JPS5861899A - Treatment for sewer sludge - Google Patents

Treatment for sewer sludge

Info

Publication number
JPS5861899A
JPS5861899A JP56158705A JP15870581A JPS5861899A JP S5861899 A JPS5861899 A JP S5861899A JP 56158705 A JP56158705 A JP 56158705A JP 15870581 A JP15870581 A JP 15870581A JP S5861899 A JPS5861899 A JP S5861899A
Authority
JP
Japan
Prior art keywords
sludge
solid
digested
treatment
digestion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56158705A
Other languages
Japanese (ja)
Other versions
JPS6317000B2 (en
Inventor
Koichi Kiriyama
桐山 光市
Yoshitaka Matsuo
松尾 吉高
Kaneaki Endo
銀朗 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP56158705A priority Critical patent/JPS5861899A/en
Publication of JPS5861899A publication Critical patent/JPS5861899A/en
Publication of JPS6317000B2 publication Critical patent/JPS6317000B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To improve the solid-liquid sepn. of digested sludge within the range of a digestion process by digesting the initial settling basin sludge produced in sewage treatment facilities anaerobically then mixing the sludge with excess activated sludge and subjecting the sludge to solid-liquid sepn. CONSTITUTION:The initial settling basin sludge produced in sewage treatment facilites are digested anaerobically until 60-75% the org. materials thereof are decomposed. Thereafter, the sludge is mixed with excess sludge and the mixture is subjected to solid-liquid sepn. A dehydration treatment and a combination of a concn. treatment and the dehydration treatment are suitable as the operations for solid-liquid sepn. A settling method, a floating method, and centrifugal concn. can be utilized for the concn. treatment and mechanical dehydration, etc. for the dehydration treatment. This method may cause a decrease in the volume of gases generated as compared to the prior art by as much as the digestion of the excess activated sludge is omitted, but the flocculating properties that the excess activated sludge possesses are acted effectively in the stage of the solid- liquid sepn. by mixing the excess activated sludge as it is with the digested sludge of the initial settling basin sludge.

Description

【発明の詳細な説明】 本発明け、下水汚泥の処理方法に関するものである。[Detailed description of the invention] The present invention relates to a method for treating sewage sludge.

ここ数年来の省エネルギ、石油節約のブームにのって下
水処理の分野においても処理場で発生する汚泥を嫌気性
消化し、発生するガスを何らかのエネルギ源として回収
するということが随所で計画されるよう°Kfiってき
た。そして従来から行なわれている下水汚泥の嫌気性消
化システムに加え 2− て、できるだけ多くのエネルギを回収するべく様々な工
夫がなされるようになってきている。しかしながら嫌気
性消化法を単にエネルギ回収だけで評価するのでなく一
つの汚泥処理法として見た場合、そこKFiおのずと固
液分離性というものが考慮に入つてこなければならない
With the energy-saving and oil-saving boom that has been going on for the past few years, many plans are being made in the field of sewage treatment to anaerobically digest the sludge generated at treatment plants and recover the gas generated as some kind of energy source. I've come to Kfi. In addition to the conventional anaerobic digestion system for sewage sludge, various efforts have been made to recover as much energy as possible. However, when anaerobic digestion is not evaluated simply based on energy recovery, but is viewed as a sludge treatment method, the solid-liquid separability of KFi must be taken into consideration.

かねてより書物など#Cは汚泥を嫌気性消化すると固液
分離が改善されると記されているようであるが、実際は
そうではなく、嫌気性消化をする前の汚泥(以下、混合
生汚泥と配す)に比べて固液分離がよくなるということ
はない。このことは外国書物にもはっきり数字で表わさ
れている。固液分離の良し悪しは固液分離過程で消費す
る薬品の量や電力に影響を右よぼし、このよう忙嫌気性
消化汚泥の固液分離が混合生汚泥のそれに比べて悪くな
るようであれば嫌気性消化法の評価はエネルギ回収とい
う長所と、固液分離過程で逆に多くのエネルギを消費す
るという短所とを総合して行なう必要がある。
It seems that #C in books etc. has been written for some time that anaerobic digestion of sludge improves solid-liquid separation, but in reality this is not the case, and the sludge before anaerobic digestion (hereinafter referred to as mixed raw sludge) solid-liquid separation is not better than that of This fact is clearly expressed numerically in foreign books as well. The quality of solid-liquid separation affects the amount of chemicals and electricity consumed in the solid-liquid separation process, and even if the solid-liquid separation of busy anaerobic digested sludge is worse than that of mixed raw sludge, For example, when evaluating anaerobic digestion methods, it is necessary to comprehensively consider the advantage of energy recovery and the disadvantage of consuming a large amount of energy in the solid-liquid separation process.

しかし、これまで嫌気性消化法について成され−3− できた工夫1ゴ工ネルギ回収という点に向けられ。However, what has been accomplished so far regarding anaerobic digestion -3- One of the ideas that has been developed is energy recovery.

固液分離を改善しようということはほとんど考えられな
かった。嫌気性消化法を再評価せんとするとき、この固
液分離の改善を避けて通ること#−1t軒されず、最も
重要な課題であるといえる。
Little thought was given to improving solid-liquid separation. When trying to re-evaluate anaerobic digestion, improving solid-liquid separation cannot be ignored and can be said to be the most important issue.

本発明は、この消化汚泥の固液分離の改善という点につ
いて消化槽から出る消化汚泥に対し、何らかの外的要因
を与えることによって固液分離の改IIを図るのでなく
、消化プロセスの範囲内で、従来のものに比べて固液分
離の向上する消化fij泥を得ることができる、下水汚
泥の処理方法を提供することを目的とするものであって
、最初沈殿池汚泥を嫌気性消化したるのち、余剰活性汚
泥と混合して固液分離することを特徴とするものである
In terms of improving the solid-liquid separation of digested sludge, the present invention does not attempt to improve the solid-liquid separation by applying some external factor to the digested sludge discharged from the digestion tank, but rather improves the solid-liquid separation within the scope of the digestion process. The purpose of the present invention is to provide a method for treating sewage sludge that can obtain digested fij mud with improved solid-liquid separation compared to conventional methods, in which sedimentation tank sludge is first subjected to anaerobic digestion. It is characterized in that it is then mixed with surplus activated sludge and subjected to solid-liquid separation.

一般に下水処理場でいう混合生汚泥とは発生する最初沈
殿池汚泥き余剰活性汚泥とを発生量比で混合したもので
ある。しかるiこの最初沈殿池汚泥と余剰活性汚泥とは
本来の性状が大変異なるのみでなく、これらを嫌気性消
化した場合の消化の状況、そして得られる消化汚泥の性
状においても?im昭58−61899 (241−か
なりの差異を示す、このように性質の異なる二種類の汚
泥を一緒忙して同じ消化槽で消化することはエネルギの
効率的な利用上からも、また消化汚泥の固液+喝という
点からも好ましいものではなく、それぞれの性状、とり
わけ消化状況をうまく生かした消化法が望まれる。
In general, mixed raw sludge in a sewage treatment plant is a mixture of the initial settling tank sludge and surplus activated sludge in the ratio of generation amounts. However, not only are the original properties of the initial settling tank sludge and surplus activated sludge very different, but also the conditions of digestion when they are anaerobically digested, and the properties of the digested sludge obtained. im 1982-61899 (241-Digesting two types of sludge with different properties, which show considerable differences, in the same digestion tank is important from the standpoint of efficient energy use, and also because of the waste of digested sludge. It is not preferable from the viewpoint of solid-liquid + fermentation, and a digestion method that takes advantage of the properties of each, especially the digestion conditions, is desired.

二種類の汚泥の消化状況や消化汚泥の性状を記すと、一
般に最初沈殿池汚泥では全固形物(以下。
Describing the digestion status of the two types of sludge and the properties of the digested sludge, in general, the total solids (hereinafter referred to as 0%) in the initial settling tank sludge.

T8と記す)に占める揮発性固形物(以下、VSと記す
)の割合が余剰活性汚泥とほぼ同じか、もしくけ余剰活
性汚泥より少し低いが、vsの構成物質において炭水化
物、脂肪が余剰活性汚泥よりも多く蛋白質が少ないので
vsの分解速度がかなり早く、分解した単位重量のVS
あたりのガス発生量も多い。丈た。消化汚泥の固液分離
性では最初沈殿池汚泥を消化したものは沈降濃縮性忙富
み、脱水するときの薬注率は低く、固形物処理量も大き
い。それに比べて同じ消化時間であれば余剰活性汚泥を
消化したものは沈降am性に欠け、脱水時の薬注率も高
く、固形物処理量が小さい。
The proportion of volatile solids (hereinafter referred to as VS) in the T8 (hereinafter referred to as VS) is almost the same as that of surplus activated sludge, or slightly lower than that of surplus activated sludge, but in the constituent substances of VS, carbohydrates and fat are higher than surplus activated sludge. Since it contains more protein and less protein, the decomposition rate of VS is quite fast, and the decomposed unit weight of VS
There is also a large amount of gas generated. It was long. In terms of solid-liquid separation of digested sludge, the first digested sedimentation tank sludge is busy with settling and thickening, the chemical injection rate during dewatering is low, and the amount of solids processed is large. In comparison, for the same digestion time, digested surplus activated sludge lacks sedimentation properties, has a high chemical injection rate during dewatering, and has a small throughput of solids.

 5− 最初沈殿池汚泥と余剰活性汚泥はこのような差異を示し
、これらを−緒に消化することは好ましくなく、それぞ
れの消化状況の特徴を生かして消化プロセスを組む必要
がある。そして、このように消化すれば最初沈殿池汚泥
と余剰活性汚泥の区別なく一緒に消化する従来法に比べ
、ガス発生によるエネルギ回収という嫌気性消化法の持
つ長所をそれほど損うことなく、更にかねて問題となっ
ていた消化汚泥の固液分離性という点においてそれを十
分に克服する消化法を得ることができる。
5- Initial settling tank sludge and surplus activated sludge show such differences, and it is not preferable to digest them together; it is necessary to design a digestion process that takes advantage of the characteristics of each digestion situation. Compared to the conventional method of digesting primary sedimentation tank sludge and surplus activated sludge together without distinguishing them, this method does not significantly impair the advantage of anaerobic digestion, which is the recovery of energy through gas generation, and is much more efficient. It is possible to obtain a digestion method that satisfactorily overcomes the problem of solid-liquid separation of digested sludge.

そして、これらの効果は最初沈殿池汚泥の発生量の余剰
活性汚泥のそれ九対する比率が高いほど大きいのである
These effects become greater as the ratio of the amount of initial settling tank sludge generated to that of surplus activated sludge is higher.

このような知見に基づいて完成されたのが本発明のプロ
セスである。すなわち、余剰活性汚泥の消化状況が最初
沈殿池汚泥のそれに比べて非常に悪いことから、また、
余剰活性汚泥を消化することが却って最初沈殿池汚泥な
消化したものの固液分離性を損ねていることから、余剰
活性汚泥は全く消化せずに最初沈殿池汚泥の消化汚泥と
混合し 6− て固液分離するというのが本発明のプロセスである。な
お、嫌気性消化は最初沈殿池汚泥をその有機智の60〜
75%が分解されるまで行なうのが好tしい、tた、固
液分離操作としては脱水処理、濃りm第環と脱水処理の
組合せが好ましく、濃縮処理は沈降法、浮上法、遠心濃
縮法がよく脱水処理ha城脱水その他の脱水法を利用で
きる。
The process of the present invention was completed based on this knowledge. In other words, the digestion status of surplus activated sludge is much worse than that of primary settling tank sludge;
Digesting the surplus activated sludge actually impairs the solid-liquid separation of the digested primary sedimentation tank sludge, so the surplus activated sludge is not digested at all and is mixed with the digested sludge of the primary sedimentation tank sludge. The process of the present invention involves solid-liquid separation. In addition, in anaerobic digestion, the sedimentation tank sludge is initially
It is preferable to carry out until 75% is decomposed.The solid-liquid separation operation is preferably a combination of dehydration treatment, thick ring and dehydration treatment, and the concentration treatment is performed by sedimentation method, flotation method, centrifugal concentration. Dehydration methods such as hajo dehydration and other dehydration methods can be used.

本発明のプロセスにあっては、余剰活性汚泥の消化を省
略した分だけ、従来法に比べてガスの発生量が減少する
こともあり得るが、余剰活性汚泥を消化せずに最初沈殿
池汚泥の消化汚泥と混合することで余剰活性汚泥の持つ
凝集性が固液分離操作で効果的に働き、従来法に比べて
固液分離が浸れたものとなる。
In the process of the present invention, the amount of gas generated may be reduced compared to the conventional method due to the omission of digestion of excess activated sludge; By mixing with the digested sludge, the flocculating properties of the surplus activated sludge work effectively in the solid-liquid separation operation, resulting in a more efficient solid-liquid separation compared to conventional methods.

固液分離において汚泥の凝集性Viム要な指標であり、
凝集性に関わる他の因子が同じであっても凝集性の有無
あるいは凝集力の強弱で固液分離性がかなりの相違を示
すものである。余剰活性汚泥を嫌気性消化せず、その凝
集性を保有せる状態で最初沈殿池汚泥を消化したらのに
混合することで、−7− 最初沈殿池汚泥の消化汚泥の固液分離性を損うことなく
、逆に促進するように働きかけるのである。
In solid-liquid separation, the cohesiveness of sludge is an important indicator,
Even if other factors related to cohesiveness are the same, solid-liquid separability shows considerable differences depending on the presence or absence of cohesiveness or the strength of cohesive force. By not anaerobically digesting the surplus activated sludge and mixing it after the initial settling tank sludge has been digested in a state that retains its flocculating properties, -7- the solid-liquid separability of the digested sludge of the initial settling tank sludge will be impaired. Instead, they work to promote it.

もともと余剰活性汚泥は最初沈殿池汚泥に比べてその発
生量が少な(、TSに対するvsの値も変わらすVSf
)分解率も低いうえ、分解されたvB単位重量あたりの
ガス発生量も小さく、シたがってガス発生量、VB(T
S)の減少量のいす、れも最初沈殿池汚泥に比べてかな
り小さいため、従来法に比べてガスの発生量が少なくな
ることがあってもその遜色は小さいものであり、むしろ
多年の課題であった固液分離の悪さが克服されるという
点でこの遜色を埋め合わせてなお余りある効果が生じる
Originally, the amount of surplus activated sludge generated is smaller than that of the initial settling tank sludge (the value of vs for TS also changes).
) The decomposition rate is low, and the amount of gas generated per unit weight of decomposed vB is also small, so the amount of gas generated, VB(T
Since the amount of reduction in S) is considerably smaller than that in the initial settling tank sludge, even if the amount of gas generated is smaller than in the conventional method, the difference is small and is rather a long-standing issue. This disadvantage is more than offset by the fact that the poor solid-liquid separation is overcome.

また、最初沈殿池汚泥けvB分解が早いため、その有機
物の60〜75%が分解されるに必要な消化日数も短く
、その最初沈殿池汚泥のみを消化するのであるから消化
槽な加温するに必要なエネルギも従来法に比べて着しく
少なくなる。したがって、この点を加味すればガス発生
量が従来法に比べて少ないことがあるということも短所
とはな 8− 9ケい、)、あう。   關1.!58−61899 
(3)以上、述べてきたように、最初沈殿池汚泥のみ嫌
気性消化し、これに余剰活性汚泥を混合して固液分離す
ることを基本的なプロセスとすることKより、本発明で
は従来の嫌気性消化汚泥忙おける最大の問題点であった
固液分離の悪さを十分く克服できるばかりか長所とする
ところのエネルギ回収も遜色なく行なうことができるの
である。
In addition, because the initial settling tank sludge vB decomposition is fast, the number of days needed for digestion to decompose 60 to 75% of the organic matter is short, and since only the initial settling tank sludge is digested, the digestion tank does not need to be heated. The energy required for this method is also significantly lower than that of conventional methods. Therefore, if this point is taken into consideration, the fact that the amount of gas generated may be smaller than that of the conventional method is not a disadvantage. 1. ! 58-61899
(3) As mentioned above, since the basic process is to anaerobically digest only the initial sedimentation tank sludge, mix it with excess activated sludge, and perform solid-liquid separation, the present invention Not only can this method sufficiently overcome the poor solid-liquid separation, which was the biggest problem with anaerobically digested sludge, but it can also perform energy recovery, which is an advantage.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

実lll1例1 T 84.3%、 Vii 3.4% 、 v87T 
877.5%の最初沈殿池汚泥を1.411日 で槽内
温度35℃の嫌気性消化槽に投入し10日間消化すると
、投入したvsの73%が分解しガスが32.597/
B発生した。そして消化した最初沈殿池汚泥はTa2.
1%、 v s O,9%e v8/ T 848.1
%とナツタ。
Real lll1 example 1 T 84.3%, Vii 3.4%, v87T
When 877.5% of the primary sedimentation tank sludge was put into an anaerobic digestion tank with an internal temperature of 35°C for 1.411 days and digested for 10 days, 73% of the input vs was decomposed and the gas was 32.597/
B occurred. The digested primary sedimentation tank sludge has a Ta2.
1%, v s O, 9% e v8/T 848.1
% and Natsuta.

一方、T 82.8%、 V B 2.0%、 V 8
/T 574.2%の余剰活性汚泥を最初沈殿池汚泥と
の固形物あたりの発生量比に相轟するようK 1.I 
J/Bで、先の消化した最初沈殿池汚泥に混合するとT
a2.39− %、VS1.4%となった。
On the other hand, T 82.8%, V B 2.0%, V 8
/T 574.2% of the surplus activated sludge and the initial sedimentation tank sludge were adjusted to match the generated amount ratio per solid matter. 1. I
When mixed with the previously digested primary sedimentation tank sludge at J/B, T
The a was 2.39-% and the VS was 1.4%.

この混合汚泥を塩化第二鉄と消石灰を凝集助剤として真
空脱水試験機で脱水した。その結果、塩化第二鉄をTS
あたり15%、消石灰を70%添加すると脱水ケーキの
含水率77.1%、固形物処理量(Net ) 21.
8 M/−hを得た。才た、この混合汚泥をカチオン系
高分子凝集剤を用いてベルトプレス型加圧脱水機で脱水
すると高分子凝集剤をTSあたり0.65%必要とし、
脱水ケーキの含水率H78,5%となった。なお、消化
槽の大きさは141である。
This mixed sludge was dehydrated using a vacuum dehydration tester using ferric chloride and slaked lime as coagulation aids. As a result, TS of ferric chloride
When 70% of slaked lime is added, the moisture content of the dehydrated cake is 77.1%, and the solids throughput (Net) is 21.
8 M/-h was obtained. However, when this mixed sludge is dehydrated using a cationic polymer flocculant in a belt press type pressure dehydrator, the polymer flocculant is required at 0.65% per TS;
The moisture content of the dehydrated cake was H78.5%. Note that the size of the digestion tank is 141 mm.

実施例2 TS4.3%、 V 83.4%、V8/7877.5
%のの最初沈殿池汚泥をlゎ巾で槽内温度35℃の嫌気
性消化槽に投入し8日間消化すると、投入したvsの6
8%が分解しガスが22,617日発生した。
Example 2 TS4.3%, V 83.4%, V8/7877.5
% of the initial settling tank sludge was put into an anaerobic digestion tank with an internal temperature of 35°C for 8 days, and 6% of the input vs.
8% decomposed and gas was generated for 22,617 days.

そして消化した最初沈殿池汚泥#1T82.0%、VB
1.1%、 V S/T B 52.5%t!=lkツ
タ。一方、TS0.45%、VB0.35%、vs/T
 878.0%の余剰活性汚泥を最初沈殿池汚泥との固
形物あたりの−10− 発生量比に相幽するようK 7 J/日で、先の消化し
た最初沈殿池汚泥に混合すると、T B 0.65%。
And digested first sedimentation tank sludge #1T82.0%, VB
1.1%, V S/T B 52.5%t! =lk ivy. On the other hand, TS0.45%, VB0.35%, vs/T
When 878.0% of surplus activated sludge is mixed with the previously digested primary sedimentation tank sludge at a rate of K 7 J/day to balance the -10- generation amount per solid matter with the primary sedimentation tank sludge, T B 0.65%.

V B 0.45%となった。VB was 0.45%.

この混合汚泥を1日重力沈降濃細すると濃縮汚泥の容量
F123%となり、その濃度V12.8%となった。こ
れを塩化第二鉄と消石灰を凝集助剤として真空脱水試験
機で脱水すると、塩化第二鉄をTSあたり15%、消石
灰を70%添加して脱水ケーキの含水率76.3%、l
il形物浄物量22.1も脅−hを得た。また、この混
合汚泥なカチオン系高分子凝集剤を用いてベルトプレス
型加圧脱水機で脱水すると高分子凝集剤をTSあたり0
.65%必要とし、脱水ケーキの含水率1178.5%
となった。なお、消化槽の容量Fi81である。
When this mixed sludge was concentrated by gravity sedimentation for one day, the volume of the thickened sludge became F123% and its concentration V12.8%. When this was dehydrated using a vacuum dehydration tester using ferric chloride and slaked lime as flocculation aids, the water content of the dehydrated cake was 76.3% by adding 15% ferric chloride and 70% slaked lime per TS.
The amount of filtration of 22.1 was also obtained. In addition, if this mixed sludge is dehydrated using a cationic polymer flocculant in a belt press type pressure dehydrator, the polymer flocculant will be reduced to 0 per TS.
.. 65% is required, and the moisture content of the dehydrated cake is 1178.5%.
It became. Note that the capacity of the digestion tank is Fi81.

次に比較例として従来法で処理した場合を述べる。Next, as a comparative example, a case where processing is performed using a conventional method will be described.

比較例 ?83.6%、v s 2,6%、 V 8/T B 
76.3%の混合生汚屍を2.5ノ/日で35℃の嫌気
性消化槽に投入し25日間滞留させると、投入されたv
sの49%が分解しガスが27.4わ巾発生した。その
結果、消化汚泥FiT82.3%、 VB 1.4%、
”/1862.1%となった。
Comparative example? 83.6%, vs 2.6%, V 8/T B
When 76.3% mixed raw waste was fed into an anaerobic digestion tank at 35°C at 2.5 knots/day and retained for 25 days, the amount of v
49% of s was decomposed and 27.4 wts of gas was generated. As a result, the digested sludge FiT 82.3%, VB 1.4%,
”/1862.1%.

この消化汚泥を塩化第二鉄と消石灰ン凝集助剤として真
空脱水試験機で脱水した。その結果環化第二鉄をTSあ
たり15%、消石灰を100%添加すると脱水ケーキの
含水率80.2%、固形物処理量(Net )8.1嬌
全・h を得た。また、この消化汚泥をカチオン系高分
子凝集剤を用いてベルトプレス型加圧脱水機で脱水する
と高分子凝集剤をTSあたり0.85%必要とし、脱水
ケーキの含水率は82.2%となった。この場合、消化
槽の大きさVi62.5jである。
This digested sludge was dehydrated using a vacuum dehydration tester using ferric chloride and slaked lime as a coagulation aid. As a result, when 15% of ferric cyclization and 100% of slaked lime were added per TS, the moisture content of the dehydrated cake was 80.2% and the solid matter throughput (Net) was 8.1 g/h. Furthermore, when this digested sludge is dehydrated using a cationic polymer flocculant in a belt press type pressure dehydrator, the polymer flocculant is required at 0.85% per TS, and the water content of the dehydrated cake is 82.2%. became. In this case, the size of the digester is Vi62.5j.

Claims (1)

【特許請求の範囲】 L 下水処理施設において発生する最初沈殿池汚泥を嫌
気性消化したるのち、余剰活性汚泥と混合して固液分離
することを特徴とす子下水汚泥の処理方法。 2、前記最初沈殿池汚泥をその有機物の60〜75%が
分解される才で嫌気性消化する特許請求の範囲第1項記
載の方法。
[Claims] L. A method for treating secondary sewage sludge, which comprises anaerobically digesting primary sedimentation tank sludge generated in a sewage treatment facility, and then mixing the sludge with excess activated sludge for solid-liquid separation. 2. The method according to claim 1, wherein the first settling tank sludge is anaerobically digested until 60 to 75% of its organic matter is decomposed.
JP56158705A 1981-10-07 1981-10-07 Treatment for sewer sludge Granted JPS5861899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56158705A JPS5861899A (en) 1981-10-07 1981-10-07 Treatment for sewer sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56158705A JPS5861899A (en) 1981-10-07 1981-10-07 Treatment for sewer sludge

Publications (2)

Publication Number Publication Date
JPS5861899A true JPS5861899A (en) 1983-04-13
JPS6317000B2 JPS6317000B2 (en) 1988-04-12

Family

ID=15677549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56158705A Granted JPS5861899A (en) 1981-10-07 1981-10-07 Treatment for sewer sludge

Country Status (1)

Country Link
JP (1) JPS5861899A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4491522A (en) * 1982-11-18 1985-01-01 Agency Of Industrial Science & Technology Anaerobic digestion process for organic wastes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4491522A (en) * 1982-11-18 1985-01-01 Agency Of Industrial Science & Technology Anaerobic digestion process for organic wastes

Also Published As

Publication number Publication date
JPS6317000B2 (en) 1988-04-12

Similar Documents

Publication Publication Date Title
US4134830A (en) Method of purifying waste water
EP0173731B1 (en) Process for dewatering municipal and other sewage sludges
JP2002500953A (en) Conditioning method for sewage sludge dewatering
Wójcik et al. Influence of physical, chemical and dual sewage sludge conditioning methods on the dewatering efficiency
US4840736A (en) Process for producing combustible sewage sludge filter cakes in filter presses
EP0192879A1 (en) Methane fermentation process for treating evaporator condensate from pulp making system
CN105000766B (en) Cleaner production method for increasing nitrogen and phosphorus recovery rate of residual activated sludge
CN104478190B (en) A kind of method reclaiming humic acid from mud
CA1172391A (en) Dewatering of sewage sludges on filter presses
CA1172390A (en) Dewatering of sewage sludges on filter presses
US3994804A (en) Sewage sludge treatment system
CN109179760B (en) Recycling treatment process for kitchen sludge and rice residues
JP3276139B2 (en) Organic waste treatment method
JPS5861899A (en) Treatment for sewer sludge
CN106517265A (en) Recycling utilization method of biochemical sludge
JPS6034799A (en) Treating apparatus for filthy water derived from night soil
Mavinic et al. Fate of nutrients during anaerobic co-digestion of sludges from a biological phosphorus removal process
Heviánková et al. Contribution to the study of flocculation of digestate
CN113292223B (en) Compound conditioner and dehydration method of ammonium phosphate magnesium-containing mixture after alkaline hydrolysis and cell breaking of excess sludge
Denkert et al. Quicklime pre-conditioning of sludge to be dewatered in centifuges lowers disposal costs
Eden Modern trends in sludge management: sludge conditioning
JPS62244494A (en) Treatment of excretion
JPS6349556B2 (en)
CN108996855A (en) A kind of municipal wastewater sludge joint disposal method and device
Rabea et al. Enhancing Sludge Dewatering Process by Using Green and Environmental Wastes