JPS5861684A - Light emitting semiconductor device - Google Patents

Light emitting semiconductor device

Info

Publication number
JPS5861684A
JPS5861684A JP56160592A JP16059281A JPS5861684A JP S5861684 A JPS5861684 A JP S5861684A JP 56160592 A JP56160592 A JP 56160592A JP 16059281 A JP16059281 A JP 16059281A JP S5861684 A JPS5861684 A JP S5861684A
Authority
JP
Japan
Prior art keywords
light emitting
epitaxial layer
gap
substrate
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56160592A
Other languages
Japanese (ja)
Inventor
Susumu Furuike
進 古池
Toshio Matsuda
俊夫 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56160592A priority Critical patent/JPS5861684A/en
Publication of JPS5861684A publication Critical patent/JPS5861684A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To improve color tone and obtain a high light emitting coefficient by configuring the p-n junction to the three element alloy compound semiconductor layer Ga1-xAlx P and also doping the nitrogen to the p-n junction. CONSTITUTION:The dissolving liquid container 3 is moved to the silicon doped n type GaP substrate 2 being accommodated to the substrate support 1 and the epitaxial layer is formed by sequentially making in contact the dissolving liquid 6, 7 thereto. In the case of liquid 6, the non-doped polycrystal GaP and Al is added to the Ga and the Te is also added as the dopant. On the other hand, the liquid 7 is obtained by adding the polycrystal GaP and Al to the Ga. These liquids 6, 7 are placed in contact sequentially with the substrate 52 in order to allow the epitaxial layer of n type Ga1-xAlxP to grow. At this time, the NH3 gas is supplied in order to introduce the N for light emitting into the epitaxial layer. Thereafter, the p type Ga1-xAlxP epitaxial layer is formed. The LED thus obtained has improved the color tone and also improved the light emitting efficiency.

Description

【発明の詳細な説明】 本発明は窒素をドープした燐化ガリウムアルミニラ・ム
(GEL 、−X Alxp) 3元混晶の半導体発光
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor light emitting device using nitrogen-doped gallium aluminum phosphide (GEL, -X Alxp) ternary mixed crystal.

窒素をドープした燐化ガリウム(Gap)発光ダイオー
ドは、緑色発光ダイオードとして現在各方面で広く使用
されている。この発光ダイオードの発光効率の増大には
、発光中心となる窒素の濃度の増加が不可欠であるが、
他方ではこの窒素濃度の増加は発光ピーク波長の長波長
側への移動をまねく。例えば、窒素をドープしないGa
P発光ダイオードは発光ピーク波長が6550ムと純緑
色に近くなるが発光効率は0.01%と低く、逆に窒素
を約1o cInドープしたGapミル発光ダイオード
発光効率は0.1〜0.2%と高いが、その発光ピーク
波長は567oムとなシ発光ダイオードの色調は緑より
も黄に近いものとなる。このことは、緑色発光ダイオー
ドとして要求される波長領域6600五以下をはずれる
ことを意味し、特性上不都合なものとなる。
Nitrogen-doped gallium phosphide (Gap) light emitting diodes are currently widely used as green light emitting diodes in various fields. In order to increase the luminous efficiency of this light emitting diode, it is essential to increase the concentration of nitrogen, which is the luminescent center.
On the other hand, this increase in nitrogen concentration causes the emission peak wavelength to shift toward longer wavelengths. For example, Ga without nitrogen doping
P light-emitting diodes have a peak emission wavelength of 6550 μm, which is close to pure green, but their luminous efficiency is as low as 0.01%, whereas Gap-mil light-emitting diodes doped with about 10 cIn of nitrogen have a luminous efficiency of 0.1 to 0.2. %, but its emission peak wavelength is 567 ohm, and the color tone of the light emitting diode is closer to yellow than green. This means that the wavelength range of 6,600 or less required for a green light emitting diode is outside the range, which is disadvantageous in terms of characteristics.

このように、従来のGapミル発光ダイオード光中心の
窒素濃度の増加とともに発光効率は向上するが、他方で
は発光ダイオードの重要な特性の一つである色調を悪化
させるという問題点を有している。
As described above, as the nitrogen concentration in the light center of the conventional Gap mill light-emitting diode increases, the luminous efficiency improves, but on the other hand, it has the problem of deteriorating the color tone, which is one of the important characteristics of light-emitting diodes. .

本発明はこの問題点の解決を計るものであり、本発明の
発光ダイオードは、燐化ガリウムアルミニウム(Ga+
−Xhlxp:O<X<1)3元■−■族混晶を材料と
しこれに発光中心として窒素をドープした発光ダイオー
ドである。すなわち、本発明は燐化アルミニウム(ムl
p)が2・45 (eV)と燐化ガリウム(Gap)の
2.26 (eV)よりも大きいエネルギーギャップE
gを有することに着目し、Gapに組成Xのムlを加え
た3元混晶燐化ガリウムアルミニウム(GIL +−x
 Al!xp)を用いることにより、そのエネルギーギ
ャップE、9をGap ヨII) モ犬きくするととも
に、このGa1−エムe ’x p K: 窒素をドー
プし発光中心の濃度を増加させ、発光効率を向上させ、
また、発光ピーク波長の長波長側への移動を上記のエネ
ルギーギャップRgの増大によって、前述の緑色発光波
長領域5600ム以1−′に押えだことを特徴としてい
る。
The present invention aims to solve this problem, and the light emitting diode of the present invention is made of gallium aluminum phosphide (Ga+
-Xhlxp: This is a light emitting diode made of a ternary ■-■ group mixed crystal (O<X<1) and doped with nitrogen as a luminescent center. That is, the present invention uses aluminum phosphide (mul
p) is 2.45 (eV), which is larger than the 2.26 (eV) of gallium phosphide (Gap).
Focusing on the fact that it has g, we created ternary mixed crystal gallium aluminum phosphide (GIL +-x
Al! By using xp), the energy gap E, 9 can be increased by increasing the energy gap E, 9, and this Ga1-M e 'x p K: Doping with nitrogen can increase the concentration of luminescent centers and improve luminous efficiency. let me,
Further, the shift of the emission peak wavelength to the long wavelength side is suppressed to 1-' beyond the green emission wavelength range of 5600 μm by increasing the energy gap Rg.

以下、本発明について実施例を参照にして詳細に述べる
Hereinafter, the present invention will be described in detail with reference to Examples.

第1図はGa+−xAlxpエピタキシャル層をGap
基板上に形成するための液相エピタキシャル成長装置の
構成を示す図であり、1は基板支持体、2I−i四基板
支持体の基板支持部内へ収納されたサルファ(S)ドー
プのn型−Gap基板、3は溶融液槽4゜5をもち、基
板支持体1上でスライドが可能な溶融液収納装置、そし
て6,7は溶融液でありたとえば、矢印X方向へ溶融液
収納装置3を移動させ、溶融液6,7を順次接触させる
ことによってエピタキシャル層が形成される。
Figure 1 shows the Ga+-xAlxp epitaxial layer.
It is a diagram showing the configuration of a liquid phase epitaxial growth apparatus for forming on a substrate, in which 1 is a substrate support, 2I-i is a sulfur (S)-doped n-type Gap housed in a substrate support part of a four-substrate support. The substrate 3 has a melt tank 4°5 and is a melt storage device that can slide on the substrate support 1, and 6 and 7 are melt liquids, and for example, the melt storage device 3 is moved in the direction of the arrow X. An epitaxial layer is formed by sequentially bringing the melts 6 and 7 into contact with each other.

Gap・基板2は7X10  ilmの電子濃度を有す
る。
Gap substrate 2 has an electron concentration of 7×10 ilm.

溶融液6は、金属ガリウム(Ga)にこのGaに対して
3.es(wt、%)のノンドープのGap多結晶なら
びに0.05(Wt、%)のアルミニウム(ムl)を加
え、ドーパントとしてテ/l//l/(T6)を0.0
0126(wt−%)添加して形成されている。一方、
溶融液7はGaに2s(wt、%)の多結晶Gapなら
びに0・1(wt%)のアルミニウム(ム7りを添加し
て形成されている。これらの溶融液をその組成が均一に
なるよう所定の温度たとえば1,020’Cの温度で十
分に加熱したのち、溶融液収納装置3を矢印Xの方向へ
スライドさせ、先ず溶融液6をGap基板2に接触させ
る。次いで、接触状態を均一にするために必要な時間に
わたって溶融液6の温度を上記の温度で保持、したのち
、冷却速度CNjを1〜2°C/分に設定して徐冷を行
ないn型GIL1−xlxpエピタキシャル層n1  
を形成する。炉の温度が所定の温度、たとえば990 
’Cに到達したところで、溶融液収納装置を再びX方向
にスライドさせ、溶融液6をGap基板2から除去し、
溶融液7をGap基板2に接触させる。再び所定の時間
、たとえば10分間この状態を保持した後に冷却速度C
N21〜2°C/分で徐冷を行いn型Ga1  z A
7zpエピタキシャル層n2の成長を開始する。この時
、同時に水素(N2)をキャリアガスとしてアンモニア
(NH5)ガスを反応管中に入れ、発光中心のNを上記
n2領域に導入する。そして炉温度が940°C付近に
達したところで亜鉛(Zn)を気相より導入し、p型G
a + −X Alx1) エピタキシ+ ル層p+の
形成を開始する。炉温度が900 ’Cに到達したとこ
ろでGap基板2から溶融液7を除去しPlの成長を停
止するとともに、NH5およびZnの導入も終了させる
The melt 6 contains metallic gallium (Ga) with a ratio of 3. Add undoped Gap polycrystal of es (wt, %) and 0.05 (wt, %) aluminum (mul), and add 0.0 te/l//l/(T6) as dopant.
It is formed by adding 0126 (wt-%). on the other hand,
The melt 7 is formed by adding 2s (wt, %) of polycrystalline Gap and 0.1 (wt%) of aluminum (glu) to Ga. After sufficiently heating the melt to a predetermined temperature, for example, 1,020'C, slide the melt storage device 3 in the direction of arrow X to first bring the melt 6 into contact with the Gap substrate 2. After maintaining the temperature of the melt 6 at the above temperature for the time required to make it uniform, slow cooling is performed by setting the cooling rate CNj to 1 to 2 °C/min to form an n-type GIL1-xlxp epitaxial layer. n1
form. When the temperature of the furnace is a predetermined temperature, for example 990
'C, slide the melt storage device in the X direction again to remove the melt 6 from the Gap substrate 2,
The melt 7 is brought into contact with the Gap substrate 2. After holding this state again for a predetermined period of time, for example 10 minutes, the cooling rate C
N-type Ga1 z A was slowly cooled at 21-2°C/min.
Growth of the 7zp epitaxial layer n2 is started. At this time, ammonia (NH5) gas is simultaneously introduced into the reaction tube using hydrogen (N2) as a carrier gas, and N, which is the luminescent center, is introduced into the n2 region. Then, when the furnace temperature reached around 940°C, zinc (Zn) was introduced from the gas phase, and the p-type G
a + -X Alx1) Start forming epitaxial layer p+. When the furnace temperature reaches 900'C, the melt 7 is removed from the Gap substrate 2 to stop the growth of Pl, and the introduction of NH5 and Zn is also terminated.

このような条件の下で形成される各エピタキシャル層は
、n1層で厚み25μ・平均キャリア濃リア濃度4 X
 10  CIL  91層で厚み12μ、半月キャリ
ア#11X10  crrLである。また、各エピタキ
シャル層のGa j −x A7!XI)の組成は第2
図に示すような傾向を示し、pn接合界面付近で)(=
0.12となり、N#に度は10 cr/Lである。こ
こで、nエピタキシャル層としてムl仕込み量の異なる
nl、n2 層を形成しているのは、Gap基板とのエ
ピタキシャル成長を容易にするだめである。
Each epitaxial layer formed under these conditions is an n1 layer with a thickness of 25μ and an average carrier concentration of 4X.
10 CIL 91 layers, thickness 12μ, half-moon carrier #11X10 crrL. Moreover, G j −x A7! of each epitaxial layer. The composition of XI) is the second
It shows a tendency as shown in the figure, near the p-n junction interface) (=
0.12, and the degree of N# is 10 cr/L. Here, the reason why the nl and n2 layers having different amounts of mulch are formed as the n epitaxial layer is to facilitate epitaxial growth with the gap substrate.

以上のエピタキシャルウェーハより製作されたGl+−
xAlxpの発光ダイオードは6540〜566oムの
純緑色の発光ピーク成長を示し、発光効率は0.06%
とすぐれたものであった。
Gl+- manufactured from the above epitaxial wafer
The xAlxp light emitting diode exhibits a pure green emission peak growth of 6540-566 ohm, and the luminous efficiency is 0.06%.
It was excellent.

このように、本発明のGa1−XA1xp発光ダイオー
ドは従来のGapミル緑色発光ダイオード較して、色調
が改善されるとともに発光効率も高く、工業的価値が犬
なるものである。
As described above, the Ga1-XA1xp light emitting diode of the present invention has improved color tone and higher luminous efficiency than the conventional Gap mill green light emitting diode, and has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例にかかるGa1−XAj!x
l)発光ダイオードを製作するために用いる液相エピタ
キシャル成長装置の構造を示す図、第2図は本発明の一
実施例から得られたGa < −x Alx1)のAl
のエピタキシャル層内の分布を示す。 1・・・・・・基板支持体、2・・・・・・n形Gap
基板、nl。 n2 ・・・・・・n 型Ga 1−xAA!XPエピ
タキシャル層、pl・・・・・・pffJG4+−x’
lxpエピタキシャル層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図
FIG. 1 shows Ga1-XAj! according to an embodiment of the present invention. x
l) A diagram showing the structure of a liquid phase epitaxial growth apparatus used for manufacturing a light emitting diode.
distribution within the epitaxial layer. 1...Substrate support, 2...N-type Gap
Substrate, nl. n2......n-type Ga 1-xAA! XP epitaxial layer, pl...pffJG4+-x'
lxp epitaxial layer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2

Claims (1)

【特許請求の範囲】[Claims] 基板上に燐化ガリウムアルミニウム三元合金化合物半導
体層を形成し、前記化合物半導体層でpn接合を構成す
るとともに該pn接合に窒素をドープしたことを特徴と
する発光半導体装置。
1. A light emitting semiconductor device comprising: a gallium aluminum phosphide ternary alloy compound semiconductor layer formed on a substrate; the compound semiconductor layer forming a pn junction; and the pn junction doped with nitrogen.
JP56160592A 1981-10-07 1981-10-07 Light emitting semiconductor device Pending JPS5861684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56160592A JPS5861684A (en) 1981-10-07 1981-10-07 Light emitting semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56160592A JPS5861684A (en) 1981-10-07 1981-10-07 Light emitting semiconductor device

Publications (1)

Publication Number Publication Date
JPS5861684A true JPS5861684A (en) 1983-04-12

Family

ID=15718279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56160592A Pending JPS5861684A (en) 1981-10-07 1981-10-07 Light emitting semiconductor device

Country Status (1)

Country Link
JP (1) JPS5861684A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0617470A2 (en) * 1993-03-25 1994-09-28 Shin-Etsu Handotai Company Limited A semiconductor light emitting device and methods of manufacturing it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0617470A2 (en) * 1993-03-25 1994-09-28 Shin-Etsu Handotai Company Limited A semiconductor light emitting device and methods of manufacturing it
EP0617470A3 (en) * 1993-03-25 1995-03-01 Shinetsu Handotai Kk A semiconductor light emitting device and methods of manufacturing it.

Similar Documents

Publication Publication Date Title
Craford et al. Vapor phase epitaxial materials for LED applications
USRE29845E (en) GaAs1-x Px electroluminescent device doped with isoelectronic impurities
US3931631A (en) Gallium phosphide light-emitting diodes
US4001056A (en) Epitaxial deposition of iii-v compounds containing isoelectronic impurities
US4575742A (en) Epitaxial wafer for use in the production of an infrared LED
US3893875A (en) Method of making a luminescent diode
JPS581539B2 (en) epitaxial wafer
JPS5856963B2 (en) Method for manufacturing electroluminescent compound semiconductor
JPS5922374A (en) Manufacture of green light-emitting diode
JPH08335715A (en) Epitaxial wafer and its manufacture
JP2579326B2 (en) Epitaxial wafer and light emitting diode
JPS5861684A (en) Light emitting semiconductor device
JP3146874B2 (en) Light emitting diode
JPS5846686A (en) Blue light emitting diode
US5032539A (en) Method of manufacturing green light emitting diode
JPS5816535A (en) Semiconductor device and its manufacture
JPS598383A (en) Znse green light emitting diode
JPS5918877B2 (en) optical semiconductor device
JPH06342935A (en) Gap pure green light-emitting device substrate
JPS6017969A (en) Light emitting semiconductor device
JPH1065211A (en) Light-emitting diode
JPS5891688A (en) Dichroic light-emitting diode and its manufacture
JPH05335621A (en) Gallium phosphide green light emitting diode
JPH04137771A (en) Semiconductor device
JPH0397275A (en) Blue light-emitting diode element consisting of silicon carbide