JPS5861887A - Treatment of waste water - Google Patents

Treatment of waste water

Info

Publication number
JPS5861887A
JPS5861887A JP56160276A JP16027681A JPS5861887A JP S5861887 A JPS5861887 A JP S5861887A JP 56160276 A JP56160276 A JP 56160276A JP 16027681 A JP16027681 A JP 16027681A JP S5861887 A JPS5861887 A JP S5861887A
Authority
JP
Japan
Prior art keywords
carrier particles
tank
particles
pipe
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56160276A
Other languages
Japanese (ja)
Inventor
Yoshihisa Narukami
善久 鳴上
Tetsuo Kimura
哲雄 木村
Taketoshi Madokoro
間「ところ」 威俊
Tadaaki Kawasugi
河杉 忠昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP56160276A priority Critical patent/JPS5861887A/en
Publication of JPS5861887A publication Critical patent/JPS5861887A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To facilitate the removal of the clogging materials in washing cycles by making combination use of particles having smaller particle sizes and higher specific gravities with particles having larger particle sizes and lower specific gravities as carrier particles and forming an upper stationary bed of a tank with the latter particles. CONSTITUTION:The carrier of smaller particles 3 are charged on a perforated plate 2 placed near the bottom of a treating tank 1 of semifluidized beds, whereby a lower fluidized bed (a) is formed. The carrier of larger particles 4 are charged thereon, whereby an upper stationary bed (b) is formed. A supply pipe 6 for raw water is connected to the lower part of the tank 1 and an outflow pipe 7 for treated water is connected thereto. Raw waste water is first introduced through an inflow pipe 9 into an oxygen dissolving device 8 where the water dissolves sufficiently oxygen supplied through a blowing pipe 13. This water is supplied through the pipe 6 into the tank 1 where the water suffers biological treatments while it passes through the bed (a) and the bed (b). The treated water is discharged thrugh the pipe 7 at the upper part of the tank 1.

Description

【発明の詳細な説明】 本発明は、上部固定床と下部流動床からなる半流動床処
理槽による廃水の微生物処理における改良方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for microbial treatment of wastewater using a semi-fluidized bed treatment tank consisting of an upper fixed bed and a lower fluidized bed.

廃水の微生物による好気性処理において、下部が流動化
され上部が静止している微粒状固体の層を形成している
半流動床処理槽を使用する方法は知られている。即ち、
微生物を付着17た砂などの担体粒子を槽内に充填し、
廃水を上向きに流すことによって該担体粒子を流動化さ
せ、さらに該流動床を多孔プレートで上から押さえるこ
とにより上部に固定床部な形成させて、廃水を処理する
方法が提案されている。かかる半流動床処理は、流動床
部と固定床部とを併せもっことにより、流動床部での完
全混合による高速処理と固定床部での密な微生物層によ
る仕上げ処理との双方の長所が得られる。また、かかる
微生物を付着した担体粒子の使用(より、!1単位容積
当りの微生物濃度な高めることができ、前記高速処理と
ともに処理槽の小型化が可能と表る(%開開55−10
6594号公報などを参照。) 本発明者は、@tI記のような半流動原種を使用した廃
水の微生物処理方法について研究を重ねた結果、処理サ
イクルの進行とともに廃水中の浮遊物質あるいは担体粒
子から剥離した微生物フロ、ツクなどにより固定床部が
閉塞され、廃水処理を一時的に中断し、しばしば洗浄処
理などをしなければ゛ならない難点があることを見出し
た。前記特開昭55−106594号公報などにおいて
も、該固定床部の閉塞の程度を圧力観察により検出し、
洗浄サイクルのために廃水処理の中断を行なっている。
In the microbial aerobic treatment of wastewater, it is known to use semi-fluidized bed treatment vessels forming a bed of finely divided solids, fluidized in the lower part and stationary in the upper part. That is,
Fill the tank with carrier particles such as sand to which microorganisms have adhered17.
A method has been proposed for treating wastewater by flowing wastewater upward to fluidize the carrier particles, and then pressing the fluidized bed from above with a porous plate to form a fixed bed at the top. By combining a fluidized bed section and a fixed bed section, this semi-fluidized bed treatment has the advantages of both high-speed processing due to complete mixing in the fluidized bed section and finishing treatment using a dense microbial layer in the fixed bed section. can get. In addition, the use of carrier particles to which such microorganisms are attached can increase the microorganism concentration per unit volume, and it is possible to reduce the size of the processing tank in addition to the above-mentioned high-speed processing (% opening 55-10
See Publication No. 6594, etc. ) As a result of repeated research on the microbial treatment method for wastewater using semi-liquid raw material as described in @tI, the inventor discovered that as the treatment cycle progresses, the microbial flocs and twigs detached from the suspended solids or carrier particles in the wastewater. It has been found that there is a problem in that the fixed bed section is clogged due to such problems, and wastewater treatment must be temporarily interrupted and cleaning treatment must be carried out frequently. Also in the above-mentioned Japanese Unexamined Patent Publication No. 55-106594, the degree of occlusion of the fixed bed part is detected by pressure observation,
Wastewater treatment is interrupted for cleaning cycles.

前記難点は、担体粒子としズ粒子径及び比重の相違する
ものを併用することによって9円滑有利に解消され得る
ことが新規に見出された。即ち。
It has been newly discovered that the above-mentioned difficulties can be smoothly and advantageously overcome by using carrier particles with different diameters and specific gravity of tin particles. That is.

比重が比較的大で粒子径が小である担体粒子(以下、小
担体粒子という、、)と比重が比較的小で粒子径が大で
ある担体粒子(以下、大担体粒子という。)とを処理槽
内に併用充填し、上部を多孔プレートなどで押えて廃水
を下部より上向に流すと。
Carrier particles with relatively high specific gravity and small particle diameter (hereinafter referred to as small carrier particles) and carrier particles with relatively low specific gravity and large particle diameter (hereinafter referred to as large carrier particles) Fill the treatment tank with both, and press the top with a perforated plate to allow the wastewater to flow upward from the bottom.

槽下部には小担体粒子の流動床部が槽上部には大担体粒
子の(2)定床部が形成される。その結果、固定床部が
大担体粒子で形成されるので、固定床部での閉塞が大巾
に緩和され、廃水処理の運転サイクル時間を増加できる
ものである。また、大担体粒子からなる固定床部の採用
により、洗浄サイクルでの閉塞物除去が容易となり、洗
浄サイクル時間の短縮も可能となる。
A fluidized bed portion of small carrier particles is formed in the lower part of the tank, and (2) a fixed bed part of large carrier particles is formed in the upper part of the tank. As a result, since the fixed bed section is formed of large carrier particles, clogging in the fixed bed section is greatly alleviated, and the operation cycle time of wastewater treatment can be increased. Further, by employing a fixed bed section made of large carrier particles, it becomes easy to remove blockages during the cleaning cycle, and the cleaning cycle time can also be shortened.

かくして本発明は、前記知見に基いて完成されたもので
あり、微生物を付着した担体粒子が下部で流動床を上部
で固定床を形成している半流動床処理槽に廃水を上方に
流通させて処理する方法において、前記担体粒子として
粒子径が小で比重が比較的大である小担体粒子と粒子径
が大で比重が比較的小である大担体粒子を併用し、前記
槽の上部固定床が大担体粒子により形成されることを特
徴とする新規な廃水の処理方法を提供するものである。
The present invention has thus been completed based on the above findings, and consists of passing wastewater upward through a semi-fluidized bed treatment tank in which carrier particles with microorganisms attached form a fluidized bed at the bottom and a fixed bed at the top. In this method, small carrier particles having a small particle size and relatively high specific gravity and large carrier particles having a large particle size and relatively low specific gravity are used together as the carrier particles, and the carrier particles are fixed at the upper part of the tank. A novel method for treating wastewater is provided, characterized in that the bed is formed of large carrier particles.

本発明方法は、半流動床処理の優れた長所、即ち、前記
のように微生物を高濃度に維持できること、高速処理が
可能なこと、固定床部での仕上げ処理が可能なこと、廃
水の流量変化にも対応できることなどに加えて、固定床
部での閉塞を大巾に緩和させるという前記各柚効果も達
成可能である。
The method of the present invention utilizes the excellent advantages of semi-fluidized bed treatment, namely, the ability to maintain a high concentration of microorganisms as described above, the possibility of high-speed treatment, the possibility of finishing treatment in a fixed bed section, and the flow rate of wastewater. In addition to being able to respond to changes, it is also possible to achieve the above-mentioned effects of significantly alleviating blockage in the fixed bed section.

そして9本発明では、大担体粒子と小担体粒子とを併用
することが重要であり、かかる−担体粒子の比重はいず
れも水の比重よりも大でなければならない。また、大担
体粒子と小担体粒子とは、その比重が前者に比較して後
者の方が大であることが重要である。
In the present invention, it is important to use large carrier particles and small carrier particles in combination, and the specific gravity of both carrier particles must be greater than the specific gravity of water. Furthermore, it is important that the specific gravity of the large carrier particles and the small carrier particles is greater than that of the former.

担体粒子の檜類としては、公知乃至周知のものなどが広
範囲にわたって採用可能であり9例えば砂9石炭、炭素
、アルミナ、ガラス、プラスチックス、セラミックスな
どが挙げられる。そして。
As the carrier particles, a wide range of known and well-known materials can be used, including sand, coal, carbon, alumina, glass, plastics, and ceramics. and.

これら担体粒子を適宜に大担体粒子と小担体粒子とに適
合させ選定して使用する。本発明では、大担体粒子の粒
子径として1〜+OU好ましくは2〜 ′5mj程度の
範囲から選定し、小担体粒子の粒子径としてα1〜10
.好ましくは02〜0.6u程度の範囲から選定するの
が望ましい。また、比重としては通常11〜5程度の範
囲から選定され、小担体粒子に比して大担体粒子の比重
を小にするように選定する。大担体粒子と小担体粒子と
の選定は、その担体粒子の種類を変えることによっても
可能であり、また同様の種類のものでも粒子径と比重が
相異なるものを採用することによっても可能である。
These carrier particles are appropriately selected and used as large carrier particles and small carrier particles. In the present invention, the particle diameter of the large carrier particles is selected from the range of 1 to +OU, preferably about 2 to 5 mj, and the particle diameter of the small carrier particles is selected from the range of α1 to 10 mj.
.. Preferably, it is selected from the range of about 0.02 to 0.6 u. Further, the specific gravity is usually selected from a range of about 11 to 5, and is selected so that the specific gravity of large carrier particles is smaller than that of small carrier particles. Selection of large carrier particles and small carrier particles is possible by changing the type of carrier particles, or by using particles of the same type but with different particle sizes and specific gravity. .

本発明において、半流動床処理槽は前記のごとく大担体
粒子と小担体粒子とが併用充填されているが、上部固定
床が大担体粒子により形成される。
In the present invention, the semi-fluidized bed treatment tank is filled with a combination of large carrier particles and small carrier particles as described above, and the upper fixed bed is formed by the large carrier particles.

下部流動床は小担体粒子から形成されるが、下部流動床
に大担体粒子が混入されることを妨けるものではない。
Although the lower fluidized bed is formed from small carrier particles, this does not preclude large carrier particles from being mixed into the lower fluidized bed.

また、場合によっては、上部固定床の下部に小担体粒子
が混入されたり、あるいは上部固定床の下端部に小担体
粒子の固定床が形成されることもある。しかし、小担体
粒子からなる°下端部固定床は形成されないように運転
されるのが望ましい。
In some cases, small carrier particles may be mixed into the lower part of the upper fixed bed, or a fixed bed of small carrier particles may be formed at the lower end of the upper fixed bed. However, it is desirable to operate in such a way that a lower end fixed bed of small carrier particles is not formed.

上部固定床を維持する手段としては1通常は多孔プレー
トにより床の上方から押える手段が採用される。かかる
手段は、前記の特開昭55−106594号公報などに
記載されている。多孔プレートの孔は、処理済み水を通
過させるが、前記担体粒子を槽内に保持できるように、
担体粒子の粒子径より小さい径のものがよい。その他、
半流動床処理槽における構造1条件などは公知乃至周知
のものなどから選定され得る。例えは、廃水は少なくと
も下部流動床を流動化させるのに充分な速度で上方に流
通させ、具体的には最小流動化速度よりかなり速い速度
1例えば12〜6倍程度の速度で流通される。多孔プレ
ートの上下や廃水流通速度などによる上部固定床の高さ
く厚さ)の維持。
As a means for maintaining the upper fixed bed, there is usually employed means for pressing the bed from above using a perforated plate. Such means are described in the above-mentioned Japanese Unexamined Patent Publication No. 55-106594. The pores in the perforated plate allow the treated water to pass through, but allow the carrier particles to remain in the bath.
It is preferable that the particle diameter is smaller than that of the carrier particles. others,
Conditions for the structure of the semi-fluidized bed treatment tank may be selected from known or well-known conditions. For example, the wastewater is flowed upwardly at a rate sufficient to fluidize at least the lower fluidized bed, and specifically at a rate of 1, eg, 12 to 6 times, significantly higher than the minimum fluidization rate. Maintaining the height and thickness of the upper fixed bed by raising and lowering the perforated plate, wastewater flow rate, etc.

f更も可能であり、処理済水の流出口の設置位置の遺足
あるいは廃ガス用排気゛孔の具備なども採用可能である
Further changes are possible, and it is also possible to provide an alternative location for the treated water outlet or a waste gas exhaust hole.

本発明において、半流動床を構成する上部固定床部と下
部流動床部との割合は檜々変更することができる。通常
は固定床部は流動床部に比べて高さく厚み)が小さく構
成される。そして9本発明では、大担体粒子と小担体粒
子の使用割合を適宜選定して、上部固定床部の割合を変
更することもできる。通常は大担体粒子は全担体粒子の
10〜50囁で構成される。
In the present invention, the ratio of the upper fixed bed section and the lower fluidized bed section constituting the semi-fluidized bed can be varied. Usually, the fixed bed section is smaller in height and thickness than the fluidized bed section. In the present invention, the proportion of the upper fixed bed portion can also be changed by appropriately selecting the proportion of large carrier particles and small carrier particles. Typically, large carrier particles are comprised of 10 to 50 microns of total carrier particles.

本発明方法においては、大担体粒子からなる上部固定床
の採用により、閉塞は大巾に緩和されるが、固定床部へ
の閉塞が生起した場合には、従来と同様の洗浄サイクル
が実施され得る。例えば。
In the method of the present invention, by employing an upper fixed bed made of large carrier particles, clogging is greatly alleviated, but if clogging occurs in the fixed bed, the same washing cycle as in the conventional method is carried out. obtain. for example.

廃水処理を一時的に中断し、上部固定床を維持している
多孔グレートを押上げ、床全体を流動化させて、閉塞付
着物を洗浄除去することができる。
Wastewater treatment can be temporarily interrupted and the porous grate holding the upper fixed bed pushed up, allowing the entire bed to fluidize and wash away the blockage deposits.

かかる流動化による洗浄を促進するために攪拌作用を併
用してもよい。
In order to promote washing by such fluidization, stirring action may be used in combination.

本発明方法は、各機の廃水の微生物処理に適用可能であ
り、それに応じて担体粒子に何着する微生物も各機採用
可能である。例えば、廃水中のBOp除去やアンモニア
窒素除去などのどとき好気条件下の処理だけでなく、脱
窒及び消化処理などの嫌気条件下の処理などにも適用さ
れ得る。
The method of the present invention can be applied to the microbial treatment of wastewater in each machine, and any number of microorganisms attached to carrier particles can be adopted in each machine accordingly. For example, it can be applied not only to treatments under aerobic conditions such as BOP removal and ammonia nitrogen removal from wastewater, but also to treatments under anaerobic conditions such as denitrification and digestion treatments.

次に9本発明方法の実施例についてさらに説明する。添
付図面第1図及び第2図はそれぞれ本発明を応用するの
に適した形式の装置の概略を示したものである。
Next, nine embodiments of the method of the present invention will be further described. The accompanying drawings, FIGS. 1 and 2, each schematically show a type of apparatus suitable for applying the invention.

第1図において、1は半流動床処理槽で、槽底近くに取
付けられた多孔プレート2上に、J\担体粒子5が充填
され上下階の流動床a1形成され、その上に大担体粒子
4が充填されて上階の固定11bが形成されており、固
定床すの上面に+1担体粒子4の流出を阻止する多孔プ
レート5が配設され。
In Fig. 1, 1 is a semi-fluidized bed treatment tank, and a porous plate 2 attached near the bottom of the tank is filled with J\ carrier particles 5 to form upper and lower fluidized beds a1, and large carrier particles are placed on top of it. 4 is filled to form a fixed bed 11b on the upper floor, and a porous plate 5 for preventing the +1 carrier particles 4 from flowing out is disposed on the upper surface of the fixed bed.

必要に応じて矢印のように昇降調節自在となっている。It can be raised and lowered as needed, as shown by the arrows.

そして、処理槽1の下部に&ま、槽内に供給する廃水の
供給管6が接続されると共に、処理槽1の上部には槽内
で生物学的処理を受けた処理水を取出す流出管7が接続
されている。また、前記半流動床処理槽1に付帯して酸
素溶解装置8力;設けられている。この装置8には酸素
含有気体(純酸素を含む)の認入管1Sが接続されてお
り、装置8の上部には原廃水の流入管9が接続され、装
置8の下部には前記した供給管60基端カニ接続され【
いる。
A wastewater supply pipe 6 is connected to the bottom of the treatment tank 1, and a wastewater supply pipe 6 is connected to the top of the treatment tank 1, and an outflow pipe is connected to the top of the treatment tank 1 to take out the treated water that has undergone biological treatment in the tank. 7 is connected. Additionally, an oxygen dissolving device 8 is provided attached to the semi-fluidized bed treatment tank 1. An oxygen-containing gas (including pure oxygen) admission pipe 1S is connected to this device 8, an inlet pipe 9 for raw wastewater is connected to the upper part of the device 8, and the above-mentioned supply pipe is connected to the lower part of the device 8. 60 proximal crab connected [
There is.

したがって、原廃水はまず流入管9から酸素溶解装fi
8に尋人され、そこで吹入管13から供給される酸素を
充分溶解した後供給管6から半流動床処理槽1に供給さ
れ、流動床a及び固定床すを通過する際生物学的処理を
受けて槽1上部の流出管7から取出されることになるの
である。この第1図のようなシステムでは、BODが1
000 W/It以下の原廃水に対して好適である。
Therefore, the raw wastewater first flows from the inlet pipe 9 to the oxygen dissolving device fi.
8, where the oxygen supplied from the blowing pipe 13 is sufficiently dissolved, and then supplied from the supply pipe 6 to the semi-fluidized bed treatment tank 1, where it is subjected to biological treatment as it passes through the fluidized bed a and the fixed bed. Then, it is taken out from the outflow pipe 7 at the top of the tank 1. In a system like this Figure 1, the BOD is 1
It is suitable for raw wastewater of 000 W/It or less.

第2図は他の実施例を示したもので、前記第1図の実施
例と同一の部分には同一の符号をつけである。半流動床
処理槽1及び酸素溶解装置8の構成は第1図のものと同
様であるが、原廃水は処理槽1の下部に接続された流入
管9から処理槽1に直接流入される。そして、酸素溶解
装置8の上部と処理槽1の上部とは循環ポンプ10を介
して取出管11により接続されると共に、酸素溶解装置
8の下部と処理槽1の下部とは供給管12により接続さ
れ、循環経路が形成されている。
FIG. 2 shows another embodiment, in which the same parts as in the embodiment of FIG. 1 are given the same reference numerals. The configurations of the semi-fluidized bed treatment tank 1 and the oxygen dissolving device 8 are similar to those shown in FIG. The upper part of the oxygen dissolving device 8 and the upper part of the processing tank 1 are connected by a take-out pipe 11 via a circulation pump 10, and the lower part of the oxygen dissolving device 8 and the lower part of the processing tank 1 are connected by a supply pipe 12. A circulation route is formed.

したがって、流入管9から処理槽1へ流入した原廃水は
、槽内で生物学的処理を受けて上部の流小管7から取出
されるのであるが、その処理を受けた一部の処理水は、
処理槽1の上部から循環ポンプ10によって取出管11
を経て酸素溶解装置8に入り、そこで吹入管13から吹
込まれた酸素を充分溶解した後供給管12から処理槽1
の下部に供給さnることになり一流人管9からの原水と
合流し循環が繰返される。すなわち、処理槽1には、取
出管−11t #!素溶解装置8及び供給管12を有す
る循環経路を循環する液によって常に酸素が供給される
ようになるのである。この第2図のようなシステ第1図
のシステムのものを使用することもできるものである。
Therefore, the raw wastewater that flows into the treatment tank 1 from the inflow pipe 9 undergoes biological treatment in the tank and is taken out from the upper small flow pipe 7, but some of the treated water that has undergone this treatment is ,
An extraction pipe 11 is connected to the upper part of the treatment tank 1 by a circulation pump 10.
After entering the oxygen dissolving device 8 through the supply pipe 12 and sufficiently dissolving the oxygen blown in from the blowing pipe 13,
The raw water is supplied to the lower part of the pipe 9, where it joins with the raw water from the first pipe 9, and the circulation is repeated. That is, the processing tank 1 has a take-out pipe -11t #! Oxygen is constantly supplied by the liquid circulating in the circulation path having the elementary dissolution device 8 and the supply pipe 12. The system shown in FIG. 2 or the system shown in FIG. 1 can also be used.

   □  □

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を応用した装置の一実施例の概略図、第
2図は同じく他の実施例の概略図である。 1・・・半流動床処理槽、λ5・・・多孔プレート、5
・・・小担体粒子、4−・・大担体粒子、6・・・供給
管、7・・・流出管、8・・・酸素溶解装置、?−・・
流入管、10・・・循環ポンプ、11−・取出管、12
・・・供給管、15・・・吹入管、a・−・流動床、b
=・固定床
FIG. 1 is a schematic diagram of one embodiment of an apparatus to which the present invention is applied, and FIG. 2 is a schematic diagram of another embodiment. 1... Semi-fluidized bed treatment tank, λ5... Porous plate, 5
...Small carrier particles, 4-...Large carrier particles, 6... Supply pipe, 7... Outflow pipe, 8... Oxygen dissolving device, ? −・・
Inflow pipe, 10...Circulation pump, 11--Output pipe, 12
...Supply pipe, 15...Blowing pipe, a...Fluidized bed, b
=・Fixed floor

Claims (1)

【特許請求の範囲】 (11微生物を付着した担体粒子が下部で流動床を上部
で固゛定床を形成している半流動床処理槽に廃水を上方
に流通させて処理する方、法において、前記担体粒子と
し粒子径が小で比重が比較的大である小担体粒子と粒子
径が大で比重が比較的小である大担体粒子を併用し。 約記槽の上部固定床が大担体粒子により形成されること
を特徴とする廃水の処理方法。 +21  廃水を、酸素溶解装置に導入して酸素を吹込
み溶解させた後、半流動床処理槽に流入させることを特
徴とする特許請求の範囲第1項記載の廃水の処理方法。 (3;  半流動床処理槽1部と下部とを連絡する循環
径路を設け、該処理槽内の液を循環径路中に設けられた
酸素溶解装置に導入して酸素を吹込み溶解させて該処理
槽の下部から流入させることを特徴とする特許請求の範
囲第1項記載の廃水の処理方法。
[Claims] (11) A method for treating wastewater by flowing it upward through a semi-fluidized bed treatment tank in which carrier particles with microorganisms attached form a fluidized bed at the bottom and a fixed bed at the top. As the carrier particles, small carrier particles having a small particle size and relatively high specific gravity and large carrier particles having a large particle size and relatively low specific gravity are used in combination.The upper fixed bed of the tank is a large carrier particle. A method for treating wastewater, characterized in that it is formed by particles. +21 A patent claim characterized in that the wastewater is introduced into an oxygen dissolving device, where oxygen is blown thereinto to dissolve it, and then the wastewater is caused to flow into a semi-fluidized bed treatment tank. A method for treating wastewater according to item 1. (3; A circulation path connecting one part of the semi-fluidized bed treatment tank and the lower part is provided, and an oxygen dissolving device is provided in the circulation path for the liquid in the treatment tank. The wastewater treatment method according to claim 1, characterized in that the wastewater is introduced into the treatment tank, dissolved therein, and introduced into the treatment tank from the lower part thereof.
JP56160276A 1981-10-09 1981-10-09 Treatment of waste water Pending JPS5861887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56160276A JPS5861887A (en) 1981-10-09 1981-10-09 Treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56160276A JPS5861887A (en) 1981-10-09 1981-10-09 Treatment of waste water

Publications (1)

Publication Number Publication Date
JPS5861887A true JPS5861887A (en) 1983-04-13

Family

ID=15711490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56160276A Pending JPS5861887A (en) 1981-10-09 1981-10-09 Treatment of waste water

Country Status (1)

Country Link
JP (1) JPS5861887A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171891A (en) * 1984-09-13 1986-04-12 Shimizu Constr Co Ltd Fluidized bed type bio-reactor
JPS6358692U (en) * 1986-10-06 1988-04-19
JPH0487690A (en) * 1990-07-31 1992-03-19 Osaka City Treatment of organic waste water
JP4730871B2 (en) * 2001-09-28 2011-07-20 株式会社フジタ Treatment method of organic sludge
WO2012004893A1 (en) * 2010-07-09 2012-01-12 小川 弘 Wastewater treatment device
JP2019013874A (en) * 2017-07-05 2019-01-31 株式会社アクト Sludge volume reduction method, sludge volume reduction device and waste water purification system
JP2020025952A (en) * 2018-08-17 2020-02-20 田村 善胤 Water purification treatment apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171891A (en) * 1984-09-13 1986-04-12 Shimizu Constr Co Ltd Fluidized bed type bio-reactor
JPH0579399B2 (en) * 1984-09-13 1993-11-02 Shimizu Construction Co Ltd
JPS6358692U (en) * 1986-10-06 1988-04-19
JPH0487690A (en) * 1990-07-31 1992-03-19 Osaka City Treatment of organic waste water
JP4730871B2 (en) * 2001-09-28 2011-07-20 株式会社フジタ Treatment method of organic sludge
WO2012004893A1 (en) * 2010-07-09 2012-01-12 小川 弘 Wastewater treatment device
JP2019013874A (en) * 2017-07-05 2019-01-31 株式会社アクト Sludge volume reduction method, sludge volume reduction device and waste water purification system
JP2020025952A (en) * 2018-08-17 2020-02-20 田村 善胤 Water purification treatment apparatus

Similar Documents

Publication Publication Date Title
US5573671A (en) Method of and apparatus for water purification
US3468795A (en) Process and plant for biological purification of waste water and sewage
JPS5932197B2 (en) Fluidized bed biological reaction method for wastewater improvement treatment
JPH0446614B2 (en)
JP3183547B2 (en) Biological redox reactor, biofiltration method and cleaning method used in the reactor
JPS5861887A (en) Treatment of waste water
EP0589896B1 (en) Blowing a gas into a granular filter bed
US4719010A (en) Apparatus for rinsing a fixed bed ion exchanger
JPS6331280B2 (en)
JPH10337585A (en) Method for back wash of surfacing filter medium
JPS58297A (en) Flowing bed type contact oxidation device
JP3368150B2 (en) Fluid bed type biological treatment apparatus and method
JP3477219B2 (en) Fluidized bed wastewater treatment equipment
JP2003300086A (en) Waste water treatment method using fluidized bed
JPS64117B2 (en)
JPS5842077Y2 (en) Biological “filtration” device
JPH01139193A (en) Biological filter
JPS6384692A (en) Aerobic treatment of sewage water
JPH0128867Y2 (en)
JPS5929318B2 (en) Waste liquid treatment equipment
JP3633001B2 (en) Cleaning method for biological filtration device
JPH01139192A (en) Biological filter
JP3377894B2 (en) Water treatment method and apparatus
JPS6012637Y2 (en) biological filtration device
JPH01115497A (en) Waste water treating device