JPS5860256A - Measurement of biologically active substance and label agent used therefor - Google Patents

Measurement of biologically active substance and label agent used therefor

Info

Publication number
JPS5860256A
JPS5860256A JP15819381A JP15819381A JPS5860256A JP S5860256 A JPS5860256 A JP S5860256A JP 15819381 A JP15819381 A JP 15819381A JP 15819381 A JP15819381 A JP 15819381A JP S5860256 A JPS5860256 A JP S5860256A
Authority
JP
Japan
Prior art keywords
fine particles
solid phase
active
substance
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15819381A
Other languages
Japanese (ja)
Inventor
Takashi Uchida
隆史 内田
Shuntaro Hosaka
保坂 俊太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP15819381A priority Critical patent/JPS5860256A/en
Priority to DE8282106379T priority patent/DE3264269D1/en
Priority to EP19820106379 priority patent/EP0070527B1/en
Priority to CA000407452A priority patent/CA1194416A/en
Publication of JPS5860256A publication Critical patent/JPS5860256A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/585Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with a particulate label, e.g. coloured latex

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

PURPOSE:To enable a safe and highly sensitive measurement in place of the RIA method by employing fine particles of an organic high polymer as label agent in a method of measuring biologically active substance using fine particles. CONSTITUTION:A label substance (active fine particles) labeled by fine particles 0.03-3mum, especially 0.1-0.8mum in the particle size is used to measure substance in place of that labeled by a radioactive isotope or enzyme in the competitive methods. When a fixed amount of active fine particles are caused to react to a solid phase where a bond partner reacted with a test object is solidified, the active fine particles bonded with the solid phase decrease as the quantity of substance in a solution of the object solution increases, while those left in the liquid phase increase. The substance to be measured can be measured quantitatively by counting the active fine particles left in the liquid phase. The solid phase herein used is preferably separable from the active fine particles in the shape or quality, for example, organic high polymer compound such as polystylene. The fine particles serving as carrier of the active fine particles should be uniform in the particle size and shape and made of preferably a hydrophobic or hydrophilic organic high polymer and that of both natures.

Description

【発明の詳細な説明】 本発明は微粒子を用いて生物学的に活性な物質を測定す
る方法およびそれに使用する標識剤に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring biologically active substances using microparticles and a labeling agent used therein.

近年、抗原抗体反応を利用し、微量成分を定量的に測定
す右方法が臨床検査および医学、獣医学、薬学、微生物
学などの研究分野において利用されてきている。
In recent years, the method described above, which utilizes antigen-antibody reactions to quantitatively measure trace components, has been used in clinical testing and research fields such as medicine, veterinary medicine, pharmacy, and microbiology.

赤血球凝集反応や免疫拡散法などの古典的方法に加えて
、最近では抗原・抗体反応により生じさせた免疫複合体
を光散乱により測定するネフエロメトリー、螢光や放射
性同位元素または酵素などで抗体も7しくは抗原を標識
し、抗原もしくは抗体を測定する標識免疫測定法、さら
に加えて合成ポリマー微粒子に抗原や抗体を固定化し、
抗体や抗原の存在でおとる微粒子の凝集の程度をガラス
板上やマイクロプレートで観察することや、凝集にとも
なう光の透過度の変化を分光光度計で測定することで抗
体や抗原の測定をおこなう方法も開発されつつある。
In addition to classical methods such as hemagglutination and immunodiffusion, recent methods include nephelometry, which uses light scattering to measure immune complexes generated by antigen-antibody reactions, and nephelometry, which uses fluorescence, radioactive isotopes, or enzymes to measure immune complexes generated by antigen-antibody reactions. Alternatively, a labeled immunoassay method in which the antigen is labeled and the antigen or antibody is measured, and in addition, the antigen or antibody is immobilized on synthetic polymer particles.
Antibodies and antigens can be measured by observing the degree of aggregation of fine particles on a glass plate or microplate due to the presence of antibodies and antigens, and by measuring changes in light transmittance due to aggregation with a spectrophotometer. Methods to do this are also being developed.

とりわけ、放射性同位元素を用いた免疫測定法(RIA
)は、最も高感度の分析法として広く実用的に利用され
ているが、放射性同位元素を取り扱うため、被爆の危険
が伴う、特別の施設が必要等の大きな欠点を有している
。したがってRIA−にかかわる高感度測定法の実現が
求められている。その1つが、標識免疫測定の利点を残
して、放射性同位元素のかわりに酵素を利用することで
、高感度で取り扱いやすい方法として開発された酵素免
疫測定法(EIA)である。
In particular, radioisotope-based immunoassays (RIA)
) is widely used in practical use as the most sensitive analysis method, but it has major drawbacks such as the risk of radiation exposure and the need for special facilities because it handles radioactive isotopes. Therefore, there is a need for a highly sensitive measurement method related to RIA-. One of these is enzyme immunoassay (EIA), which has been developed as a highly sensitive and easy-to-handle method by using enzymes instead of radioactive isotopes while retaining the advantages of labeled immunoassay.

gIAは確かに一部の被測定物質についてはRIAに匹
敵する測定感度であるが、必ずしも全ての物質について
R,IAと同様の感度をあげているわけでもないし、試
薬も比較的高価であることなどからいまだRIA法を凌
駕するに至ってはいない。
Although gIA does have a measurement sensitivity comparable to RIA for some analyte substances, it does not necessarily have the same sensitivity as RIA for all substances, and the reagents are relatively expensive. For these reasons, it has not yet surpassed the RIA method.

一般にR,IA法に代表される免疫測定法は原理的に2
方法に大別される。1つは競争法であり他の1つはサン
ドウィッチ法と称されている方法である。競争法とは、
抗原もしくは抗体である被測定物質を含む測定試料液と
、前もって放射性同位元素などの標識剤で標識しておい
た既知濃度の被測定物質を混合し、そこに抗体もしくは
抗原を混合し反応させると抗原−抗体複合物ができるが
、複合物まだは複合物を形成しなかった遊離物質には標
識された被測定物質と標識されていない被測定物質が含
まれており、その比率を測定することで検体中の被測定
物質の測定をおこなう方法である。他の1つの方法であ
るサンドウィッチ法は2工程からなる測定法である。す
なわち被測定物質と特異的に結合する結合のパートナ−
を固定化しておいた固相を用意しておき、被測定物質と
反応させるという工程を経た後に、固相を液相より分離
し、次工程で被測定物質と特異的に反応しうる物質を放
射性同位元素などで標識して得た標識した結合性物質と
固相上の被測定物質を反応させ、固相もしくは液相中の
標識物質の測定をおこなうことで、被測定物質の測定を
おこなう方法である。
In general, immunoassay methods represented by the R and IA methods basically have two
It is broadly divided into methods. One is the competition method and the other is the so-called sandwich method. What is competition law?
When a measurement sample solution containing a substance to be measured, which is an antigen or an antibody, is mixed with a known concentration of the substance to be measured, which has been previously labeled with a labeling agent such as a radioactive isotope, and an antibody or antigen is mixed therein and reacted. An antigen-antibody complex is formed, but the free substances that have not yet formed a complex include labeled and unlabeled analyte substances, and the ratio can be measured. This method measures the substance to be measured in a sample. Another method, the sandwich method, is a two-step measurement method. In other words, a binding partner that specifically binds to the analyte
After a step of preparing a solid phase with immobilized substances and reacting it with the analyte, the solid phase is separated from the liquid phase, and in the next step, a substance that can specifically react with the analyte is extracted. The analyte is measured by reacting the labeled binding substance obtained by labeling with a radioactive isotope with the analyte on the solid phase and measuring the labeled substance in the solid or liquid phase. It's a method.

競争法はサンドウィッチ法に比較して操作力;簡便であ
り、しかも被測定物質の抗原部位がたとえ1個であって
も測定が可能なのであるのに対してサンドイツチ法は抗
原部位が1個の場合には測定することは不可能である。
Compared to the sandwich method, the competition method is easier to operate and moreover, it is possible to measure even if there is only one antigenic site of the substance to be measured, whereas the sandwich method is easy to use when there is only one antigenic site. is impossible to measure.

したがって現行のRIA法では競争法の方が多く用いら
れている。
Therefore, competition law is more commonly used in current RIA law.

本発明者らは、RIA法にかわる安全で安価な高感度測
定方法を開発すべく検討した結果、競争法において微粒
子を使用することにより生物学的に活性な物質を高感度
で測定できる新規な測定法を見い出し、本発明に到達し
た。
As a result of our study to develop a safe, inexpensive, and highly sensitive measurement method to replace the RIA method, the present inventors discovered a novel method that can measure biologically active substances with high sensitivity by using microparticles in a competitive method. They discovered a measurement method and arrived at the present invention.

すなわち本発明は、検体溶液中の生物学的に活性な被測
定物質と、既知量の標識剤で標識された被測定物質とを
、被測定物質に特異的に結合する結合のパートナ−を固
定化した固相に対して競争的に反応させた後、液相に残
存した標識物質を測定することにより、被測定物質を測
定する方法において、標識剤として粒径0,03μm〜
6μmの微粒子を用いることを特徴とする生物学的に活
性な物質の測定法において、標識剤として粒径0,03
〜3μmの微粒子を用いることを特徴とする生物学的に
活性な物質の測定法およびそれに使用する標識剤に関す
る。
That is, the present invention combines a biologically active analyte in a sample solution and an analyte labeled with a known amount of a labeling agent by immobilizing a binding partner that specifically binds to the analyte. In a method of measuring a substance to be measured by competitively reacting with a solid phase that has been converted into a solid phase, and then measuring the labeling substance remaining in the liquid phase, a particle size of 0.03 μm or more is used as a labeling agent.
In a method for measuring biologically active substances characterized by using fine particles of 6 μm, particles with a particle size of 0.03 μm are used as a labeling agent.
The present invention relates to a method for measuring biologically active substances characterized by using fine particles of ~3 μm, and a labeling agent used therein.

本発明の特徴は競争法で被測定物質を放射性同位元素や
酵素で標識した標識物質を使用するかわりに、粒径が0
.06μm −3μmの微粒子によって標識した標識物
質(以下活性微粒子と略記する)を使用したことである
。一定量の活性微粒子を、検体と同時か、検体を先に反
応させておいた、結合のパートナ−が固定化されている
固相と反応させた場合、検体溶液中の測定すくき被測定
物質の量が多くなればなるほど固1目に結合する、活性
微粒子の量は減少し、逆に液相に残る活性微粒子量は増
加する。この液相側に残った活性微粒子を計数すること
で、被測定物質を定量的に測定できる。計数方法として
は、活性微粒子分散液に光を照射して生じる散乱光の強
度を測定する方法、同様にして透過光を測定する方法、
粒子計数機により、活性粒子個数を計数する方法などが
ある。
The feature of the present invention is that instead of using a labeling substance in which the substance to be measured is labeled with a radioactive isotope or an enzyme in the competitive method, particle size is reduced to 0.
.. The reason is that a labeling substance labeled with fine particles of 06 μm to 3 μm (hereinafter abbreviated as active fine particles) was used. When a certain amount of active microparticles is reacted with a solid phase on which a binding partner is immobilized, either simultaneously with the analyte or with the analyte reacted first, the analyte in the analyte solution is measured. As the amount of active particles increases, the amount of active particles that bind to the solid phase decreases, and conversely, the amount of active particles that remain in the liquid phase increases. By counting the active particles remaining on the liquid phase side, the substance to be measured can be quantitatively measured. Counting methods include a method of measuring the intensity of scattered light generated by irradiating the active fine particle dispersion with light, a method of measuring transmitted light in the same way,
There is a method of counting the number of active particles using a particle counter.

本発明で使用する固相は、活性微粒子と分離可能な形状
もしくは材質のものが好ましい。
The solid phase used in the present invention preferably has a shape or material that can be separated from the active fine particles.

すなわち、固相を活性微粒子よりも格段に太きい球や板
状の物質として活性微粒子との混合系からつまみ出せる
ようにしたり、固相を微粒子とした場合でも活性微粒子
より大きい粒径として、膜、フィルターまたは遠心分離
機などで分離できるようにしたり、粒径を変えなくとも
固相微粒子の比重を活性微粒子の比重より大きくして、
沈降しやすくし遠心操作により分離できるようにしたり
、または固相微粒子内部に感磁性物質を封入しておき磁
石で吸いつけることで分離できるようにしたりすること
が必要である。
In other words, the solid phase can be extracted from the mixed system with the active particles as a spherical or plate-shaped substance that is much thicker than the active particles, or even if the solid phase is made into fine particles, the particle size is larger than the active particles and the membrane is formed. , by making it possible to separate the particles using a filter or centrifuge, or by making the specific gravity of the solid phase particles larger than that of the active particles without changing the particle size.
It is necessary to make it easy to settle so that it can be separated by centrifugation, or to make it possible to separate it by enclosing a magnetically sensitive substance inside the solid phase fine particles and attracting it with a magnet.

以上の具体例は、固相と活性微粒子との分離について理
解されやすいように記したのであり、特に固相を限定す
るものではない。固相の素材としては生体構成成分や金
属などでもよいが、形状を自由に調節できしかも安定な
有機高分子化合物が好ましい。例えばポリスチレン、ポ
リアクリロニトリル、ポリアクリロニトリル、ポリメタ
クリル酸メチル、ポリ−ε−カプラミド、ポリエチレン
テレフタレートなどの疎水性重合体群、あるいはポリア
クリルアミド、ポリメタクリルアミド、ポリ−N−ビニ
ルピロリドン、ポリビニルアルコール、ポリ(2−オキ
シエチルアクリレート)、ポリ(2−オキシエチルメタ
クリレート)、ポリ(2,3−ジオキシプロピルアクリ
レート)、ポリ(2,3−ジオキシプロピルメタクリレ
ート、ポリエチレングリコールメタクリレートなどの架
橋した親水性重合体群、もしくは両方の性質を持つ共電
体群がある。また固相の形状は板、試験管、マイクロプ
レートなどでもよいが、微粒子または線条を固相とすれ
ば表面積を容易に増加させることができる。
The above specific examples have been described to facilitate understanding of the separation between the solid phase and active fine particles, and are not intended to particularly limit the solid phase. The material for the solid phase may be biological components, metals, etc., but organic polymer compounds whose shape can be freely adjusted and are stable are preferred. For example, hydrophobic polymers such as polystyrene, polyacrylonitrile, polyacrylonitrile, polymethyl methacrylate, poly-ε-capramide, polyethylene terephthalate, or polyacrylamide, polymethacrylamide, poly-N-vinylpyrrolidone, polyvinyl alcohol, poly( Crosslinked hydrophilic polymers such as poly(2-oxyethyl acrylate), poly(2-oxyethyl methacrylate), poly(2,3-dioxypropyl acrylate), poly(2,3-dioxypropyl methacrylate), polyethylene glycol methacrylate, etc. The solid phase can be in the form of a plate, test tube, microplate, etc., but the surface area can be easily increased by using fine particles or filaments as the solid phase. I can do it.

固相への結合のパートナ−の固定化方法としては、物理
吸着と化学結合がある。例えば疎水的な固相には蛋白質
などは物理吸着で固定化できるし、アミノ基やカルボキ
シル基が官能基として存在する固相にはカルボジイミド
でカルボキシル基やアミノ基を有する物質を共有結合で
固定化できるし、アミノ基を有する固相にはアミン基を
有する物質をグルタルアルデヒドで共有結合により固定
化できるし、ヒドロキシル基を有する固相には臭化シア
ンによりアミノ基を有する物質を共有結合で固定化でき
る。固相の洗浄に界面活性剤を含有させた洗浄液を使用
することもあり、固定化方法としては固定化した物質が
脱離する危険のある物理吸着法に比して共有結合法が好
ましい。
Methods for immobilizing a bonding partner to a solid phase include physical adsorption and chemical bonding. For example, proteins can be immobilized on a hydrophobic solid phase by physical adsorption, and substances with carboxyl or amino groups can be immobilized with carbodiimide on a solid phase that has amino or carboxyl groups as functional groups through covalent bonding. A substance with an amine group can be covalently immobilized with glutaraldehyde on a solid phase with an amino group, and a substance with an amino group can be covalently immobilized with cyanogen bromide on a solid phase with a hydroxyl group. can be converted into A cleaning solution containing a surfactant may be used to wash the solid phase, and a covalent bonding method is preferable to a physical adsorption method in which there is a risk of detachment of the immobilized substance.

本発明で使用する結合のパートナ−とは被測定物質に特
異的に結合しうる物質である。例えば、被測定物質が抗
原、抗体、ホルモン、抗原抗体複合体、糖類、免疫グロ
ブリン、リンフ才力イン、補体などの場合には順に抗体
、抗原、該ホルモンリセプター、リューマチ因子、レク
チン、プロティンA1該リンフオカインリセプター、該
補体リセプターなどとの組み合わせがそれぞれ被測定物
質と結合のパートナ−の組み合わせになりうる。
The binding partner used in the present invention is a substance that can specifically bind to the analyte. For example, when the substance to be measured is an antigen, an antibody, a hormone, an antigen-antibody complex, a saccharide, an immunoglobulin, a lymphoid complex, a complement, etc., the order is as follows: antibody, antigen, hormone receptor, rheumatoid factor, lectin, protein A1. The combination with the lymphokine receptor, the complement receptor, etc. can be a combination of the analyte and the binding partner, respectively.

固相に対して検体中の被測定物質と競争的に反応させる
活性微粒子の担体となる微粒子は測定の精度を出すうえ
で、均一な粒径、形状であることか好ましい。反応効率
の点から粒径は小さいほどよく、少くともブラウン運動
をおこす程度の粒径すなわち3μm以下であることが好
ましい。しかしAあまり粒径が小さくとも操作上および
測定上適当ではないので、粒径ば0.06μm〜6μm
の範囲であることが適当であり、特に0.1μrrt−
o、8μmの粒径が好ましい。
In order to obtain measurement accuracy, it is preferable that the fine particles serving as carriers for the active fine particles that cause the solid phase to react competitively with the substance to be measured in the specimen have uniform particle size and shape. From the viewpoint of reaction efficiency, the smaller the particle size, the better, and it is preferably at least a particle size that causes Brownian motion, that is, 3 μm or less. However, even if the particle size is too small, it is not suitable for operational and measurement purposes, so if the particle size is 0.06 μm to 6 μm.
It is appropriate that the range is 0.1 μrrt-
o, a particle size of 8 μm is preferred.

活性微粒子の素材は均一で適当な粒径の微粒子を得る目
的から有機高分子重合体が好ましい。
The material for the active fine particles is preferably an organic polymer in order to obtain fine particles that are uniform and have an appropriate particle size.

例えば前記の固相と同様の疎水性重合体、親水性重合体
、両者の共重合体群がある。本発明の微粒子は乳化重合
や沈澱重合により調製できる。
For example, there are hydrophobic polymers similar to the solid phase described above, hydrophilic polymers, and copolymers of both. The fine particles of the present invention can be prepared by emulsion polymerization or precipitation polymerization.

これらの重合法は均一な粒径および形状の微粒子を得る
のに適した方決である。特に乳化重合は乳化剤やモノマ
ー濃度を調節することで粒径が1μm〜0.05μmの
範囲の均一な粒径の微粒子を調製できる重合法で、目的
とする微粒子を得るには適した重合法である。被測定物
質は、物理吸着や化学結合により微粒子に結合させるこ
とができる。本微粒子は分散性がよくなければならず、
しかも固相への被測定物質を介さない結合があってはな
らないので、固相と同様に親水性の有機高分子化合物に
結合性物質を共有結合で結合させて調製した微粒子が特
に好ましい。
These polymerization methods are suitable methods for obtaining microparticles of uniform size and shape. In particular, emulsion polymerization is a polymerization method that can prepare fine particles with a uniform particle size in the range of 1 μm to 0.05 μm by adjusting the emulsifier and monomer concentration, and is a polymerization method suitable for obtaining the desired fine particles. be. The substance to be measured can be bound to the fine particles by physical adsorption or chemical bonding. The microparticles must have good dispersibility;
Furthermore, since there must be no bonding to the solid phase that does not involve the analyte, fine particles prepared by covalently bonding a binding substance to a hydrophilic organic polymer compound are particularly preferred, similar to the solid phase.

本発明において被測定物質となりうる物質は、生物学的
に特異的な親和性を有する物質を対物質として有してい
る物質であり、具体的には例えば連鎖球菌、ブドウ球菌
、ジフテリア菌、サルモネラ菌、赤痢菌などの細菌およ
びその構成成分に対する抗体;梅毒トレポネーマなどの
スピロヘータおよびその構成成分に対する抗体;マイコ
プラズマおよびその構成成分に対する抗体;マラリア原
虫などの原虫類およびその構成成分に対する抗体;リチ
ツチャアおよびその構成成分に対する抗体;インフルエ
ンザ、アデノウィルス、ポリオーマ、麻疹、風疹、肝炎
、おたふくかぜなどのウィルスおよびその構成成分なら
びにそれらに対する抗体;多糖類、ヒトアルブミン、卵
白アルブミンなどの異種抗原ならびにそれらに対する抗
体;インシュリン、サイロイドホルモン、絨毛性ゴナド
トロピンなどのホルモン;リボヌクレアーゼ、タレアチ
ンホスホキナーゼ、アスパラギナーゼなどの酵素;腎臓
細胞膜、肝臓細胞膜、α−フェトプロティン、OEAな
どの脂管固有の抗原またはりセプター;コラーゲン、ア
ミロイドなどの結合組織成分;赤血球、血小板などの血
球抗原、またはりセプター;フィブリン、プラスミノー
ゲンなどの血繁タンパク質;リューマチ因子や0反応性
タンパク質などの病理グロブリン;免疫複合体;細胞膜
などに対する自己抗体−などがある。
In the present invention, substances that can be measured are substances that have a biologically specific affinity as a countersubstance, and specifically include streptococcus, staphylococcus, diphtheriae, and salmonella. , antibodies against bacteria such as Shigella and their constituents; antibodies against spirochetes such as Treponema pallidum and their constituents; antibodies against mycoplasma and their constituents; antibodies against protozoa such as malaria parasites and their constituents; Antibodies against components; viruses such as influenza, adenovirus, polyoma, measles, rubella, hepatitis, mumps, etc. and their constituent components and antibodies against them; xenoantigens such as polysaccharides, human albumin, ovalbumin and antibodies against them; insulin, thyroid Hormones such as hormones and chorionic gonadotropin; enzymes such as ribonuclease, taleatin phosphokinase, and asparaginase; antigens or receptors specific to fat ducts such as kidney cell membranes, liver cell membranes, α-fetoprotein, and OEA; binding of collagen and amyloid, etc. Tissue components; blood cell antigens such as red blood cells and platelets, or receptors; blood proteins such as fibrin and plasminogen; pathological globulins such as rheumatoid factor and 0-reactive protein; immune complexes; autoantibodies against cell membranes, etc. be.

固相と被測定物質および活性微粒子との反応後、固相に
結合しなかった残存活性微粒子数を測定する。測定法は
微粒子の定量的測定ができるどのような方法でもよい。
After the solid phase reacts with the substance to be measured and the active particles, the number of remaining active particles that are not bound to the solid phase is measured. The measurement method may be any method that allows quantitative measurement of fine particles.

なかでも微粒子による散乱光の強度を測定する方法は、
微粒子に微粒子の粒径と同じくらいの波長の光を照射し
、そのミー散乱と呼ばれる照射した光の波長と同波長の
散乱光を測定する方法であり、高感度測定が可能な方法
である。
Among them, the method of measuring the intensity of light scattered by fine particles is
This is a method in which microparticles are irradiated with light of a wavelength similar to the diameter of the microparticles, and the scattered light with the same wavelength as the irradiated light is measured, which is called Mie scattering, and is a method that allows for highly sensitive measurements.

以下に本発明の理解を容易にする為に若干の実施例を示
した。
Some examples are shown below to facilitate understanding of the present invention.

実施例1 (インシュリンの測定) (固相用微粒子の調製) 固相として使用した微粒子は特願昭55−43618に
配したように、グリシジルメタクリレート、2−オキ7
エチルメタクリレート、およびトリエチレングリコール
ジメタクリレートの6者を85.7 : 9.5 : 
4.8のモル比で混合し重合した微粒子をアミン化し、
加水分解することにより調製した、平均粒径4.3μm
 の親水性微粒子である。
Example 1 (Measurement of insulin) (Preparation of fine particles for solid phase) The fine particles used as the solid phase were glycidyl methacrylate, 2-oxy7, as described in Japanese Patent Application No. 55-43618.
Ethyl methacrylate and triethylene glycol dimethacrylate, 85.7: 9.5:
The fine particles mixed and polymerized at a molar ratio of 4.8 are aminated,
Prepared by hydrolysis, average particle size 4.3 μm
It is a hydrophilic fine particle.

(抗ブタインシュリン抗血清固宝化固相の調製)アミノ
化加水分解処理微粒子を特願昭55−43618に記載
の方法に準じてグルタルアルデヒドで活性化し、PH7
,2の0.15モル生理リン酸緩衝液(PBs)中に濃
度が1%になるように分散させた。この分散液と提ブタ
インシュリン抗血清(Miles )を等量混合し、!
I0℃で5時間反応させた後、さらに牛血清アルーブミ
ン(以下、BSAと略記する。)を粒子分散液中で1%
となるように加え、さらに1時間反応させ、さらに30
00rpmの遠心操作による洗浄の後、0.196のB
SAを含むPBs中に分散させ、抗ブタインシュリン抗
血清固定化微粒子固相を調製した。
(Preparation of anti-pig insulin antiserum solid phase) Aminated and hydrolyzed fine particles were activated with glutaraldehyde according to the method described in Japanese Patent Application No. 55-43618, and the pH was 7.
, 2 in 0.15M physiological phosphate buffer (PBs) to a concentration of 1%. Mix equal amounts of this dispersion and swine insulin antiserum (Miles), and!
After reacting at 10°C for 5 hours, 1% bovine serum albumin (hereinafter abbreviated as BSA) was added to the particle dispersion.
Added so that
After washing by centrifugation at 00 rpm, a B of 0.196
A microparticle solid phase immobilized with anti-porcine insulin antiserum was prepared by dispersing it in PBs containing SA.

(活性微粒子用微粒子の調製) グリシジルメタクリレート、メタクリル酸、エチレング
リコールジメタクリレートを85:10:5のモル比で
混合し、ドデシル硫酸ナトリウムを0.1%、過硫酸ア
ンモニウムo、oiモル/lを含む水溶液に加え、七ツ
マー濃度10 % (W/V)の水溶液として、アルゴ
ンガス雰囲気下で60℃、22時間反応させた後、生成
した微粒子を固相微粒子と同様にして、アミン化、加水
分解して粒径が0.27μmの均一な微粒子を調製した
(Preparation of microparticles for active microparticles) Glycidyl methacrylate, methacrylic acid, and ethylene glycol dimethacrylate were mixed in a molar ratio of 85:10:5, containing 0.1% sodium dodecyl sulfate and o, oi mol/l of ammonium persulfate. In addition to the aqueous solution, the aqueous solution with a 7-mer concentration of 10% (W/V) was reacted at 60°C for 22 hours in an argon gas atmosphere, and the resulting fine particles were subjected to amination and hydrolysis in the same manner as solid phase fine particles. Uniform fine particles having a particle size of 0.27 μm were prepared.

(インシュリン固定化活性微粒子の調製)固相用微粒子
への抗ブタインシュIJ 7抗血清の固定化の方法に準
じて、インシュリンの固定化をおこなった。すなわち、
グルタルアルデヒド処理した濃度1%の微粒子分散液と
4D単位/−のブタインシュIJ ン(N0VO)を等
量混合し、30℃で2時間反応させ、さらにBSAを1
%となるように加え、60℃で1時間反応を続け、11
0000rpで30分遠心することで微粒子の洗浄をお
こなった後、0.1%BSAを含むPBS中に粒子濃度
1%になるように分散させ、ブタインシュリン固定化活
性微粒子を調製した。
(Preparation of insulin-immobilized active microparticles) Insulin was immobilized according to the method for immobilizing anti-pig insulin IJ 7 antiserum onto solid phase microparticles. That is,
Equal amounts of 1% glutaraldehyde-treated fine particle dispersion and 4D units/- of butane insulin (N0VO) were mixed, reacted at 30°C for 2 hours, and then 1% BSA was added.
%, and continued the reaction at 60°C for 1 hour.
After washing the microparticles by centrifuging at 0,000 rpm for 30 minutes, they were dispersed in PBS containing 0.1% BSA to a particle concentration of 1% to prepare active microparticles immobilized with porcine insulin.

(インシュリンの測定) ブタインシュリンを25μU/7.12.5μU/d、
6.25μU/ゴ含むPBS溶液100μtに抗ブタイ
ンシュリン抗血清固定化固相微粒子1チ公散液を100
/ノ2加えて、25℃で2時間反応させてから、さらに
インシュリン固定化活性微粒子(o、oiチ分散液)1
0μtを加え、さらに25℃で一晩反応させた。反応液
に2.5−のPBSを加え、3000 r pmの遠心
操作で固相および固相と反応した活性微粒子を沈降させ
、上清として固相と反応しなかった微粒子分散液を?U
 /ど。、活性微粒子分散液の光散乱強度をアミンコ・
ポーマン社の螢光光度計を用いて400 Inの光を照
射することで測定した。光散乱強度は微粒子数と比例し
ているので、予め作成した検量線を用いて光散乱強度よ
り微粒子数を求めた。第1図に示したようにイン7ュリ
ンが25μU /ml 〜6.25 p U、/mlの
範囲で定t[K測定できることがわかる。
(Measurement of insulin) Porcine insulin 25μU/7.12.5μU/d,
Add 100 μt of anti-porcine insulin antiserum-immobilized solid phase fine particles to 100 μt of PBS solution containing 6.25 μU/g.
After adding /2 and reacting at 25°C for 2 hours, 1 of insulin-immobilized active fine particles (o, oichi dispersion) was added.
0 μt was added, and the reaction was further allowed to proceed overnight at 25°C. 2.5-PBS was added to the reaction solution, the solid phase and the active particles that had reacted with the solid phase were precipitated by centrifugation at 3000 rpm, and the fine particle dispersion that did not react with the solid phase was used as the supernatant. U
/degree. , the light scattering intensity of the active fine particle dispersion was measured by Aminco・
It was measured by irradiating 400 In of light using a Porman fluorophotometer. Since the light scattering intensity is proportional to the number of particles, the number of particles was determined from the light scattering intensity using a calibration curve prepared in advance. As shown in FIG. 1, it can be seen that constant t[K can be measured for insulin in the range of 25 μU/ml to 6.25 pU/ml.

実施例2 1B8Aの測定) (抗BSA抗血清固定化固相の調製) 嘗 実施例2と同様にして調製したグルタルアルデヒド処理
をした固相用微粒子1チ分散液と抗BSA抗血清(Mi
les )を等量混合し、30℃で6時間反応させた後
、さらに、ヒト血清アルブミン(以下、BSAと略記す
る。)を粒子分散液中で1チとなるように加え、さらに
1時間反応させ、5000rpmの遠心操作による洗浄
の後、0.1%のBSAを含むPBS中に分散させ、抗
BSA抗血清固定化微粒子を調製した。
Example 2 Measurement of 1B8A) (Preparation of anti-BSA antiserum-immobilized solid phase) A dispersion of glutaraldehyde-treated fine particles for solid phase prepared in the same manner as in Example 2 and anti-BSA antiserum (Mi
After mixing equal amounts of les) and reacting at 30°C for 6 hours, human serum albumin (hereinafter abbreviated as BSA) was added to the particle dispersion so that it was 1 g, and the reaction was further continued for 1 hour. After washing by centrifugation at 5000 rpm, the particles were dispersed in PBS containing 0.1% BSA to prepare anti-BSA antiserum-immobilized microparticles.

(BSA固定化活性微粒子の作製) 実施例1と同様にして調製したグルタルアルデヒド処理
をした粒径0,27μmの活性微粒子1%分散液にBS
Aを10μt1g/mlになるように加え、30℃で3
時間反応させ、110000rpの遠心操作による洗浄
の後、0.1チのBSAを含むPBS中に分散させ、B
SA固定化活性微粒子を調製した。
(Preparation of BSA-immobilized active fine particles) BSA was added to a 1% dispersion of active fine particles with a particle size of 0.27 μm that had been treated with glutaraldehyde and prepared in the same manner as in Example 1.
Add 10 μt of A to 1 g/ml and incubate at 30°C for 3
After reacting for an hour and washing by centrifugation at 110,000 rpm, the B
SA-immobilized active microparticles were prepared.

(BSAの測定) BSAを10μg/mj!、 111g/ml、 10
0℃g/m/。
(Measurement of BSA) 10μg/mj of BSA! , 111g/ml, 10
0℃g/m/.

10■/−含むPB8溶液90μtに抗BSA抗血清固
定化固相微粒子1%分散液を100μを加え、1時間5
0℃で反応させた後に、BSA固定化活性微粒子を加え
、さらに−晩30℃で反応させた。反応液に2.5−の
PBSを加え、1.2μmの径の穴がおいている膜(ミ
リポアフィルタ−RA)で面相に結合しなかつた活性微
粒子を、固相と固相に結合した?占性微粒子から分離し
、実施例1と同様にして散た。
Add 100μ of a 1% dispersion of anti-BSA antiserum-immobilized solid-phase microparticles to 90μt of PB8 solution containing 10μ/−, and stir for 1 hour.
After reacting at 0°C, BSA-immobilized active microparticles were added, and the reaction was further carried out at 30°C overnight. 2.5-PBS was added to the reaction solution, and the active particles that were not bound to the surface phase were bound to the solid phase using a membrane with 1.2 μm diameter holes (Millipore filter-RA). It was separated from the occupied fine particles and dispersed in the same manner as in Example 1.

た。Ta.

実施例6 (ヒト絨毛性ゴナドトロピン(HOGと略す)の測定)
) (抗HOG抗血清固定化同相の調製) 実施例1と同様にして調製したグルタルアルデヒド処理
をしだ固相用微粒子1チ分散液と抗HOO抗血清160
00 I U/d (Mi 1es)を等量混合し、3
0℃で6時間反応させた後、さらにBSAを粒子分散液
中で1チになるように加え、さらに1時間反応させ、3
000rpmの遠心操作による洗浄の後、0.1%のB
SAを含むpBs中に分散させ、抗HOG抗血清固定化
微粒子固相を調製した。
Example 6 (Measurement of human chorionic gonadotropin (abbreviated as HOG))
) (Preparation of anti-HOG antiserum immobilized same phase) A glutaraldehyde-treated solid phase microparticle 1T dispersion prepared in the same manner as in Example 1 and anti-HOO antiserum 160
00 I U/d (Mi 1es) were mixed in equal amounts, and 3
After reacting at 0°C for 6 hours, BSA was further added to the particle dispersion so that the amount was 1 inch, and the reaction was further continued for 1 hour.
After washing by centrifugation at 000 rpm, 0.1% B
An anti-HOG antiserum-immobilized microparticle solid phase was prepared by dispersing it in pBs containing SA.

(活性微粒子用微粒子の調製) グリシジルメタクリレート、エチレングリコールジメタ
クリレートスルホプロピルメ!クリレートナトリウム塩
を88:IG+20モル比で混合し、ドデシル硫酸ナト
リウムを0.125チ、過硫酸アンモニウム0.01モ
ル/lを含む水溶液に加え、モノマー濃度10%(W/
V)の水溶液として、アルゴンガス雰囲気下で60℃で
6時間反応させた後、生成した微粒子を11000or
pの遠心操作で洗浄をおこない、固相微粒子と同様にア
ミノ化、加水分解して粒径が0.1μmの均一な微粒子
を調製した。
(Preparation of microparticles for active microparticles) Glycidyl methacrylate, ethylene glycol dimethacrylate sulfopropyl me! Acrylate sodium salts were mixed at a molar ratio of 88:IG+20 and added to an aqueous solution containing 0.125 mol/l of sodium dodecyl sulfate and 0.01 mol/l of ammonium persulfate to give a monomer concentration of 10% (W/L).
After reacting as an aqueous solution of V) at 60°C in an argon gas atmosphere for 6 hours, the generated fine particles were heated to 11,000 or
The particles were washed with a centrifugal operation of P, and were aminated and hydrolyzed in the same manner as the solid phase particles to prepare uniform particles with a particle size of 0.1 μm.

(HOG固定化活性微粒子の調製) 固相用微粒子へのBSAの固定化の方法に準じて、HC
Gの固定化をおこなった。すなわち、グルタルアルデヒ
ド処理した濃度0.1%O微粒子分散液にHOG (S
igma)を6200IU/1nI!、になるように混
合し、30℃で3時間反応させた後、88人を粒子分散
液中で1チとなるように加え、さらに1時間反応させた
。15000rpmで60分遠心することで洗浄をおこ
なった後、0.1%のBSAを含むPBS中に分散させ
、HCG固定化活性微粒子を調製した。
(Preparation of HOG-immobilized active fine particles) According to the method for immobilizing BSA on solid phase fine particles, HC
G was immobilized. That is, HOG (S
igma) at 6200IU/1nI! , and reacted at 30° C. for 3 hours, 88 particles were added to the particle dispersion so as to make 1 g, and the reaction was further continued for 1 hour. After washing by centrifuging at 15,000 rpm for 60 minutes, the particles were dispersed in PBS containing 0.1% BSA to prepare HCG-immobilized active microparticles.

(HOGの測定) HOGの104〜102製/lまでの10倍稀釈系列(
各90μt)を作製し、ガラス試験管内で1%の抗HO
G固定化固相微粒子分散液5011tおよび0.01%
のHOG微粒子分散液を10μを加え、25℃で一晩反
応させた。反応液に2.5−のPB8を加え、実施例2
と同様にして膜により、固相に結合しなかった活性微粒
子を分離し、散乱光強度を測定し、強度から微粒子数を
求めた。
(Measurement of HOG) 10-fold dilution series of HOG from 104 to 102/l (
90 μt each) and 1% anti-HO in a glass test tube.
G-immobilized solid phase fine particle dispersion 5011t and 0.01%
10μ of HOG fine particle dispersion was added and reacted overnight at 25°C. Adding 2.5-PB8 to the reaction solution, Example 2
In the same manner as above, active particles that did not bind to the solid phase were separated using a membrane, the intensity of the scattered light was measured, and the number of particles was determined from the intensity.

υ         υ HOG1o’蓼/l〜102む/lの範囲におけるH 
CG濃度と散乱光強度の関係を第3図に示した。
υ υ H in the range of HOG1o'/l to 102mu/l
FIG. 3 shows the relationship between CG concentration and scattered light intensity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は、各々実施例1〜3の測定結果を示す
ものであり、第1図はインシュリンの測定を、第2図は
BSAの測定を、第3図は揮刀の測定を示す。 特許出願人  東 し 株 式 会 社易1図 インシュリン浸漬と7U/mrll) 晃2区 (xlO7コ/、) BSAづ濃度(J鷹) 鳥3図 (xlo’鴨区) Hccr濃7!(v/1.)
Figures 1 to 3 show the measurement results of Examples 1 to 3, respectively. Figure 1 shows the measurement of insulin, Figure 2 the measurement of BSA, and Figure 3 the measurement of the sword. shows. Patent applicant Higashi Shi Co., Ltd. Figure 1 Insulin immersion and 7U/mrll) Ko 2 ward (xlO7 ko/,) BSA concentration (J hawk) Tori 3 (xlo' duck ward) Hccr concentration 7! (v/1.)

Claims (2)

【特許請求の範囲】[Claims] (1)  検体溶液中の生物学的に活性な被測定物質、
および標識剤で標識された既知量の被測定物質を、被測
定物質に特異的に結合する結合のパートナ−を固定化し
た固相に反応させた後、液相に残存した標識物質を測定
することにより被測定物質を測定する方法において、標
識剤として粒径0.03μm〜3μmの微粒子を用いる
ことを特徴とする生物学的に活性な物質の測定法。
(1) Biologically active analyte in the sample solution;
A known amount of the analyte labeled with a labeling agent is reacted with a solid phase on which a binding partner that specifically binds to the analyte is immobilized, and then the labeling substance remaining in the liquid phase is measured. A method for measuring a biologically active substance, characterized in that fine particles having a particle size of 0.03 μm to 3 μm are used as a labeling agent.
(2)粒径0.03μm〜3μmの微粒子からなる競争
的免疫測定用標識剤。
(2) A labeling agent for competitive immunoassay consisting of fine particles with a particle size of 0.03 μm to 3 μm.
JP15819381A 1981-07-17 1981-10-06 Measurement of biologically active substance and label agent used therefor Pending JPS5860256A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP15819381A JPS5860256A (en) 1981-10-06 1981-10-06 Measurement of biologically active substance and label agent used therefor
DE8282106379T DE3264269D1 (en) 1981-07-17 1982-07-15 Method of assaying biologically active substances and labelling agents therefor
EP19820106379 EP0070527B1 (en) 1981-07-17 1982-07-15 Method of assaying biologically active substances and labelling agents therefor
CA000407452A CA1194416A (en) 1981-07-17 1982-07-16 Method of assaying biologically active substances and labelling agents therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15819381A JPS5860256A (en) 1981-10-06 1981-10-06 Measurement of biologically active substance and label agent used therefor

Publications (1)

Publication Number Publication Date
JPS5860256A true JPS5860256A (en) 1983-04-09

Family

ID=15666297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15819381A Pending JPS5860256A (en) 1981-07-17 1981-10-06 Measurement of biologically active substance and label agent used therefor

Country Status (1)

Country Link
JP (1) JPS5860256A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253870A (en) * 1984-05-08 1985-12-14 Sekisui Chem Co Ltd Immunological diagnosis
JPS6148764A (en) * 1984-08-14 1986-03-10 デューク サイエンティフィック コーポレーション Method and kit for testing aqueous sample for specific substance
JPH01273584A (en) * 1988-04-26 1989-11-01 Nippon Telegr & Teleph Corp <Ntt> Method for collecting detection object and apparatus therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50160423A (en) * 1974-05-29 1975-12-25
JPS56151357A (en) * 1980-04-25 1981-11-24 Hitachi Ltd Immunoassay method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50160423A (en) * 1974-05-29 1975-12-25
JPS56151357A (en) * 1980-04-25 1981-11-24 Hitachi Ltd Immunoassay method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253870A (en) * 1984-05-08 1985-12-14 Sekisui Chem Co Ltd Immunological diagnosis
JPS6148764A (en) * 1984-08-14 1986-03-10 デューク サイエンティフィック コーポレーション Method and kit for testing aqueous sample for specific substance
JPH01273584A (en) * 1988-04-26 1989-11-01 Nippon Telegr & Teleph Corp <Ntt> Method for collecting detection object and apparatus therefor

Similar Documents

Publication Publication Date Title
US5236826A (en) Immunoassay for the detection or quantitation of an analyte
JPH087215B2 (en) Method for detecting antigen and / or antibody and test kit for detection
EP0110993A1 (en) Particulate ligand assay-methods and products
EP0070527B1 (en) Method of assaying biologically active substances and labelling agents therefor
JPS60259965A (en) Immunological reaction apparatus
EP0248892A1 (en) Particle-bound binding component immunoassay
JP5416263B2 (en) Cortisol immunoassay using fluorescent particles
AU2007298839B2 (en) Blood typing
JPS6161062B2 (en)
EP0323692B1 (en) Water-insoluble reagent, elements containing same and methods of use
US4792527A (en) Method of assaying biologically active substances and labelling agents therefor
JP2005077301A (en) Immunological detection carrier and measuring method
JPS6036962A (en) Fine particle for biological inspection
JPS5860256A (en) Measurement of biologically active substance and label agent used therefor
JP5465758B2 (en) Thyroxine immunoassay using fluorescent particles
JP2017150867A (en) Test kit for biomolecule detection, biomolecule detection method using this and labeling reagent for biomolecule detection to be used for these
JPS59122950A (en) Method for measuring biologically active substance and labeling agent used therein
JP3618797B2 (en) Immunoassay
JPS5990051A (en) Material for immunoanalysis
JP2001330614A (en) Solid phase to which biological activity is imparted, and method for manufacturing the same
JPS6024450A (en) Measurement of biologically active substance
JP3916189B2 (en) Reagent for immunoassay and immunoassay
JPS5814057A (en) Measurement of biologically active substances and labelling agent used therefor
JPS5958002A (en) Fine particle for clinical measurement and its preparation
JPH08193999A (en) Immune measuring method