーションや静電気放電の発生により
、冷却ダクトを形成する数ミリ程度の板厚の金属板が侵
食され、長時間たって孔が明いてダクト内部の冷媒が外
部に漏洩する事故が生じている。
As a result, due to cavitation and electrostatic discharge, the metal plates that form the cooling ducts, which are several millimeters thick, are eroded, causing holes to open over a long period of time, causing accidents where the refrigerant inside the ducts leaks to the outside. .

本発明は前記事情に鑑みてなされたもので、箔巻巻線を
備え且巻線内に冷却ダクトを内蔵したものにおいて、絶
縁耐力が高く、冷却ダクトにおけるキャビティションや
静電気放電が生じることがなく大容量変圧器に虐した変
圧器を提供するものである。
The present invention has been made in view of the above circumstances, and has a high dielectric strength and does not cause cavitation or electrostatic discharge in the cooling duct in a device that is equipped with a foil-wound wire and has a cooling duct built into the winding. The present invention provides a transformer that is comparable to a large capacity transformer.

丁なわち、本発明の変圧器は冷却ダクトの両端部を箔巻
巻線の絶縁シートの両端より突出させ、この突出した両
端部にダクト円周方向に沿う管状部を膨張形成したもの
である。
That is, in the transformer of the present invention, both ends of the cooling duct are made to protrude from both ends of the insulating sheet of the foil-wound winding, and a tubular part extending in the circumferential direction of the duct is formed by expanding on both of the protruding ends. .

以下本発明を図面で示す実施例について説明する。Embodiments of the present invention will be described below with reference to drawings.

第3図ないし第8図は本発明の変圧器の一実施例を示し
ており、第1図と同じものは同一符号を付[7である。
3 to 8 show an embodiment of the transformer of the present invention, and the same parts as in FIG. 1 are denoted by the same reference numerals [7].

第3図で示すように、低圧巻線5と高圧巻線6の夫々の
内部1:設けた各冷却ダクト2は、夫々の軸方向の両端
部が各巻線5.6にgける絶縁シート4の両端から外方
に突出してgす、絶縁シート4の両端から突出した各冷
却ダクト7の両端部にはダクト円周方向に沿う管状部1
7が膨張形成しである。冷却ダクト2の構造ytW。
As shown in FIG. 3, each cooling duct 2 provided inside each of the low-voltage winding 5 and the high-voltage winding 6 has an insulating sheet 4 at both ends in the axial direction connected to each winding 5.6. At both ends of each cooling duct 7, which protrudes outward from both ends of the insulating sheet 4, a tubular part 1 is provided along the circumferential direction of the duct.
7 is the expansion formation. Structure of cooling duct 2 ytW.

4図について述べると、冷却ダクト2はステンレス鋼あ
るいは銅などの金属板により軸方向に沿う空隙18を残
して円筒状に形成したもので、その周壁部には数ミリ程
度の幅寸法をもつ平担な液通部19が形成され、両端部
には円周方向に断面円形をなす管状部l?が集液管とし
て形成されている。第5図は第41DV−V線に沿う拡
大断面図であり、液通部19はダクト軸方向に沿い平担
に形成した金属平担壁20を数ミリの間隙を存して対向
させることにより形成され、管状部12は金属板平担壁
20の両端部を断面正円あるいは楕円をな丁ように膨張
させて液通部の幅寸法より大なる直径寸法をもって形成
されている。なお、冷却ダクト7の両端部に形成した管
状部17には、絶縁バイブ12と接続する接続口2)を
有している。また、冷却ダクト7の液通部l?の内部に
は、第6因8よび第7図で示すようにダクト軸方向に沿
う直線をなす複数のスペーサ22が円周方向に間隔を存
して並べて設けである。このスペーサ22は冷却タクト
7の液通部19を形成する金属板平担壁20の間に挾持
され、その両端は液通部19の両端に位置している。こ
のため、液通部19はスペーサ22によりダクト円周方
向にわたってダクト軸方向に延び名複数の通路に仕切ら
れる。
Referring to Figure 4, the cooling duct 2 is made of a metal plate made of stainless steel or copper and is formed into a cylindrical shape with a gap 18 along the axial direction. A liquid passage portion 19 is formed at both ends, and a tubular portion l? having a circular cross section in the circumferential direction is formed. is formed as a liquid collecting pipe. FIG. 5 is an enlarged sectional view taken along the 41st DV-V line, and the liquid passage section 19 is constructed by making flat metal walls 20 facing each other with a gap of several millimeters along the axial direction of the duct. The tubular portion 12 is formed by expanding both ends of the metal plate flat wall 20 to have a perfect circle or an ellipse in cross section to have a diameter larger than the width of the liquid passage portion. Note that the tubular portions 17 formed at both ends of the cooling duct 7 have connection ports 2) for connecting with the insulating vibrator 12. Also, the liquid passage portion l? of the cooling duct 7? As shown in FIG. 6 and FIG. 7, a plurality of spacers 22 are arranged in a straight line along the duct axis direction at intervals in the circumferential direction. This spacer 22 is sandwiched between metal plate flat walls 20 forming the liquid passage part 19 of the cooling tact 7, and both ends thereof are located at both ends of the liquid passage part 19. Therefore, the liquid passage portion 19 extends in the axial direction of the duct over the circumferential direction of the duct and is partitioned into a plurality of passages by the spacer 22 .

な8、スペーサ22は液適部19内にダクト軸方向に対
して平行に配置しても、あるいは傾けて配置しても良い
8. The spacer 22 may be arranged in the liquid dripping portion 19 parallel to the duct axis direction, or may be arranged at an angle.

さらに、第3図で示すように高圧巻線6の内部には冷却
ダクト2として複数の冷却ダクト21〜?、が設けられ
ているが、これらの冷却ダクト?、〜2.における高圧
巻線6の絶縁シート4から突出する両端部の突出長さは
夫々異なっている。Tなわち、最も外周側に位置する冷
却ダクト21にどける両端部の突出長さが最も小さく、
中間に位置する冷却ダクト7、に8ける両端部の突出長
さが冷却ダクト1.に次いで大きく、最も内周側に位置
する冷却ダクト?、にχける両端部の突出長さが最も大
である。言換えれば最外周側の冷却ダクト7Iから内周
側に位置する冷却ダク)711711に向けて順次両端
部の突出長きが大となるように設定してあり、このため
各冷却ダクト71〜2.における両端部に形成した各管
状部17の位置も両端部の突出長さに応じ異なる。なお
、各冷却ダク)y+〜7.の軸方向長さは、夫々の高圧
巻線6から突出する両端部の突出長さに応じて設定する
Furthermore, as shown in FIG. 3, inside the high voltage winding 6, there are a plurality of cooling ducts 21 to 2 as cooling ducts 2. , but these cooling ducts? ,~2. The protruding lengths of both ends of the high voltage winding 6 protruding from the insulating sheet 4 are different from each other. T, that is, the protrusion length of both ends reaching the cooling duct 21 located on the outermost side is the smallest,
The protruding length of both ends of cooling ducts 7 and 8 located in the middle is cooling duct 1. The cooling duct is the second largest and located on the innermost side? , the protrusion length of both ends is the largest. In other words, the protrusion lengths of both ends are set to increase sequentially from the outermost cooling duct 7I to the innermost cooling duct 711711, so that each of the cooling ducts 71 to 2. The positions of the respective tubular portions 17 formed at both ends also differ depending on the protruding lengths of both ends. In addition, each cooling duct)y+~7. The axial length of is set according to the protruding length of both ends protruding from each high voltage winding 6.

しかして、このように構成された変圧器においては、低
圧巻線5と高圧巻線6における絶縁シート4の両端から
突出する冷却ダクト7の両端部が上下方向の電界制御の
役目を果し、巻線5.6の端部周辺における過度の電界
集中を緩和することができる。特に高圧巻線6の内部に
設けた各冷却ダクト7は、最外周側の冷却ダクト21か
ら内周側の冷却ダクF7*a7mに向けて両端部の突出
長さが順次大となるように設定すれば、高圧巻線6と金
属シールド板13との間の絶縁空間の電界を第8図で示
すように平等化してより一層過度の電界集中を防止でき
る。
Therefore, in the transformer configured in this manner, both ends of the cooling duct 7 protruding from both ends of the insulating sheet 4 in the low voltage winding 5 and the high voltage winding 6 serve to control the electric field in the vertical direction, Excessive electric field concentration around the ends of the windings 5.6 can be alleviated. In particular, each cooling duct 7 provided inside the high-voltage winding 6 is set so that the protruding length of both ends increases sequentially from the outermost cooling duct 21 to the inner cooling duct F7*a7m. This makes it possible to equalize the electric field in the insulating space between the high voltage winding 6 and the metal shield plate 13 as shown in FIG. 8, thereby further preventing excessive electric field concentration.

また、巻線5.6から突出した冷却ダクト7の両端部は
、液通部19の幅寸法より大なる直径を有する管状部1
7を膨張形成しであるので、従来に比して冷却ダクト7
の端部の電界集中を緩和でき、部分放電開始電圧や破壊
電圧を着しく向上させることができる。この結果巻線端
部と金属シールド板13との絶縁距離を小さくシ。
Further, both ends of the cooling duct 7 protruding from the winding 5.6 are connected to a tubular portion 1 having a diameter larger than the width dimension of the liquid passage portion 19.
Since the cooling duct 7 is expanded and formed, the cooling duct 7 is smaller than the conventional one.
It is possible to alleviate the electric field concentration at the end of the electrode, and it is possible to significantly improve the partial discharge inception voltage and breakdown voltage. As a result, the insulation distance between the winding end and the metal shield plate 13 can be reduced.

またタンクl内に封入する絶縁媒体である8F6ガスの
封入ガス圧を低下させ、変圧器全体を小型・軽量として
コストヲ低減することができる。
Furthermore, the gas pressure of the 8F6 gas, which is an insulating medium, sealed in the tank 1 can be lowered, and the entire transformer can be made smaller and lighter, thereby reducing costs.

さらに、冷却ダクト2の両端部に円周方向に沿う断面積
が大なる管状部12を膨張形成しであるので、冷却ダク
ト7の液道部19の全周から流れてきた冷媒が断面が犬
なるダクト上端部の管状部J7に集合し、接続口2ノを
各して絶縁パイプ12に流れ出る。このように管状部1
1の断面積な大きくしているので、従来(二比して接続
口21周辺の冷媒の流速は低く抑えることができる。こ
のため、冷媒の流速が増大することにより生じていたキ
ャビティションや静電気放電の発生を防止でき、冷却ダ
クトの侵食を防ぐことができる。
Furthermore, since the tubular portions 12 having a large cross-sectional area along the circumferential direction are expanded and formed at both ends of the cooling duct 2, the refrigerant flowing from the entire circumference of the liquid path portion 19 of the cooling duct 7 has a large cross-sectional area. It collects in the tubular part J7 at the upper end of the duct, and flows out into the insulating pipe 12 through the connection ports 2. In this way, the tubular part 1
Since the cross-sectional area of 1 is large, the flow velocity of the refrigerant around the connection port 21 can be kept low compared to the conventional method (2). Therefore, cavitation and static electricity that occur due to an increase in the flow velocity of the refrigerant can be suppressed. It is possible to prevent the occurrence of electrical discharge and to prevent erosion of the cooling duct.

また、この実施例に8いては、冷却ダクト7の内部にス
ペーサ22を設けであるので、冷却ダクト2の内部を流
れる冷媒はスペーサ22に案内されることにより、ダグ
1下端部の管状部17から液道部J9の円周方向全体に
平均的に分散されて液道部19内を良好に流れるので、
冷媒による巻線5.6に対する冷却効果を向上できる。
Further, in this embodiment, since the spacer 22 is provided inside the cooling duct 7, the refrigerant flowing inside the cooling duct 2 is guided by the spacer 22, and the tubular part 17 at the lower end of the duct 1 is guided by the spacer 22. Since it is evenly distributed over the entire circumferential direction of the liquid path J9 and flows well in the liquid path 19,
The cooling effect of the refrigerant on the windings 5.6 can be improved.

また、低圧巻線5および高圧巻線6を強い張力で鉄心2
あるいは絶縁バリヤ12に巻付ける時に、巻線5.6内
に設けられる冷却ダクト7はスペーサ22が補強骨材の
役目を有するものとなって巻線5.6の張力を受は止め
るので冷却ダクト7の液道部19が張力により押し潰さ
れることを防止できる。
In addition, the low voltage winding 5 and the high voltage winding 6 are applied to the iron core 2 with strong tension.
Alternatively, when winding the insulation barrier 12, the cooling duct 7 provided within the winding 5.6 is closed because the spacer 22 acts as a reinforcing aggregate and stops receiving the tension of the winding 5.6. It is possible to prevent the liquid path section 19 of No. 7 from being crushed by tension.

なお、冷却ダクトの内部を設けるスペーサは必ずしも必
要しない。
Note that a spacer provided inside the cooling duct is not necessarily required.

本発明の変圧器は以上説明したように箔巻巻線における
絶縁特性を向上して小形・軽量を図りコストを低減でき
るとともに、箔巻巻線の内部に設けた冷却ダクトに8け
るキャビテーションや静電気放電の発生を防止して信和
性を高めることができ、大装置変圧器に効果的に用いる
ことができる。
As explained above, the transformer of the present invention improves the insulation properties of the foil-wound winding, making it compact and lightweight, and reducing costs. The reliability can be improved by preventing the occurrence of discharge, and it can be effectively used in large equipment transformers.

【図面の簡単な説明】 第1図は従来の変圧器を示す断面図、第2図は従来の変
圧器における巻線端部の電界分布を示す説明図、第3図
は本発明の変圧器の一実施1 例を示す断面図、第4図は本発明の変圧器における冷却
ダクトを示す斜視図、第5図は第4図v−v線に沿う断
面図、第6図は第4図Vl −Vl線に沿う断面図、第
7図は第4図■−■線に沿う断面図、第8図は本発明の
変圧器における巻線端部の電界分布を示す説明図である
。 l・・・タンク、2・・・鉄心、3・・・金属シート、
4・・・絶縁シート、5・・・低圧巻線、6・・・高圧
巻線、7・・・冷却ダクト、II・・・導液#←、12
・・・絶縁パイプ、12・・・管状部、19・・・液道
部、22・・・スペーサ。 出願人代理人 弁理士 鈴 江 武 彦2 矛3図 矛5図
[Brief Description of the Drawings] Figure 1 is a sectional view showing a conventional transformer, Figure 2 is an explanatory diagram showing the electric field distribution at the winding end of the conventional transformer, and Figure 3 is a diagram showing the transformer of the present invention. FIG. 4 is a perspective view showing a cooling duct in the transformer of the present invention, FIG. 5 is a sectional view taken along line v-v in FIG. 4, and FIG. FIG. 7 is a cross-sectional view taken along the line Vl--Vl, FIG. 7 is a cross-sectional view taken along the line ■-■ in FIG. 4, and FIG. 8 is an explanatory diagram showing the electric field distribution at the winding end in the transformer of the present invention. l...tank, 2...iron core, 3...metal sheet,
4... Insulating sheet, 5... Low voltage winding, 6... High voltage winding, 7... Cooling duct, II... Liquid guide #←, 12
... Insulating pipe, 12 ... Tubular part, 19 ... Liquid path part, 22 ... Spacer. Applicant's agent Patent attorney Takehiko Suzue 2 Illustrations of 3 spears and 5 illustrations of spears

Claims (2)

【特許請求の範囲】[Claims] (1)金属シートと絶縁シートとを重ね合せて巻回した
箔巻巻線を備え、この巻線の内部に巻線冷却用の冷媒を
流す円筒状の冷却ダクトを設けたものにおいて、前記冷
却ダクトの軸方向両端部を前記箔巻巻線の絶縁シートの
両端より外方に突出させ、且っ16突出した前記冷却ダ
クトの両端部にこの端部を膨張させてダクト円周方向に
沿う管状部を形成してなる変圧器。
(1) A device comprising a foil-wound winding formed by overlapping and winding a metal sheet and an insulating sheet, and a cylindrical cooling duct for flowing a refrigerant for cooling the winding inside the winding, in which the cooling Both ends in the axial direction of the duct are made to protrude outward from both ends of the insulating sheet of the foil-wound winding, and these ends are expanded to form a tubular shape along the circumferential direction of the duct. A transformer formed by forming a part.
(2)箔巻巻線の内部に設けられた複数の冷却ダクトに
8ける前記箔巻巻線の両端から突出する両端部の突出長
さを、最外側に位置する冷却ダクトから最内側に位置す
る冷却ダクトにかけて順次大きくなるように設定してな
る特許請求の範囲第1項記載の変圧器。
(2) The protruding length of both ends of the foil-wound winding of the plurality of cooling ducts provided inside the foil-wound winding is determined from the outermost cooling duct to the innermost cooling duct. 2. The transformer according to claim 1, wherein the transformer is set to gradually increase in size as the cooling duct increases.
JP16135281A 1981-10-09 1981-10-09 Transformer Granted JPS5863109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16135281A JPS5863109A (en) 1981-10-09 1981-10-09 Transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16135281A JPS5863109A (en) 1981-10-09 1981-10-09 Transformer

Publications (2)

Publication Number Publication Date
JPS5863109A true JPS5863109A (en) 1983-04-14
JPS632126B2 JPS632126B2 (en) 1988-01-18

Family

ID=15733443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16135281A Granted JPS5863109A (en) 1981-10-09 1981-10-09 Transformer

Country Status (1)

Country Link
JP (1) JPS5863109A (en)

Also Published As

Publication number Publication date
JPS632126B2 (en) 1988-01-18

Similar Documents

Publication Publication Date Title
US6351202B1 (en) Stationary induction apparatus
JPS5863109A (en) Transformer
CN210073581U (en) High-frequency transformer
JPH0669048A (en) Transformer connecting-lead-wire device
JP3709767B2 (en) Static induction machine
JP3274241B2 (en) Cooling structure for static induction equipment windings
JPS58108726A (en) Transformer
JPS59222912A (en) Foil wound transformer
JPS59172219A (en) Transformer
JPS60241205A (en) Foil-wound transformer
JPS6190408A (en) Foil-wound transformer
JP2000260636A (en) Stationary induction apparatus
JPS58112313A (en) Transformer
JPS5875811A (en) Leaf wound transformer
JPS59121810A (en) Foil-wound transformer
JPH03120804A (en) Gas-insulated transformer
JPH06275444A (en) Gas insulated transformer
JPS6347914A (en) Foil-winding transformer
JPH0917648A (en) Stationary induction electric device
JPS5875810A (en) Leaf wound transformer
JPS61128507A (en) Foil-wound transformer
JPS5893204A (en) Transformer
JPS58118105A (en) Foil wound type transformer
JPS60102718A (en) Foil wound transformer
JPH0218912A (en) Foil wound transformer