JPS586188A - Josephson junction element - Google Patents

Josephson junction element

Info

Publication number
JPS586188A
JPS586188A JP56103549A JP10354981A JPS586188A JP S586188 A JPS586188 A JP S586188A JP 56103549 A JP56103549 A JP 56103549A JP 10354981 A JP10354981 A JP 10354981A JP S586188 A JPS586188 A JP S586188A
Authority
JP
Japan
Prior art keywords
superconductor
layer
niobium
electrode body
superconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56103549A
Other languages
Japanese (ja)
Other versions
JPH0322068B2 (en
Inventor
Yoshifusa Wada
和田 容房
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56103549A priority Critical patent/JPS586188A/en
Publication of JPS586188A publication Critical patent/JPS586188A/en
Publication of JPH0322068B2 publication Critical patent/JPH0322068B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To prevent the deterioration of electric characteristics of the titled element due to heat cycle and variation for hour by a method wherein a junction layer, which generates superconductive tunnel effect between the first electrode material, consisting of the first and the second superconductive materials, and the second electrode material. CONSTITUTION:The first electrode material is formed with the first superconductive material 31 and the second superconductive material 32, which was arranged adjoining to the first superconductive material 31 having the depth of magnetic infiltration in superconductive state less than that of the first superconductive materia 31. Then, a junction layer 13, which generates a superconductive tunnel effect between the second electrode material 33 consisting of a niobe or niobic compound or a vanadium compound, and the first electrode material 31, is formed.

Description

【発明の詳細な説明】 本発明qよ、論理回路や記憶装置を構成するスイ、チン
ダ嵩子、微小磁場測定素子、電圧IIA隼器などに用い
られるジョセフソノ襞金素子の構造に@するものである
[Detailed Description of the Invention] The present invention (q) is based on the structure of a Joseph Sono folded metal element used in a logic circuit or a storage device, a small magnetic field measurement element, a voltage IIA Hayabusa, etc. be.

従来開発されてきたジ、セ7ンン接合素子は、鉛合金/
鉛合金の酸化物/給金金の構造を持つ物が主でありた。
The conventionally developed junction elements are made of lead alloy/
The main materials were those with a lead alloy oxide/metallic structure.

しかし、これらの鉛合金系ジ、セフンン接合素子は、―
作温度である液体ヘリウム温度とWI/i温との間の熱
サイクルに経ることによって接合が破壊され易(、特性
の劣化が着しいという欠点がある。これに代って、熱サ
イクルや経時変化による特性の劣化がはとんど生じない
ジ、セフソノ嬢金卓子として、機械的に鉛より硬いニオ
ブもしくはニオブ化合物を電画とする二オグ系ジ1セ7
ソン接合素子の開発が行なわれている。電化ニオブを電
極としたジ、セフソ7接合素子では、熱サイクルや経時
変化による特性の劣化がはとんとないことが、東海林等
により電子通信学会技術研究報告CPM8G−90(1
981年2月17日発行)K述べられている。このジ、
セフンン接合素子の接合層には、アモルファスシリコン
及びその酸化物が用いられている。
However, these lead alloy-based junction elements are
The bond is easily destroyed (and the characteristics deteriorate quickly) due to thermal cycles between the liquid helium temperature, which is the operating temperature, and the WI/i temperature. The deterioration of characteristics due to changes hardly occurs, and as a sefsonojo Kin Takuko, a niobium or niobium compound that is mechanically harder than lead is used as an electromagnetic material.
Son junction devices are being developed. Tokairin et al. reported in the Institute of Electronics and Communication Engineers technical research report CPM8G-90 (1
Published on February 17, 1981) K is stated. This ji,
Amorphous silicon and its oxide are used for the bonding layer of the Cefun junction element.

ニオブは、ゲ、り作用が非常に強く、酸素や種々の物質
を吸着し易いとい5特黴がある。よってニオブをジョセ
フソン素子の電一体として用いる楊金、接合層の形成時
に酸素などが余分に電極体のニオブに拡散するという現
象や、接合層の形成後接金層中の酸素等が同様にして1
1!橋体のニオブ中に拡散し易いという欠点があった。
Niobium has five special properties: it has a very strong gelling effect and easily absorbs oxygen and various substances. Therefore, when niobium is used as the electrical component of a Josephson element, there is a phenomenon in which oxygen, etc. diffuses into the niobium electrode body during the formation of the bonding layer, and oxygen, etc. in the bonding layer similarly diffuses after the bonding layer is formed. te1
1! It has the disadvantage that it easily diffuses into the niobium of the bridge body.

このため、接金層の厚さO@御が非常に内鑵になるとい
う間層が生じた。ジ、セ7ンン接合素子の接合層の厚さ
は、素子の電気的特性に大きく影響するため、接合層の
厚さを数パーセント以下に制御する必要があるが、従来
のニオブを電極体として用いたジ1セ7ンン接合素子で
は、この接合層の厚さの制御が困−であった、しかも、
経時変化により接合層の等価的な厚さが変化する丸め、
素子の電気的特性が劣化するという欠点かあ、丸。
For this reason, a gap occurred in which the thickness of the welding layer was extremely unstable. The thickness of the bonding layer of a di-, sen-junction device greatly affects the electrical characteristics of the device, so it is necessary to control the thickness of the bonding layer to a few percent or less. It was difficult to control the thickness of this bonding layer with the di-1-seven bonding element used.
Rounding, where the equivalent thickness of the bonding layer changes over time;
The disadvantage is that the electrical characteristics of the element deteriorate.

一方窒化ニオグなどのニオブ化金物は、ニオブが既に窒
素などと化合物として結金しているので、ゲ、り作用が
著しく低下し、酸素などの吸着や化合物中への拡散が著
しく少くなるという特徴がある。よってニオブ化合物に
は、接金層の形成において、厚さの制御が容&になりか
つ経時変化も減少するとい5長所がある。しかし、窒化
ニオブなど10ニオグ化合物は、ニオブに比べて、超伝
導状態での磁界侵入の深さが400〜500ナノメータ
と4〜5倍大きいため、カイネディ、タイ/〆クタンス
が増し、信号の転送時間が長くなると共に磁場感度が低
下するとい5欠点がある。
On the other hand, niobide metals such as niobium nitride are characterized by the fact that niobium has already been crystallized as a compound with nitrogen, etc., so the gelling effect is significantly reduced, and the adsorption of oxygen and diffusion into the compound is significantly reduced. There is. Therefore, the niobium compound has five advantages in forming the welding layer: the thickness can be easily controlled and changes over time are reduced. However, in niobium nitride and other 10-niog compounds, the depth of magnetic field penetration in the superconducting state is 400 to 500 nanometers, which is 4 to 5 times larger than that of niobium, so the kinetics and tie/clampance increase, resulting in signal transfer. There are five drawbacks: as the time increases, the magnetic field sensitivity decreases.

この窒化ニオブを電極体とし九時の欠点を除くため、窒
化ニオブとニオブの2層Jlllをベース電極((jl
lの電橋体)とし、鉛合金をヵクンタ電極(薬2の電極
体)卆するジョセフソン接合素子の構造が中板等により
、@28fg応用物堰学関係連合講演会の予橘集の嬉4
44頁(−演着号29P−LJ−12)K述べられてい
る。しかし、このジ冒セ7ンン接合素子のカクンタ電極
(第2の電極体)Kは鉛が用いられているので、前述し
た熱サイクルや経時変化による素子の電気的特性の劣化
が生じるという欠点は、完全に除かれていない。
In order to use this niobium nitride as an electrode body and eliminate the drawback of 9 o'clock, a two-layer layer of niobium nitride and niobium was used as a base electrode ((jl
The structure of a Josephson junction element with a lead alloy electrode (electrode body) and a lead alloy electrode (electrode body of medicine 2) was shown by the middle plate, etc., in the pre-tachibana collection of the @28fg Applied Materials Weir Science Association Lecture. 4
It is stated on page 44 (-No. 29P-LJ-12)K. However, since lead is used for the capacitor electrode (second electrode body) K of this electrically injected junction element, the disadvantage of deterioration of the electrical characteristics of the element due to thermal cycles and changes over time as described above is eliminated. , not completely eliminated.

本発明の目的は、熱サイクルや経時変化による素子の電
気的特性の劣化が少なく、かつ高速で磁場感度の^好な
ジョセフソン接合素子を提供することにある。
It is an object of the present invention to provide a Josephson junction element which exhibits less deterioration of the electrical characteristics of the element due to thermal cycles and changes over time, and which is fast and has good magnetic field sensitivity.

本発明によれば、第1の超伝導体と超伝導状態でO磁界
の侵入の深さが前記第1の超伝導体より小さく前記第1
の超伝導体に接して配置された第20超伝導体からなる
#11の電機体と、ニオブ又はニオブ化合物又はバナジ
ウム化合物からなる第2の電機体と、−配薬1の電極体
のllI配嬉lの超伝導体と前記# 2 osgi体と
0IIIIIK介在して超伝導トンネル効果を生じさ(
る接合層とから構成されることを特徴とするジョセフソ
ン接合素子が得られる。
According to the present invention, in the first superconductor and the superconducting state, the penetration depth of the O magnetic field is smaller than that of the first superconductor.
#11 electric body made of the 20th superconductor disposed in contact with the superconductor; a second electric body made of niobium or a niobium compound or a vanadium compound; A superconducting tunnel effect is produced through the intervening superconductor and the #2 osgi body.
A Josephson junction element is obtained, which is characterized in that it is composed of a junction layer.

さらに本!i明によれば、前記第1の超伝導体としてニ
オブ化合物を用い、前記第20超伝導体としてニオブを
用いたごとを特徴とする前述のジョセフソノ績金素子が
得られる。
More books! According to the invention, the aforementioned Joseph Sono metal element is obtained, characterized in that a niobium compound is used as the first superconductor and niobium is used as the 20th superconductor.

さらに本発明によれば、前記接金層として窒化シリコン
又はシリコンの酸化物又はシ%I:Iンとシリコンの酸
化物を用い九ことを特徴とする前述Oジ、セフソン接合
素子が帰られる。
Further, according to the present invention, there is provided the aforementioned O-Cefson junction element, characterized in that silicon nitride, silicon oxide, or Si% I:I and silicon oxide is used as the contact layer.

以下図−により本発明Oさらに膵−なm嘴を行なう。The following figures illustrate the present invention and the pancreatic beak.

第1図は、従来のジ、七フソン接合素子の構造を示し丸
ものである。dlの電極体11と第2の電極体12とに
は、鉛合金やニオブ又はニオブ化合物などが用いられて
いる。1a合層13には、第1のt樹体11の酸化層も
しくはアモルファスシリコンとその酸化物や窒化ニオブ
などの絶縁物が通常用いられる。第1の電機体11と、
第2の電機体12とを絶縁する絶縁層14には、8i0
や8&0゜などのシリーンの酸化物が通常用られている
FIG. 1 shows the structure of a conventional di- and hepson junction element. A lead alloy, niobium, a niobium compound, or the like is used for the electrode body 11 and the second electrode body 12 of dl. For the 1a composite layer 13, an oxide layer of the first T-tree 11 or an insulator such as amorphous silicon and its oxide or niobium nitride is usually used. a first electric body 11;
The insulating layer 14 that insulates the second electric machine body 12 includes 8i0
Silene oxides such as 8 & 0° are commonly used.

第2図は、前述し九2層展ベース電極構造を持つ従来の
ジョセフソン接合素子の構造を示したものである。第1
の電極体は、電化ニオブ1II21とニオブ膜22とか
ら構成される。g2の電極体12には鉛合金が、接合層
13にはアモルファスシリコン及びその酸化物が、絶縁
層14にはシリコンの酸化膜がそれぞれ用いられている
。ニオブ膜22の膜厚を300ナノメータとし、電化ニ
オブ51I21401に厚1に60ナノメータとするこ
とにより、磁界侵入の深さが100ナノメータと1/4
〜115に減少され、磁場感度が大幅に改善されている
。シ′かし、第20電極体12に鉛合金が用いられてい
るので、熱サイクルや経時変化による素子の電気的特性
の劣化が生じるという欠点は除かれていない、なお、第
1iIil及び第2図とも、ジ、セ7ンン績台素子のス
イッチングを制御する制御線や、グランドプレーン反び
そIDJII!III層職などの実用のための付加機能
部は、説明を簡単にするために省略した。′ ls3図は本発明によるジ、セ7ンン接合素子の@10
実施例を示したものである。第1図及び第2図と同様、
制御線やグランドプレーン等の集用の丸めの付加機一部
は省略しである。嬉10夷麹例の接合層13と絶縁層1
4と杜、1層1図及び第2図の従来技術と同一であるの
で同一番号で示しである。本発明と第意図の違いは、第
20@一体33を鉛合金でなくニオブ又線ニオグ化舎物
又社バナジクム化合物とし九点にある。これにより、鉛
合金を用いたことによって起っていえ劣化の間層の解決
をはかった。ニオブ化合物は熱fイタルと経時炭化に対
して劣化し確いが、素子O電気的特性の面で鉛系に劣る
。しかし、第1の電極体を2層とすることにより、信号
の転送遅れと磁場感度の低下を押えることができる。故
に、信号の転送遅れが少く、かつ磁場感度が低下し難く
、劣化がほとんど生じないジ、七7ソン接合素子を実現
できる。本発明の第1の電極体は、ニオブ化合物などか
らなる第1o超伝導体31と、超伝導状態での磁界の侵
入の深さが第1K)@伝導体31より小さいニオブなど
からなる第80超伝導体32が層状に配置され九構成を
とっている1、ニオブ又はニオブ化合物又はバナジウム
化合物からなる#I2O電橋体33と第1の電機体の第
1の超伝導体31とは、窒化シリコン又はシリコンの酸
化物又はアモルファスシリコンとシリコンの酸化物など
からなる、接合層13を杜さんで配置され、接合層13
1Cより超伝導トンネル効果を生じさせる。
FIG. 2 shows the structure of a conventional Josephson junction device having the aforementioned ninety-two layer expanded base electrode structure. 1st
The electrode body is composed of electrified niobium 1II 21 and niobium film 22. A lead alloy is used for the electrode body 12 of g2, amorphous silicon and its oxide is used for the bonding layer 13, and a silicon oxide film is used for the insulating layer 14. By setting the thickness of the niobium film 22 to 300 nanometers and the thickness of the electrified niobium 51I21401 to 60 nanometers, the depth of magnetic field penetration is 1/4 of 100 nanometers.
~115, significantly improving the magnetic field sensitivity. However, since a lead alloy is used for the 20th electrode body 12, the drawback that the electrical characteristics of the element deteriorate due to thermal cycles and changes over time cannot be eliminated. Both figures show the control lines that control the switching of the Ji, Sen, and Seven table elements, and the ground plane. Additional functional units for practical use, such as those in the III layer, have been omitted to simplify the explanation. 'ls3 Figure is @10
This shows an example. Similar to Figures 1 and 2,
Some of the rounding devices for control lines, ground planes, etc. are omitted. Bonding layer 13 and insulating layer 1 of Ki 10 Yoshikoji example
4 and 2 are the same as the prior art of FIG. 1 and FIG. 2, so they are indicated by the same numbers. The difference between the present invention and the first intention is that No. 20 @ Integral 33 is made of a vanadicum compound instead of a niobium or wire niobium alloy. This has solved the problem of deterioration caused by the use of lead alloys. Although niobium compounds tend to deteriorate due to heat and carbonization over time, they are inferior to lead-based compounds in terms of device electrical characteristics. However, by forming the first electrode body with two layers, it is possible to suppress signal transfer delay and decrease in magnetic field sensitivity. Therefore, it is possible to realize a diode junction element in which signal transfer delay is small, magnetic field sensitivity is less likely to decrease, and deterioration hardly occurs. The first electrode body of the present invention includes a first superconductor 31 made of a niobium compound, etc., and an 80th superconductor 31 made of niobium or the like, in which the penetration depth of the magnetic field in the superconducting state is smaller than that of the first conductor 31. The #I2O electric bridge body 33 made of niobium, a niobium compound, or a vanadium compound and the first superconductor 31 of the first electric body are nitrided. A bonding layer 13 made of silicon, an oxide of silicon, or an oxide of amorphous silicon and silicon is arranged with a mortar, and the bonding layer 13
1C causes a superconducting tunnel effect.

lslの電極体の1lllの超伝導体31は、接合層1
3の形成と経時変化に対して、第1の電極体のtI&!
の超伝導体32と接合層13の相互作用による前述の酸
素の拡a勢の影響を受けないような十分な厚さで形成さ
れる。第1の電極体の第2の超伝導体32と1層意の電
1i33は、少くとも超伝導状態での磁界侵入の深さ以
上の厚さで、裏通可能な適当な厚さに形成される。従っ
て、fslの電極体の等価的な超伝導状層での磁界侵入
の深さは、第2の超伝導体と同程度になり、前述したカ
イネディックインダクタンスによる信号の転送遅れと磁
場感度の低下が防がれる。本発明のジョセ7ン/素子は
、第2の電極体33として、機械的に硬い金属又は金属
化合物でめるニオブ又はニオブ化合物又はバナジウム化
合物を用いているので、経時変化による劣化を非常に小
さくできる。但し、第2の電機体としてニオグ化金を用
いると、磁界侵入の深さは鉛や二才グより小さいOで、
素子の電気的特性は鉛やニオブを用い丸鳩舎よりは暴く
なる。
The 1llll superconductor 31 of the electrode body of lsl is the bonding layer 1
For the formation and aging of 3, the tI &! of the first electrode body.
The bonding layer 13 is formed to have a sufficient thickness so as not to be affected by the above-mentioned oxygen amplification force due to the interaction between the superconductor 32 and the bonding layer 13. The second superconductor 32 of the first electrode body and the first layer electrode 1i33 are formed to have a thickness that is at least greater than the depth of magnetic field penetration in the superconducting state, and has an appropriate thickness that allows for back-penetration. be done. Therefore, the depth of magnetic field penetration in the equivalent superconducting layer of the fsl electrode body is comparable to that of the second superconductor, and the signal transfer delay and magnetic field sensitivity decrease due to the aforementioned kinetic inductance. is prevented. In the Joseon/element of the present invention, since niobium, a niobium compound, or a vanadium compound made of a mechanically hard metal or metal compound is used as the second electrode body 33, deterioration due to changes over time is extremely reduced. can. However, when Niogide gold is used as the second electrical body, the depth of magnetic field penetration is O, which is smaller than that of lead or Niogide.
The electrical characteristics of the element are more exposed than in a round pigeon coop using lead or niobium.

次に嬉1の実施例のジョセフソン素子の一造方法を簡単
に述べる。先ずallt2)電極体のla2の超伝導体
32の1層/を蒸着又はスバ、り技術などを用いて成膜
し、続けて、′slの電極体のjlilo超伝導体31
(0層を前述と同様な技術を用いて成膜する。第1の電
機体をリフトオフ技術などによりバターニングした後、
絶縁層14の層として、ago。
Next, a method for manufacturing the Josephson element of the first embodiment will be briefly described. First, one layer of the la2 superconductor 32 of the allt2) electrode body is formed using a vapor deposition or sputtering technique, and then the jlilo superconductor 31 of the 'sl electrode body is formed.
(The 0 layer is formed using the same technique as described above. After patterning the first electrical body by lift-off technique etc.,
As the layer of the insulating layer 14, ago.

810、  などのシリコンO酸化物を蒸着技術又はケ
ミカル・ベーパ・ディポジシ、y技1f(CVD技術と
祢する)などを用いて成膜し、リフトオフ技術などによ
りバターニングする。接合層130層として、CVD技
術によりアモルファスクリ−/又は窒化シリコンなどが
成績される。又接合層13の層を作る別の方法として、
CVD技術により成膜したアモルファスシリコンの一部
又は全体を陽極酸化してシリコンの酸化物とする方法が
ある。統いて、第2の電極体となる二オシ又はニオブ化
合物などがスバ、り技術又は蒸着技術などにより成膜さ
れる。第2の電橋体は、ン7トオフ技術などによりバタ
ーニングされる。この時絶縁層14上には、接合層13
の層を形成する時同時に接合層と同一の物質34が残る
が、絶縁層14と同様の絶嫌物であるので、素子の電気
的特性には影響しない。
A film of silicon O oxide such as 810, etc. is formed using a vapor deposition technique, chemical vapor deposition, y-technique 1f (referred to as CVD technique), and then buttered by a lift-off technique or the like. As the bonding layer 130, amorphous silicon/silicon nitride or the like is formed using CVD technology. Also, as another method for forming the bonding layer 13,
There is a method of anodic oxidation of a part or the whole of amorphous silicon formed by CVD technology to form a silicon oxide. A film of a niobium or niobium compound, etc., which will become the second electrode body, is then formed by a sputtering technique, a vapor deposition technique, or the like. The second electric bridge body is patterned using a seven-toff technique or the like. At this time, a bonding layer 13 is formed on the insulating layer 14.
At the same time when forming this layer, the same material 34 as the bonding layer remains, but since it is an essential material similar to the insulating layer 14, it does not affect the electrical characteristics of the device.

@4111d、本発明の第2の実施例のジ、セ7ンン接
合素子の構造を示したものである。素子の接金sO基本
的な構造は、第1の実施例と同一であるので、gtos
施例と同じ効果が得られる。但し、製造手順が異なる丸
め、全体の構造が興な。
@4111d shows the structure of a di-, sen-junction element according to a second embodiment of the present invention. Since the basic structure of the element welding sO is the same as that of the first embodiment, gtos
The same effect as in the example can be obtained. However, the manufacturing procedure is different and the overall structure is interesting.

ている。ing.

第2の実施例のジ、セ7ソン接合素子は、以下の手順で
製造される。先ず1M1の電極体の第2の超伝導体42
が、嬉Iの実施例とP44mにして成膜され、mJlの
電極体がバターニングされる。次は、穐縁層14が第1
の実施例と同様にして成膜されバターニングされる。そ
の後、@10m11i体の嬉1の超伝導体410層が前
述し丸技術により成層され、纏いて、接合層130層と
第2の電極体43の層が前述し九mIIKより順次成膜
される。
The diode junction device of the second embodiment is manufactured by the following procedure. First, the second superconductor 42 of the 1M1 electrode body
However, a film was formed using the example of Yuki I and P44m, and an electrode body of mJl was patterned. Next, the rim layer 14 is the first layer.
A film is formed and patterned in the same manner as in Example 2. After that, 410 layers of @10m11i type superconductor are deposited using the circle technique described above, and then the bonding layer 130 layer and the second electrode body 43 layer are deposited sequentially from 9mIIK as described above. .

最後に、前述と同様の技術を用いて、第2の電極体がバ
ターニングされる。この時、絶縁層14上に第1の電橋
体のJIO超伝導体と同一物質の層45と接合層と同じ
物質0層45とが同時にバターニングされて残る。
Finally, the second electrode body is patterned using techniques similar to those described above. At this time, a layer 45 of the same material as the JIO superconductor of the first electrical bridge body and a layer 45 of the same material as the bonding layer are simultaneously patterned and remain on the insulating layer 14.

第2の実施例は、第101緬体の第1の超伝導体41と
接合層13と第2の電橋体が、裏通装置の真空を破壊す
ることなく連線して作れるという特徴がある。よって、
第1の電橋体の超伝導体41と綴金層13と第2の電橋
体43との各層間の表向が、空気中の酸素などによる汚
染を受けることなく素子が製造されるので、良質のジ、
セフン/接合素子が得られるという利点がある。但し、
絶縁層14上にjglの超伝導体0層45と接合層と同
一#II賃のノー44が残るという欠点がある。しかし
、mJl[141e)M 1 eMfflllノ445
 B、絶縁層14により第1の電極体とは絶縁されてお
り、接合層と同一物質の層44は、絶縁層14と同機の
絶縁−であるので、共に素子の電気的特性にははとんど
影響しない。
The second embodiment is characterized in that the first superconductor 41, bonding layer 13, and second electric bridge body of the 101st fiber can be made in series without destroying the vacuum of the back passage device. be. Therefore,
Since the element is manufactured without contaminating the surfaces between the superconductor 41 of the first electric bridge body, the metal layer 13, and the second electric bridge body 43 with oxygen in the air, etc. , good quality ji,
There is an advantage that a cefn/junction element can be obtained. however,
There is a drawback that the superconductor 0 layer 45 of JGL and the #II layer 44, which is the same as the bonding layer, remain on the insulating layer 14. However, mJl[141e)M1eMffllllノ445
B. It is insulated from the first electrode body by the insulating layer 14, and the layer 44 made of the same material as the bonding layer is the same insulator as the insulating layer 14, so both have no effect on the electrical characteristics of the element. It has no effect.

第5図は1本発明の@aの実施例のジ、セフソy螢舎素
子の構造を示したものである。素子の接金部の基本的な
構造は、第1の実施側皮び第2の実施例と同一であるの
で、第1の実施例及び第2の実施例と同一の効果が得ら
れる。製造方法が異なるので、第10電極体の第1の超
伝導体510層と接合層13の層の構造がfilの実施
例及び第20実施例と異なる。
FIG. 5 shows the structure of a di-cefsol element according to an embodiment of the present invention. Since the basic structure of the contact portion of the element is the same as that of the first embodiment and the second embodiment, the same effects as the first embodiment and the second embodiment can be obtained. Since the manufacturing method is different, the structure of the first superconductor 510 layer and the bonding layer 13 of the 10th electrode body is different from the fil example and the 20th example.

第3の実施例のジ、セフン/JjiI!合素子は以下の
手順で製造される。先ず#11の電極体の第2の超伝導
体52が第2の実施例と同様にして成膜され、バターニ
ングされる。疏いてめ鑵層14が前述と同様にして成膜
され、バターニングされる。次に、illの電橋体のJ
lllの超伝導体51と接合層13と第2の電極体の一
部の層53が、前述と同様の技術により順次成膜される
。ここで、接合層13のパターンがリフトオツ技術等に
よりバターニングされる。この時、illの電橋体の第
10超伝導体51と第2の電極体の1部の層53が同時
にバターニングされる。従って、絶縁層14上には、第
1の電極体の第1の超伝導体s1と接合層13とに相当
する膜が残らない、最後に1鮪2の電橋体の残りの部分
54が前述と同様の技術により成膜され、第2の電極体
が前述と同様の技術によりバターニングされる。
Third Example Ji, Sehun/JjiI! The composite element is manufactured by the following procedure. First, the second superconductor 52 of the #11 electrode body is formed into a film and patterned in the same manner as in the second embodiment. The slit layer 14 is formed and patterned in the same manner as described above. Next, J of ill electric bridge body
The superconductor 51, the bonding layer 13, and a part of the layer 53 of the second electrode body are sequentially formed using the same technique as described above. Here, the pattern of the bonding layer 13 is patterned using a lift-off technique or the like. At this time, the tenth superconductor 51 of the ill electric bridge body and part of the layer 53 of the second electrode body are patterned at the same time. Therefore, no film corresponding to the first superconductor s1 of the first electrode body and the bonding layer 13 remains on the insulating layer 14, and finally the remaining portion 54 of the electric bridge body of 1 tuna 2 is left on the insulating layer 14. The film is formed using the same technique as described above, and the second electrode body is patterned using the same technique as described above.

第3の実施例では、ジ、セフソン接合を形成する第1の
11L檎体の第lの超伝導体51と接合層13と$2の
’を槽体の一部53とが真空を破ることなく接合のパタ
ーン部分のみKIN造できるという特徴がある。よって
第3の実施例では、第2の実施例の利点と、絶縁層14
上に不用なパターンが残らないので素子の電気的特性が
より安定するという利点がある。
In the third embodiment, the vacuum is broken between the first superconductor 51 of the first 11L body forming a di-Sefson junction, the bonding layer 13, and the part 53 of the tank body. It has the feature that only the joint pattern part can be made in KIN. Therefore, the third embodiment has the advantages of the second embodiment and the insulating layer 14.
This has the advantage that the electrical characteristics of the device are more stable because no unnecessary patterns are left on top.

以上述べた各、実施例の製造手順の詳細や、実用上必要
なグランドプレーンや制御線等の付加機能部の製造方法
については、ダンイナ(J、H6Qt@in@r )勢
によりアイ・ビー・工^・ジャーナル・オプ・すす−チ
・ア/ド・ディベロプメント(IBM Jouraal
 of R@5earch and Developa
x*nt)の1m24%第2号の第195頁から第20
5貞に詳細に述べられている。
The details of the manufacturing procedure of each of the above-mentioned embodiments and the manufacturing method of additional functional parts such as ground planes and control lines that are necessary for practical use are provided by Dan Ina (J, H6Qt@in@r) at IB. Journal of Engineering (IBM Jural)
of R@5earch and Developopa
x*nt) 1m24% No. 2, pages 195 to 20
It is described in detail in 5.

以上述べ丸ように、本発明によれば、熱サイクルや経時
変化による劣化が少な(、高速で磁場感度OIL好なジ
ョセフソン接合素子が得られる。
As described above, according to the present invention, it is possible to obtain a Josephson junction element that exhibits less deterioration due to thermal cycles and changes over time (high speed and good magnetic field sensitivity OIL).

【図面の簡単な説明】[Brief explanation of drawings]

#E1図は従来のジ、セ7ンン接合素子の構造を示し友
もの、第2図は2層膜ベース電極構造を持つ従来のジ、
セフソ/!1合素子の構造を示したもの、lll13図
は本発明による第1の実施例のジョセyyy@金素子の
構造を示したもの、第4図は本発@0712の実施例の
ジョセフソノ接舎素子の構造を示したもの、第5図は本
発明の第3の実施例のジョセフソノ接脅素子の構造を示
したものである。 11・・・I@lの電極体、12・・・第2の電極体、
13−・・接金層、14・・・絶縁層、21,31,4
1゜51・・・第10m1j体の第109伝導体、22
゜32.42.52・・・第1の電極体の籐2の超伝導
体、33.43・・・第2の電極体、34.44−絶縁
層上に残った接合層と同一物質の層、45・・・絶縁層
上に残った第1(D超伝導体、s3・・・第2の電一体
の一部で接合層と同時にバタ一二ンダされ九部分、54
・・・第2の電極体の残りの一分で嬉2の電極体として
バター二/グされ九椰分。 第1図 第2図 3 第 3 図 第4図
Figure #E1 shows the structure of a conventional di-junction element, and Fig. 2 shows a conventional di-silicon junction device with a two-layer membrane base electrode structure.
Cefso/! Figure 13 shows the structure of the Josey yyy@gold element of the first embodiment of the present invention, and Figure 4 shows the Joseph Sono element of the embodiment of the present invention @0712. FIG. 5 shows the structure of a Joseph sono contact element according to a third embodiment of the present invention. 11... I@l electrode body, 12... second electrode body,
13-... Welding layer, 14... Insulating layer, 21, 31, 4
1゜51...109th conductor of 10m1j body, 22
゜32.42.52... superconductor of rattan 2 of the first electrode body, 33.43... second electrode body, 34.44- superconductor of the same material as the bonding layer remaining on the insulating layer Layer, 45... The first (D superconductor, s3... part of the second electrical unit remaining on the insulating layer, 9 parts that are simultaneously attached to the bonding layer, 54
...The remaining one minute of the second electrode body is used as the second electrode body and is buttered for 9 times. Figure 1 Figure 2 Figure 3 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1)第1の超伝導体と超伝導状−での磁界侵入の深さが
前記第1の超伝導体より小さく前記第1O超伝導体に接
して配置された第2の超伝導体からなる第1の電動体と
、ニオブ又はニオブ化合物又はバナジウム化合物からな
る第2の電極体と、前記第1の電極体の前記第1の超伝
導体と前記第2の電極体との関に介在して超伝導トンネ
ル効果を生じさせる接合層とから構成されることを特徴
とするジ、セフンン接合素子。 2)前記第1の超伝導体としてニオブ化合物を用い、前
記$2の超伝導体としてニオブを用いたことを特徴とす
る特#V−晴求の範囲第1項記載のジ、セ7ンン接合素
子。 3)前記接合層として電化シリコン又はシリコンの酸化
物又はシリコンとシリコンの酸化物を用いえことを特徴
とする特許請求OII囲第1項及び第2項配植のジョセ
フソン後金素子。
[Scope of Claims] 1) A second superconductor disposed in contact with the first O superconductor, in which the depth of magnetic field penetration between the first superconductor and the superconductor is smaller than that of the first superconductor. a first electric body made of a superconductor; a second electrode body made of niobium, a niobium compound, or a vanadium compound; the first superconductor and the second electrode body of the first electrode body; 1. A junction element comprising: a junction layer that is interposed between a conductive layer and a junction layer that produces a superconducting tunnel effect; 2) A niobium compound is used as the first superconductor, and niobium is used as the $2 superconductor. Junction element. 3) A Josephson post-gold device implanted in paragraphs 1 and 2 of box OII, characterized in that the bonding layer is electrified silicon, an oxide of silicon, or an oxide of silicon and silicon.
JP56103549A 1981-07-02 1981-07-02 Josephson junction element Granted JPS586188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56103549A JPS586188A (en) 1981-07-02 1981-07-02 Josephson junction element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56103549A JPS586188A (en) 1981-07-02 1981-07-02 Josephson junction element

Publications (2)

Publication Number Publication Date
JPS586188A true JPS586188A (en) 1983-01-13
JPH0322068B2 JPH0322068B2 (en) 1991-03-26

Family

ID=14356899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56103549A Granted JPS586188A (en) 1981-07-02 1981-07-02 Josephson junction element

Country Status (1)

Country Link
JP (1) JPS586188A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149180A (en) * 1984-01-17 1985-08-06 Agency Of Ind Science & Technol Josephson element
JPS63169083A (en) * 1987-01-05 1988-07-13 Agency Of Ind Science & Technol Tunnel josephson junction
US5104848A (en) * 1988-04-21 1992-04-14 U.S. Philips Corporation Device and method of manufacturing a device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282090A (en) * 1975-12-27 1977-07-08 Fujitsu Ltd Apparatus and manufacture for superconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282090A (en) * 1975-12-27 1977-07-08 Fujitsu Ltd Apparatus and manufacture for superconductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149180A (en) * 1984-01-17 1985-08-06 Agency Of Ind Science & Technol Josephson element
JPS63169083A (en) * 1987-01-05 1988-07-13 Agency Of Ind Science & Technol Tunnel josephson junction
US5104848A (en) * 1988-04-21 1992-04-14 U.S. Philips Corporation Device and method of manufacturing a device

Also Published As

Publication number Publication date
JPH0322068B2 (en) 1991-03-26

Similar Documents

Publication Publication Date Title
JPS60160675A (en) Quasi-particle injection type superconducting element
JPS586188A (en) Josephson junction element
JP3690823B2 (en) Superconducting joint
JPS58164279A (en) Method of forming josephson junction
JPS616882A (en) Terminal electrode for superconducting integrated circuit and manufacture thereof
JPH045873A (en) Manufacture of superconducting contact and superconducting circuit
JPH0472764A (en) Rear electrode of semiconductor device
JPS637675A (en) Manufacture of superconducting device
JPS62136018A (en) Manufacture of semiconductor device
JPS602794B2 (en) Josefson junction element
JP2698364B2 (en) Superconducting contact and method of manufacturing the same
JPH0322067B2 (en)
JP2623610B2 (en) Josephson junction element
JPS6164178A (en) Manufacture of superconductive circuit
JP2966378B2 (en) Method for producing Ba-K-Bi-O-based superconducting thin film
JP2641972B2 (en) Superconducting element and manufacturing method thereof
JPS6360555B2 (en)
JPH0114715B2 (en)
JPH0479153B2 (en)
JPS59194482A (en) Tunnel junction type josephson element
JPS58108739A (en) Josephson junction device
JPS59202666A (en) Aluminum alloy wiring
JPH02308578A (en) Manufacture of superconductor device
JPS60178676A (en) Tunnel type josephson element and manufacture thereof
JPS62183573A (en) Terminal electrode for superconducting integrated circuit