JPS5862540A - Device for detecting grain size distribution of loose material - Google Patents

Device for detecting grain size distribution of loose material

Info

Publication number
JPS5862540A
JPS5862540A JP56162343A JP16234381A JPS5862540A JP S5862540 A JPS5862540 A JP S5862540A JP 56162343 A JP56162343 A JP 56162343A JP 16234381 A JP16234381 A JP 16234381A JP S5862540 A JPS5862540 A JP S5862540A
Authority
JP
Japan
Prior art keywords
size distribution
particle size
photodetector
signal
conveyor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56162343A
Other languages
Japanese (ja)
Inventor
Masayoshi Ito
正義 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Mining Co Ltd
Furukawa Kogyo Co Ltd
Original Assignee
Furukawa Mining Co Ltd
Furukawa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Mining Co Ltd, Furukawa Kogyo Co Ltd filed Critical Furukawa Mining Co Ltd
Priority to JP56162343A priority Critical patent/JPS5862540A/en
Publication of JPS5862540A publication Critical patent/JPS5862540A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sorting Of Articles (AREA)

Abstract

PURPOSE:To detect grain size distribution of loose materials in a short time by a device wherein the reflected light of a light irradiated to the loose materials is converted into an electric signal, and then this signal is converted into a grain size distribution signal. CONSTITUTION:A part of a conveyor 2 for carrying a loose material 1 is constituted as a detection line section 3. A light irradiator 4, photodetector 5 and a converter 6 are disposed above the conveyor 2. A light emitted from the irradiator 1 is reflected by the loose material 1 to enter the photodetector 5. The photodetector 5 converts this reflected light into an electric signal to be applied to the converter 6. Based on the input electric signal, the converter 6 outputs a grain size distribution signal for the loose material 1. With this, it becomes possible to detect grain size distribution of loose materials in a short time in a contactless fashion.

Description

【発明の詳細な説明】 この発明は、コンベヤ上を搬送されるばら物の粒度分布
を検知する装置に関し、特に、コンベヤ上の検知ライン
部を照射する光照射手段と、検知ライン部からの反射光
の光度を検知する光検知手段と、検知した光度信号を粒
度分布信号に変換する変換手段とを設けてばら物の粒度
分布を非接触で連続的に検知することにより、工程中の
ばら物の粒度管理を容易にする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for detecting the particle size distribution of bulk materials conveyed on a conveyor, and in particular to a device for detecting the particle size distribution of bulk materials conveyed on a conveyor, and in particular, a light irradiation means for illuminating a detection line section on the conveyor, and a device for detecting the particle size distribution of bulk materials conveyed on a conveyor. By providing a light detection means for detecting the luminous intensity of light and a conversion means for converting the detected luminous intensity signal into a particle size distribution signal, the particle size distribution of loose materials can be continuously detected in a non-contact manner. facilitates granularity management.

石炭の選炭、鉱石や砕石の選鉱、製鉄所のベレタイジン
グ、セメントのクリンカ工程などのばら物を取扱う作業
において、生産品の品¥を管理上、生産工程中のばら物
の粒度分布を管理することは重要である。この管理は、
最終工程に限らず、各生S<工程、すなわち、供給点、
中間点で・も必較とさfL、その管理が不充分であると
生産品の品質が低下する。
In operations that handle bulk materials such as coal preparation, ore and crushed stone processing, beretizing in steel plants, and cement clinker processes, management of the product quality and particle size distribution of bulk materials during the production process. is important. This management is
Not limited to the final process, each raw S<process, that is, the supply point,
Even at the intermediate point, it is necessary to check the quality of the product, and if its management is insufficient, the quality of the product will deteriorate.

従来、これらの粒度分布は、サンプリング装置などにょ
シ所定の工程からサンプルをmJlin、篩分けによシ
粒度分布を検べることか行なわれていた。また、近年で
は、篩分けに代えて、サンプルを重力落下させレーザー
光による粒子の回折像を特殊な回転フィルタを通じてマ
イクロコンピュータで解析する装置なども一部使用され
ている。
Conventionally, these particle size distributions have been determined by measuring the sample from a predetermined process such as a sampling device and sieving it. In addition, in recent years, instead of sieving, some devices have been used in which the sample is dropped by gravity and the diffraction image of the particles by laser light is analyzed using a microcomputer through a special rotating filter.

しかしながら、これらの方法では、工程のラインからサ
ンプルを採取する操作を必要とし、そのサンプルの粒度
分布の解析の情報を直ちに生産工程、例えば破砕機、摩
砕機などへフィードバックして制御することができない
欠点があった。
However, these methods require the operation of collecting a sample from the process line, and it is not possible to immediately feed back and control the analysis information of the particle size distribution of the sample to the production process, such as a crusher or a grinder. There were drawbacks.

この発明は、ばら物の粒度分布検知におけるかかる問題
を解決するものである。而して、この発明の目的は、長
い分析時間を必要としないばら物の粒度分布検知装置を
提供するにあり、また、この発明の目的は、非接触で連
続的に所定の工程の可動コンベヤ上で粒度分布を検知で
きるばら物の粒度分布検知装置を提供するにあり、さら
に、この発明・の目的は、検知した粒度分布の情報を制
御できる装置を提供するにある。
This invention solves this problem in detecting the particle size distribution of loose materials. SUMMARY OF THE INVENTION An object of the present invention is to provide a particle size distribution detection device for bulk particles that does not require a long analysis time. It is an object of the present invention to provide a particle size distribution detection device for bulk materials that can detect the particle size distribution as described above, and a further object of the present invention is to provide a device that can control information on the detected particle size distribution.

すなわち、この発明は、図示する実施例の如く、ばら物
1を搬送するコンベヤ2上の検知ライン部6を照射する
光照射器4と、通過するばら物10粒子と粒子間空隙と
によって変化する前記検知ライン部3からの反射光を受
光して光度を電気的信号として出力する光検知器5と、
該光検知器5に接続されており、その光検知・器5の出
力する光度信号を受けて粒度分布信号に変換する変換器
6とを具f+iiiすることを特徴とするばら物1の粒
度分布検知装置10に係る。
That is, as in the illustrated embodiment, this invention changes depending on the light irradiator 4 that irradiates the detection line section 6 on the conveyor 2 that conveys the bulk material 1, the 10 particles of the bulk material passing through, and the spaces between the particles. a photodetector 5 that receives the reflected light from the detection line section 3 and outputs the luminous intensity as an electrical signal;
A particle size distribution of a bulk material 1, characterized in that a converter 6 is connected to the photodetector 5 and receives a luminous intensity signal output from the photodetector 5 and converts it into a particle size distribution signal. It concerns the detection device 10.

以下図面に基づいてこの発明を説明する。第1図は、こ
の発明の一実施例の構成を示しており、ばら物1を搬送
するラインに設けられたコンベヤ2トの任意地点の略中
央線に近く、ばら物1上層部のt■1位長さをばら物1
の粒度分布をt+−a++するだめの検知ライン部6と
して設定し、コンベヤ2の土)i Kこの検知ライン部
6を照射il能な光照射器4が設けられている。この光
照射器4は、ばら物1の粒度や性状により、照明灯、レ
ーザ光線などを適宜選択[7、コンベヤ2の進行方向の
前後に複数個設けて、検知ライン部3において、ばら物
1の粒子の表面構造に影響されず均一な反射光が得られ
るように設定するのが望ましい。光照射器4は、電源9
に接続されている。
The present invention will be explained below based on the drawings. FIG. 1 shows the configuration of an embodiment of the present invention, in which a conveyor 2 installed on a line for conveying bulk materials 1 is located near the approximate center line of an arbitrary point, and t 1st place length 1
A light irradiator 4 capable of irradiating the soil of the conveyor 2) i K is set as a detection line section 6 that has a particle size distribution of t+-a++. This light irradiator 4 selects an illumination lamp, a laser beam, etc. as appropriate depending on the particle size and properties of the loose material 1. It is desirable that the setting be such that uniform reflected light can be obtained without being affected by the surface structure of the particles. The light irradiator 4 is powered by a power source 9
It is connected to the.

検知ライン部3の直上には、検知ライン部3を通過する
際光照射器4によって照射されるばら物1の、粒子と粒
子間空隙とによって生ずる明暗。
Immediately above the detection line section 3 are brightness and darkness caused by particles and interparticle spaces of the bulk material 1 irradiated by the light irradiator 4 when passing through the detection line section 3 .

す々わち、反射光の光度を検知するだめの、光検知器5
が設けられている。この光検知器5は、検知ライン部6
からの反射光を受光するための受光レンズ(図示せず)
、受光により電気信号を出力する光電管、トランジスタ
受光素子などの光検手段(図示せず)、電気信号を増巾
する増巾器(図示せず)等で構成されている。
In other words, a photodetector 5 for detecting the luminous intensity of reflected light.
is provided. This photodetector 5 has a detection line section 6
A light receiving lens (not shown) for receiving reflected light from the
, a photodetector (not shown) such as a phototube that outputs an electrical signal by receiving light, a transistor light-receiving element, and an amplifier (not shown) that amplifies the electrical signal.

光検知器5の出力側に接続して変換器6が設けられてい
る。この変換器6は比較部7と演算部8を有している。
A converter 6 is provided connected to the output side of the photodetector 5. This converter 6 has a comparison section 7 and an arithmetic section 8.

比較部7には、比較器7aと基準光度を設定する設定器
7bとがあシ、設定器7bに検知対象たるばら物1によ
り夫々定まる基準値が設定されて、設定光度信号り。を
出力する。設定器7bは、比較器7aに接続されている
ので、光検知器5の出力する光度信号りが、比較部7に
入ると、比較器7aでり。と比較され、L≧L。
The comparator 7 has a comparator 7a and a setter 7b for setting a reference luminous intensity, and a reference value determined by the loose object 1 to be detected is set in the setter 7b, and a set luminous intensity signal is generated. Output. Since the setting device 7b is connected to the comparator 7a, when the luminous intensity signal output from the photodetector 5 enters the comparator 7, it is output from the comparator 7a. and L≧L.

の場合LIIL<LOの場合り、の信号が比較器7aか
ら出力される。第2図は、光検知器5により得られる光
度信号り、第3図は、比較部7からの出力信号り1.L
、を示している。
If LIIL<LO, a signal is output from the comparator 7a. 2 shows the luminous intensity signal obtained by the photodetector 5, and FIG. 3 shows the output signal 1. from the comparator 7. L
, is shown.

ここで、検知ライン部3を通過するばら物1D粒子は信
号LIT粒子間空隙は信号L2  に対応している。故
に、この粒子のコンベヤ2の進行方向についての粒子径
Diは、コンベヤ2の速度をv1出カイM号L1  の
信号時間をTiとするとき、I)i=V’lIで求める
ことができる。
Here, the loose 1D particles passing through the detection line section 3 correspond to the signal LIT, and the interparticle gaps correspond to the signal L2. Therefore, the particle diameter Di of the particles in the traveling direction of the conveyor 2 can be determined by I)i=V'lI, where the speed of the conveyor 2 is v1 and the signal time of the output chi M L1 is Ti.

従って、比較器7aからの信号”1 1 L2 を受け
て演算部8で上代より粒子径Diが演°算さね、さらに
、所定の時間内におけるDi値を累積することにより、
粒度分布が求めら1する。こうして得らilだ粒度分布
は、従来の方法で求めらrる粒度分布に近似し、実用上
問題はない。第4図は、粒度分布曲線を示している。演
算結果は、このような粒度分布曲線や粒度分布表として
出力することにより、ばら物1の粒度分布を知ることが
できる。
Therefore, upon receiving the signal "1 1 L2" from the comparator 7a, the calculation unit 8 calculates the particle diameter Di from the above value, and further accumulates the Di values within a predetermined time, so that
The particle size distribution is determined. The particle size distribution obtained in this manner approximates the particle size distribution obtained by conventional methods, and poses no practical problem. Figure 4 shows the particle size distribution curve. By outputting the calculation results as such a particle size distribution curve or a particle size distribution table, the particle size distribution of the bulk material 1 can be known.

さらに、この粒度分布の情報を直接生産工程にフィード
バックし工程を制御することも可能である。
Furthermore, it is also possible to feed back this particle size distribution information directly to the production process to control the process.

例えば、第1図に示す如き破砕機11と、該破砕機11
へ被破砕物を供給する供給コンベヤ12と、破砕機11
で破砕されたばら物1を搬送するコンベヤ2とよりなる
破砕工程では、この粒度分布検知装置10を用いてばら
物1の粒度分布を次のように制御できる。まず、破砕機
11用制御装[13を設けて、これを粒度分布検知装置
11〕の変換手段6の出力例に接続する、この破砕機1
1用制御装置16は、破砕機11の開口の大きさ、破砕
時間などを制御するためのものであり、粒度分布検知装
置が検知出力する生産品たるばら物1の粒度分布情報が
フィードバックされて、h「定粒度と異る場合破砕機1
1をばら物1が所定粒度となる方へ操作する。また、供
給コンベヤ12には、供給コンベヤ12用制御装置14
を設けて、前記破砕機11用制御装置13の出力例に接
続する。
For example, a crusher 11 as shown in FIG.
A supply conveyor 12 that supplies materials to be crushed to the crusher 11
In the crushing process which includes the conveyor 2 that transports the crushed bulk material 1, the particle size distribution of the bulk material 1 can be controlled as follows using this particle size distribution detection device 10. First, a control device for the crusher 11 [13 is provided, and this is connected to the output example of the converting means 6 of the particle size distribution detection device 11].
1 control device 16 is for controlling the opening size, crushing time, etc. of the crusher 11, and is fed back with particle size distribution information of the bulk product 1 detected and output by the particle size distribution detection device. , h "If the particle size is different from the fixed size, crusher 1
1 is operated so that the bulk material 1 has a predetermined particle size. The supply conveyor 12 also includes a control device 14 for the supply conveyor 12.
is provided and connected to the output example of the control device 13 for the crusher 11.

この供給コンベヤ12用制御装置14は、被破砕物供給
量を制御するだめのものであり、破砕機11用制御装置
13の制御信号により、破砕機11の制1all It
こ合せて、最適の被破砕物が破砕機11に供給さノする
よう供給コンベヤー2の速度を制御する。
The control device 14 for the supply conveyor 12 is only for controlling the amount of material to be crushed, and is controlled by the control signal of the control device 13 for the crusher 11.
In addition, the speed of the supply conveyor 2 is controlled so that the optimum material to be crushed is supplied to the crusher 11.

さらに、ばら物1の粒度分布精度を向上させるためには
、コンベヤ2に計#→15と速度制御装色′16を設け
て相Wに接続し、コンベヤ2の速度を割部jすることに
よりばら物10層厚を均一化を図り、あるいは、計量機
15と供給コンベヤー2川制jiljl装置14とを接
続して、計駄信号により供給−1ンベヤ12の速度を制
御して、コンベヤ2の運搬)11°均一化を図る。この
場合、コンベヤ2の速1彰Vけ、ばら物1の粒子径II
 iを演算するだめのファクターであるから、コンベヤ
2の速度制御装置16を粒度分布検知装置10へ接続し
、演算部8へ変化するVの(ilJを入力することが必
要である。
Furthermore, in order to improve the particle size distribution accuracy of the bulk material 1, the conveyor 2 is provided with a total number → 15 and a speed control coloring '16, which are connected to the phase W, and the speed of the conveyor 2 is controlled by dividing the part j. The thickness of the 10 layers of bulk materials can be made uniform, or the weighing machine 15 and the supply conveyor two-way control device 14 can be connected, and the speed of the supply conveyor 12 can be controlled using a waste signal to control the speed of the conveyor 2. Transportation) 11° uniformity will be achieved. In this case, the speed of the conveyor 2 is 1, and the particle size of the bulk material 1 is
Since i is a necessary factor to calculate, it is necessary to connect the speed control device 16 of the conveyor 2 to the particle size distribution detection device 10 and input the (ilJ) of the changing V to the calculation section 8.

コンベヤ2の後段に、破砕機11へばら物1を戻す循環
工程を設けて、粒度分布の検知結果により再循環を行う
こともで・きる。
A circulation step for returning the bulk material 1 to the crusher 11 may be provided after the conveyor 2, and recirculation may be performed based on the detection result of the particle size distribution.

1 上述の如く、この発萌によれば、ばら物1の粒度分布を
、長時間を要せず、非接触で連続的に検知することがで
き、検知した粒度分布情報を直ちに生産工程にフィード
バックして粒度分布を高い精(7slで制御することか
可能であるから、石炭、鉱石、ベレット、々どの粒度を
均一、化し、生産品の品質を向上させる。
1 As mentioned above, according to this development, the particle size distribution of bulk material 1 can be continuously detected without contact for a long time, and the detected particle size distribution information can be immediately fed back to the production process. Since it is possible to control the particle size distribution with high precision (7sl), the particle size of coal, ore, pellets, etc. can be made uniform and the quality of products can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の構成を示す図、第2図は
光検知手段により得られる光度信号りを示す図、第3図
は比較部からの出力信号L1.L2を示す図、第4図は
粒度分布曲線を示す図でff)る、図中、1はばら物、
2はコンベヤ、3は検知ライン部、4は光照射器、5は
光検知器、6は変換器、7は比較部、8は演算部、9は
光源、10は粒度分布検知装置である。 特許出願人  古河鉱業株式会社 代理人 弁理士   森     哲  也弁理士  
 内  藤  嘉  昭 弁理士   清  水     正 第1図 16 第2図
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention, FIG. 2 is a diagram showing the luminous intensity signal obtained by the photodetecting means, and FIG. 3 is a diagram showing the output signal L1. Figure 4 shows the particle size distribution curve. In the figure, 1 indicates loose material;
2 is a conveyor, 3 is a detection line section, 4 is a light irradiator, 5 is a photodetector, 6 is a converter, 7 is a comparison section, 8 is a calculation section, 9 is a light source, and 10 is a particle size distribution detection device. Patent applicant: Furukawa Mining Co., Ltd. Agent Patent attorney: Tetsuya Mori, patent attorney
Yoshiaki Naito, Patent Attorney Tadashi Shimizu Figure 1 16 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)  ばら物を搬送するコンベヤ上の検知ライン部
を照射する光照射器と、通過するばら物の粒子と粒子間
空隙とによって変化する前記検知ライン部からの反射光
を受光して光度を電気的信号として出力する光検知器と
、該光検知器に接続されておシその光検知器の出力する
光度信号を受けて粒度分布信号に変換する変換器とを具
備することを特徴とするばら物の粒度分布検知装置。
(1) A light irradiator that irradiates a detection line section on a conveyor that conveys loose objects, and a light intensity that is determined by receiving the reflected light from the detection line section that changes depending on the particles of the loose objects passing through and the gaps between the particles. It is characterized by comprising a photodetector that outputs an electrical signal, and a converter connected to the photodetector that receives the luminous intensity signal output from the photodetector and converts it into a particle size distribution signal. Particle size distribution detection device for loose materials.
(2)変換器が、光検知器により検出された光度信号と
設定光度信号とを比較する比較部と、信号時間とコンベ
ヤ速度から粒度分布を演算する演算部とよシなることを
特徴とする特許請求の範囲第1、項記載のばら物の粒度
分布検知装置。
(2) The converter is characterized in that it has a comparison section that compares the luminous intensity signal detected by the photodetector and a set luminous intensity signal, and a calculation section that computes the particle size distribution from the signal time and conveyor speed. An apparatus for detecting particle size distribution of loose materials according to claim 1.
JP56162343A 1981-10-12 1981-10-12 Device for detecting grain size distribution of loose material Pending JPS5862540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56162343A JPS5862540A (en) 1981-10-12 1981-10-12 Device for detecting grain size distribution of loose material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56162343A JPS5862540A (en) 1981-10-12 1981-10-12 Device for detecting grain size distribution of loose material

Publications (1)

Publication Number Publication Date
JPS5862540A true JPS5862540A (en) 1983-04-14

Family

ID=15752745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56162343A Pending JPS5862540A (en) 1981-10-12 1981-10-12 Device for detecting grain size distribution of loose material

Country Status (1)

Country Link
JP (1) JPS5862540A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2561386A1 (en) * 1984-03-14 1985-09-20 Svenska Traeforskningsinst METHOD FOR OPTICALLY DETERMINING THE DISTRIBUTION OF LUMPERS IN A PIECE OF MATERIAL
FR2637983A1 (en) * 1988-10-19 1990-04-20 Rhone Poulenc Chimie Method and installation for granulometric analysis of a material consisting of particles
JP2008046077A (en) * 2006-08-21 2008-02-28 Taiheiyo Cement Corp Grain size measuring method
WO2023053239A1 (en) * 2021-09-29 2023-04-06 日本電気株式会社 Material estimation device, material estimation system, and material estimation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56128443A (en) * 1980-03-13 1981-10-07 Nippon Kokan Kk <Nkk> Grain size measuring method of granulous substance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56128443A (en) * 1980-03-13 1981-10-07 Nippon Kokan Kk <Nkk> Grain size measuring method of granulous substance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2561386A1 (en) * 1984-03-14 1985-09-20 Svenska Traeforskningsinst METHOD FOR OPTICALLY DETERMINING THE DISTRIBUTION OF LUMPERS IN A PIECE OF MATERIAL
WO1985004249A1 (en) * 1984-03-14 1985-09-26 Svenska Träforskningsinstitutet Method for measuring size distribution
JPS61500280A (en) * 1984-03-14 1986-02-20 スヴエンスカ・トレ−フオシユクニングスインステイチユテツト Size distribution measurement method for bulk materials
FR2637983A1 (en) * 1988-10-19 1990-04-20 Rhone Poulenc Chimie Method and installation for granulometric analysis of a material consisting of particles
JP2008046077A (en) * 2006-08-21 2008-02-28 Taiheiyo Cement Corp Grain size measuring method
WO2023053239A1 (en) * 2021-09-29 2023-04-06 日本電気株式会社 Material estimation device, material estimation system, and material estimation method

Similar Documents

Publication Publication Date Title
CN103221151B (en) Method and device for individual grain sorting of objects from bulk materials
RU2315977C2 (en) Method and apparatus for analyzing and sorting flow of material
US7924414B2 (en) Non-hazardous bulk material analyzer system
US5256880A (en) Process for the qualitative analysis of plastic particles
EP0992785A3 (en) Improvements relating to the measurement of particle size distribution
CN208818661U (en) Ore dual-energy x-ray transmits intelligent identifying system
CN110088593A (en) For measuring the particle size of the raw material transmitted and the device of aridity/humidity device and the particle size for measuring mixed raw material
US4428902A (en) Coal analysis system
CN215744927U (en) Mineral product sorting machine
JPS5862540A (en) Device for detecting grain size distribution of loose material
RU2702803C1 (en) Method and system for detecting a diamond identifier
KR20230142755A (en) Plant and method for scrap sorting
JPS6412245A (en) Particle analyzing device
Chen et al. Sensor-based sorting
AU680962B2 (en) Method and apparatus for the classification of particulate matter
JPS61216787A (en) Mechanism deciding, selecting and removing mixed foreign matter
JP2001013261A (en) Contamination detection method and device
KR101397625B1 (en) Method of separating metal using color sorting and apparatus therefor
JP2892064B2 (en) Grinding particle size control device for milling roll machine
AU747298B2 (en) On-line diamond detection
SU1146091A1 (en) Method and apparatus for automatic stabilization of sensitivity of x-ray radiometric separator
JPS5742837A (en) Coal and coke moisture measuring device using infrared- ray moisture meter
SU995884A1 (en) Method and apparatus for separation of minerals
RU2215585C2 (en) Method of batch sorting and separation of mineralized mining mass of auriferous quartz ores
GB2292455A (en) Sorting particles according to stimulated raman response