JPS5860237A - Excessive light quantity detecting-displaying device for mtf measuring apparatus - Google Patents

Excessive light quantity detecting-displaying device for mtf measuring apparatus

Info

Publication number
JPS5860237A
JPS5860237A JP15850881A JP15850881A JPS5860237A JP S5860237 A JPS5860237 A JP S5860237A JP 15850881 A JP15850881 A JP 15850881A JP 15850881 A JP15850881 A JP 15850881A JP S5860237 A JPS5860237 A JP S5860237A
Authority
JP
Japan
Prior art keywords
light quantity
excessive
mtf
output signal
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15850881A
Other languages
Japanese (ja)
Inventor
Mitsuki Sagane
砂金 光記
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP15850881A priority Critical patent/JPS5860237A/en
Publication of JPS5860237A publication Critical patent/JPS5860237A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0292Testing optical properties of objectives by measuring the optical modulation transfer function

Abstract

PURPOSE:To obtain an excessive light quantity detecting-displaying device allowing a correct MTF value to be constantly measured, by displaying whether the output signal of a self-scanning solid-state image pickup element is below or above a saturation level. CONSTITUTION:A video signal Video from an amplifier 8 is compared with a predetermined reference voltage VRef in a comparator circuit 13. When the output signal of a charge coupled device 5 is above a saturation output level due to an excessive incident light quantity, the comparator circuit 13 detects this and sets a flip-flop 14. In response to a high-level output of the flip-flop 14, a driver circuit 15 drives an excessive light quantity display 16 constituted by a display lamp such as a light-emitting diode or the like to effect display of the excessive light quantity. Thus, the operator can read only a correct MTF value from an MTF display 12 by checking for whether the MTF value is accurately measured or not through observation on the excessive light quantity display 16.

Description

【発明の詳細な説明】 本発明は自己定食形固体撮像素子を用いたMTFσil
l定装置σ)光量過多検出表示装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an MTF σil using a self-setting solid-state image sensor
l constant device σ) Excess light amount detection display device.

最近、成械的走査を全く必要としない、電荷結付才子や
フォトダイメートアレイ等の電子的走査馨洋なった自己
走食形固体撮像累子がMTF測定装置l−4で、vl速
化、操作性簡易化を図る目的で使用され−(い4)。こ
のうち電荷結合素子を例にして説明すると、電荷結合素
子では矛1図に示す様に敵手t「受光面積を有するフォ
トニレメン、トlが直線状に配列されており、各フォト
エレメントは露光量に比例した電荷が蓄えらねてこの電
荷即ち露光量に比例した電位が転送りロックパルスφT
 により順次に取り出される様になっている。
Recently, self-traveling solid-state imagers, which do not require mechanical scanning at all and have become electronically scanned, such as charge-coupled sensors and photodimate arrays, have been developed using the MTF measuring device l-4, which increases the speed of VL. , used for the purpose of simplifying operability (I4). To explain this using a charge-coupled device as an example, in a charge-coupled device, as shown in Figure 1, photo elements each having a light-receiving area are arranged in a straight line, and each photo element has a light receiving area. A proportional charge is not stored, and this charge, that is, a potential proportional to the exposure amount is transferred, and the lock pulse φT
They are taken out sequentially.

矛2図は電荷結像素子を用いたMTF測定装置における
光学的構成例1を示す。スリ2ト2がランプ3により照
明されて結像レンズ4によりスリット像2が電荷結像素
子5上に結像される。ここで電荷結合素子5はスリット
像2′に対して垂直に配置され、スリット像2′の光強
度分布が電荷結合素子5により測定される。この電荷結
合素子5の出力信号が例えば電気的にフーリエ変換され
て被検レンズ4のMTF値が測定され表示される。
Figure 2 shows an optical configuration example 1 of an MTF measuring device using a charge imaging element. The slit 2 is illuminated by a lamp 3, and the slit image 2 is formed on a charge imaging element 5 by an imaging lens 4. Here, the charge-coupled device 5 is arranged perpendicularly to the slit image 2', and the light intensity distribution of the slit image 2' is measured by the charge-coupled device 5. The output signal of the charge-coupled device 5 is, for example, electrically Fourier transformed, and the MTF value of the lens 4 to be tested is measured and displayed.

ところで電荷結合素子において各フォトエレメントから
の光電変換信号は各゛フォトエレメントに照射される光
の放射照度と蓄積時間に比例しており1例えば市販され
ているフェアチャイルド社製のCCD 142ではその
特性が矛3図及び矛4図の如くなっている。この図から
容易に理解でき名ように電荷結合索子は出力信号が飽和
出力レベル以上に(まならず、捷だ飽和出力レベル付近
では矛4図に示す69!に光電g換特性の真直性が悪く
なるため測定用に用いる場合には出力信号が飽和出力レ
ベルヶ越えない様に放射照度と蓄積時間のいずわかを調
整する必要が生ずる。牙5図は電荷結合素子における蓄
積時間tφ工と転送時間tT  の関係を示すタイミン
グチャートで、電荷結合素子のフォトエレメントかN個
ある場合には転送りロックパルスφT の周期tφTに
対してtT = NXtφT で表わさ第1.N−tφ
T<tφ工となるようにトランスファクロックφゆ を
発生させなければならない。ここで電荷結合索子の出力
信号レベルは転送りロックパルスφr[41−関与せず
、トランスファクロックφゆの周期LφxVc比例する
ことになる。
By the way, in a charge-coupled device, the photoelectric conversion signal from each photoelement is proportional to the irradiance and accumulation time of the light irradiated to each photoelement. are shown in Figures 3 and 4. As can be easily understood from this figure, when the output signal of a charge-coupled probe exceeds the saturation output level (not necessarily around the saturation output level), the straightness of the photovoltaic conversion characteristic changes to 69! as shown in Figure 4. When used for measurement, it becomes necessary to adjust either the irradiance or the accumulation time so that the output signal does not exceed the saturation output level.Figure 5 shows the accumulation time tφ in the charge-coupled device. This is a timing chart showing the relationship between the transfer time tT, and when there are N photo elements of a charge-coupled device, the period tφT of the transfer lock pulse φT is expressed as tT = NXtφT.
The transfer clock φ must be generated so that T<tφ. Here, the output signal level of the charge-coupled element is not related to the transfer lock pulse φr [41-] and is proportional to the period LφxVc of the transfer clock φy.

上記MTF測定装置において電荷結合素子の出力信号か
飽和出力レベルを越えた場合その出力信号(工水6図の
破線で示す波形となるため1.正しいMTF ftFL
の測定が不可能になる。こわを補正するためにはランプ
3の輝度を減じて放射照度を小さくするか又は蓄積時間
を短かくすることによって電荷結合素子の出力信号な矛
6図の実線で示す波形とする必要がある。このうちラン
プ3の輝度を減じる方法は光源の分光放射分布が異なっ
てし捷いMTF値の誤差が生ずるため、実負的には余り
用いられない。
In the above MTF measurement device, if the output signal of the charge coupled device exceeds the saturation output level, the output signal (the waveform shown by the broken line in Figure 6) is 1. Correct MTF ftFL
becomes impossible to measure. In order to correct the stiffness, it is necessary to reduce the luminance of the lamp 3 to reduce the irradiance or shorten the accumulation time so that the output signal of the charge coupled device has the waveform shown by the solid line in Figure 6. Among these methods, the method of reducing the brightness of the lamp 3 is not often used in practice because the spectral radiation distribution of the light source is different and an error in the MTF value occurs.

一般にカメラレンズ等のMTF値を測定するMTF測定
装置では結像向の放射照度Es  は次式(1)で表わ
され、レンズ絞りがF=1.2〜F = 16.0  
となるため、放射照度か2桁程度変化することになる。
In general, in an MTF measurement device that measures the MTF value of a camera lens, etc., the irradiance Es in the imaging direction is expressed by the following formula (1), and the lens aperture is F = 1.2 to F = 16.0.
Therefore, the irradiance will change by about two orders of magnitude.

但しt:レンズ透過率#  EO:  スリットの放射
照度(μW / Cm ) 、  θ:半画角、 AE
(θ):開口効率2m:倍率、F:レンズ絞り値である
。このためEs  の絶対値が2桁程度変化してしまい
、Fの小さいレンズのMTF測定では蓄積時間を小さく
することによって電荷結合索子の出力信号レベルン飽和
出力レベル以下にしなけわばならない。
However, t: Lens transmittance #EO: Slit irradiance (μW/Cm), θ: Half angle of view, AE
(θ): aperture efficiency 2m: magnification, F: lens aperture value. For this reason, the absolute value of Es changes by about two orders of magnitude, and when measuring the MTF of a lens with a small F, the output signal level of the charge-coupled probe must be kept below the saturation output level by shortening the accumulation time.

3′7図は従来のMTF測定装置における信号処理回路
を示しており、電荷結合素子5はクロック発生回路6か
ら転送りロックパルスφ7 が入力さね・ると共に蓄積
時間設定回路7からトランスファクロ、りφ8 が人力
され、スリット像2′の光強度分布を光輩変侠して時系
列で出力する。この電荷結合索子5の出力信号は増幅器
8で増幅さねてサンプルアンドホールド回路9によりサ
ンプル及びホールドがさね、アナログ/デジタル変換器
10によりデジタル信号に変換される。このデジタル信
号かフーリエ変換回路11によりフーリエ変換されて被
検レンズ4のMTF値が得らね、このMTF値が・MT
F 4示装置12により表示される。ここにオペレータ
はセツティング時に手動で被検レンズ4の絞りに適合さ
せて蓄積時間設定回路7を調整して蓄積時間を設定する
3'7 shows a signal processing circuit in a conventional MTF measuring device, in which the charge-coupled device 5 receives a lock pulse φ7 transferred from a clock generation circuit 6, and simultaneously receives a transfer clock signal from an accumulation time setting circuit 7. φ8 is manually operated to change the light intensity distribution of the slit image 2' and output it in time series. The output signal of the charge-coupled probe 5 is amplified by an amplifier 8, sampled and held by a sample-and-hold circuit 9, and converted into a digital signal by an analog/digital converter 10. This digital signal is Fourier transformed by the Fourier transform circuit 11 to obtain the MTF value of the lens 4 to be tested.
Displayed by F4 display device 12. At this time, the operator manually adjusts the accumulation time setting circuit 7 to match the aperture of the lens 4 to be tested and sets the accumulation time.

しかしこのMTF測定装置ではオペレータは蓄積時間を
正しく設定しているか否かの判定がつかず。
However, with this MTF measuring device, the operator cannot determine whether or not the accumulation time is set correctly.

又以削に設定した蓄積時間をその捷ま用いたりすること
かあり、従って電荷結合素子の出力信号には1・6図破
線で示す様に飽和出力レベルに達している部分が生じて
正しいMTF値を洲1定していない場合があった。
In addition, the accumulation time that has been carefully set may be used, and therefore, the output signal of the charge-coupled device has a portion that reaches the saturation output level, as shown by the broken line in Figure 1.6, and the correct MTF is detected. There were cases where the value was not constant.

本発明はこのような事情に鑑み、自己走査形固体操像素
子を用いたMTF測定装置において自己走査形固体撮像
素子の出力信号が飽和レベル以下であるかどうかを表示
することによって常に正しいMTF値を測定させること
ができる光量過多検出表示装置を提供することを目的と
する。
In view of these circumstances, the present invention provides an MTF measuring device that uses a self-scanning solid-state image sensor to always provide a correct MTF value by displaying whether the output signal of the self-scanning solid-state image sensor is below the saturation level. An object of the present invention is to provide an excessive light amount detection display device that can measure the amount of light.

以下図面を参照しながら本発明について実施例をあげて
説明する。
The present invention will be described below by way of examples with reference to the drawings.

矛8図は本発明の一実施例を示し、3・9図はそのタイ
ミングチャートを示す。この実施例でに’! p+1述
のMTF測定装置において増幅器8からのビデオ係号V
i de oが比較回路13で一定の基準電圧”Ref
と比較さ名、比較回路13の出力はビデオ係号か基準電
圧以上になったときに高レベルになり、逆に基準電圧以
下となったときには低レベルとなる。
Figure 8 shows an embodiment of the present invention, and Figures 3 and 9 show its timing chart. In this example! p+1 In the MTF measuring device described above, the video coefficient V from the amplifier 8
i de o is a constant reference voltage "Ref" in the comparator circuit 13.
The output of the comparator circuit 13 becomes high level when the video code exceeds the reference voltage, and becomes low level when it becomes below the reference voltage.

フリップフロップ14は比較回813の尚レベル出力が
セント人力信号SETとして入力されることによりその
立上りでセットされて出力VF  が高レベルに反転し
、リセット入力信号Ri=setが入るまでこの状伸を
保持する配憶特性を持っている。このフ11 ノブフロ
ップ14は別の記憶手段を用いてもよい。
The flip-flop 14 is set at the rising edge of the still level output of the comparison circuit 813 as the human power signal SET, and the output VF is inverted to a high level and continues in this state until the reset input signal Ri=set is input. It has the memory property of retaining. The knob flop 14 may use another storage means.

ここで#準電圧vRef  は電荷結合素子5の飽和出
力レベル付近で、その光電変換特性が直線性を有する電
圧レベルに設定されている。従って比較回路13は電荷
結合素子50入射光量過多でその出力信号か飽和出力レ
ベル以上になったときにそねを検出してフリップフロッ
プ14′?セツトすることにな々・0駆動回路15は発
光夕“イメード等の表示ランプよりなる光量過多表示装
[16をフリップフロッグ14の一レベル出力により駆
動して光1・過多の表ボケ行なわせる。そこでオペレー
タはこの光量過多衣示装[16を見ながらMTF値が正
確に測定されているか否かを逐次観察しながらMTFi
示装[12より正しいhiTF値のみを読み取ることが
できる。
Here, the #quasi-voltage vRef is set to a voltage level near the saturation output level of the charge-coupled device 5 and at which the photoelectric conversion characteristic has linearity. Therefore, the comparison circuit 13 detects a distortion when the amount of light incident on the charge-coupled device 50 is excessive and its output signal exceeds the saturation output level, and the flip-flop 14'? To set this, the 0 drive circuit 15 drives the excessive light display device 16, which is an indicator lamp such as a light emitting diode imager, using the one level output of the flip frog 14 to produce an excessive amount of light. Therefore, the operator should check whether the MTF value is being measured accurately while looking at the excessive light display [16].
Only correct hiTF values can be read from the display [12].

若し光量過多表示装置t16が声灯して光量過多の表示
ケした場合オペレータはリセットスイッチを押してリセ
ットパルス発生回路17よりリセットパルスをフリップ
フロップ14に入力することにより光量過多表示装F1
6を一時消灯させ、蓄積時間設定回路7を調整して電荷
結合素子5の蓄積時間を再設定し、この操作を光−量過
多表示装置16かりセットスイッチの非押下時に消灯す
るまで行なえばよい。この蓄積時間の調整により電荷結
合素子5の出力信号が飽和出力レベル以下になってMT
F fi+!定装置12で正しいMTF値が表示される
If the excessive light amount display device t16 lights up and indicates that the amount of light is excessive, the operator presses the reset switch and inputs a reset pulse from the reset pulse generation circuit 17 to the flip-flop 14, thereby turning on the excessive light amount display device F1.
6 is temporarily turned off, the storage time setting circuit 7 is adjusted to reset the storage time of the charge-coupled device 5, and this operation is performed until the light-excess display device 16 turns off when the set switch is not pressed. . By adjusting this accumulation time, the output signal of the charge-coupled device 5 becomes below the saturation output level and the MT
Ffi+! The correct MTF value is displayed on the setting device 12.

牙lO図は本発明の他の実施例を示し、1・11図はそ
のタイミングチャートを示す。この実施f1′は上記実
施例に蓄積時間自動調整手段を持たせたもので、フリッ
プフロップ14の出力信号はフィードバックされて蓄積
時間設定回路7a  の入力となる。
Figure 1 shows another embodiment of the present invention, and Figures 1 and 11 show its timing chart. This embodiment f1' is the same as the above-mentioned embodiment by adding an automatic accumulation time adjustment means, and the output signal of the flip-flop 14 is fed back and becomes an input to the accumulation time setting circuit 7a.

こ℃蓄積時間設定回路7a  は例えばクロック発生回
路6からのクロックパルスφ7 を分周してトランスフ
ァパルスφエ を発生する回路であって、その分周出力
の周期を7リツプフロソグ14の出力V。
The accumulation time setting circuit 7a is a circuit that frequency-divides the clock pulse φ7 from the clock generation circuit 6 to generate a transfer pulse φe.

が印加さねる間に所定の周期だ、け短かく設定するもの
であり、電荷結合素子5の出力信号が飽和出力レベルに
達したときに蓄積時間を短かく調整する。一方、蓄積時
間設定回路7a  からのトランスファパルスφ8 が
単安定マルチバイブレータ18によって所定パルス幅の
パルスに変換さね、71ナツプフロツプ14にリセット
信号Re5etとして入力さf″14)。こσ)ためフ
リップフロップ14の出力信号vPは電荷結合素子5の
出力信号が飽和出力レベル以上でlる時にパルスとなっ
て現わわ、光量過多表71e 、に!−直重6ハ・その
パルスに同則して潰滅することになる。この点滅が繰り
返しているときに電荷結合素子5の蓄積時IWが前述の
辿り自動的に短か〈調栄さね、電荷結合素子5のU°力
信号が自動的に飽和出力レベル以下になって比較回路1
3からセント人力信号が送出さねなくなり光量過多表示
装置】6か消灯する。従ってオペレータは光量過多表示
装)(−1’ I 6 (7) rP灯ヲ確認L ”’
(MTF i示装912よりMTF値を読み取ねは汁し
いMTF値が求められる。
The accumulation time is set to be short by a predetermined period during which the charge-coupled device 5 is applied, and the accumulation time is adjusted to be short when the output signal of the charge coupled device 5 reaches the saturated output level. On the other hand, the transfer pulse φ8 from the accumulation time setting circuit 7a is converted into a pulse with a predetermined pulse width by the monostable multivibrator 18, and is inputted to the 71 nap-flop 14 as a reset signal Re5et f''14). The output signal vP of 14 appears as a pulse when the output signal of the charge-coupled device 5 exceeds the saturation output level. When this blinking is repeated, the IW of the charge-coupled device 5 automatically shortens according to the above-mentioned path. When the output level becomes below the saturation output level, comparison circuit 1
From 3 onwards, the human power signal will no longer be sent, and the light intensity display device will turn off from 6 onwards. Therefore, the operator should check the excessive light intensity display) (-1' I 6 (7)
(If the MTF value is read from the MTF i display 912, the correct MTF value is determined.

11お光i′過多の表示はブザー等で行なってもよく、
又MTF表示装置12のMTF値を点滅表示させること
によって行なってもよい。
11 Excessive light i′ may be indicated by a buzzer, etc.
Alternatively, this may be done by blinking the MTF value on the MTF display device 12.

以上のように本発明によハげ自己走査形固体撮像素子を
用いたMTF測定装置において自己走糞形固体撮像素子
の出力信号が飽和出力レベル以下になるかどうかヲ表示
するので、常に正しいMTF値を測定することが可能に
なる。
As described above, in the MTF measuring device using the self-scanning solid-state image sensor according to the present invention, it is displayed whether the output signal of the self-scanning solid-state image sensor is below the saturation output level, so that the correct MTF is always obtained. It becomes possible to measure the value.

【図面の簡単な説明】[Brief explanation of the drawing]

矛1図は電荷結合素子の一例を示す平面図、矛2図はM
TF測定装置における光学的構成を示す斜視図、矛3商
及び才4図は電荷結合素子の特性例を示す特性図、1・
5図及び矛6図は電荷結合素子を説明するためのタイミ
ングチャート及び出力波形図、矛7図は従来のFifr
F測定装置における信号処回路の一例を示すブロック図
、オ8図は本発明の一実施例を示すブロック図1才・9
図は同実施例のタイミングチャート、牙10図は本発明
の他の実施例を示すブロック図、1′11図は同実施イ
タ11のタイミングチャートである。 13・・・比較回路、14・・・フリップフロッグ、1
5・・・駆動回路、16・・・光計過多表示装置。 代理人 樺山 jt四−h
Figure 1 is a plan view showing an example of a charge-coupled device, Figure 2 is M
A perspective view showing the optical configuration of the TF measuring device, Figures 3 and 4 are characteristic diagrams showing example characteristics of a charge coupled device, 1.
Figures 5 and 6 are timing charts and output waveform diagrams for explaining the charge-coupled device, and Figure 7 is the conventional Fifr.
A block diagram showing an example of a signal processing circuit in an F measurement device, Figure 8 is a block diagram showing an example of an embodiment of the present invention.
The figure is a timing chart of the same embodiment, Figure 10 is a block diagram showing another embodiment of the present invention, and Figure 1'11 is a timing chart of the same embodiment. 13... Comparison circuit, 14... Flip frog, 1
5... Drive circuit, 16... Light meter excess display device. Agent Kabayama jt4-h

Claims (1)

【特許請求の範囲】[Claims] 自己走査形固体撮像素子を用いたMTF測定装置に才、
いて、前記自己走査形固体撮像素子からの光’+jj 
f換信号を所定の基準電圧と比較することによってll
l11.iビ自己走査形固体撮像素子に対する光量過多
の検出を行う比較回路と、この比較回路の出力信号をg
ill。tする言1憶手段と、この記憶手段の出力信号
により光量過多の表示を行う手段とを備えた#l−過多
検出表示装置。
Expert in MTF measurement equipment using self-scanning solid-state image sensors.
and the light '+jj from the self-scanning solid-state image sensor
By comparing the f-converted signal with a predetermined reference voltage,
l11. A comparator circuit that detects excessive light intensity for the i-bi self-scanning solid-state image sensor and an output signal of this comparator circuit.
ill. A #l-excessive light detection and display device, comprising: a memory means for storing data; and a means for displaying an excessive amount of light based on an output signal of the memory means.
JP15850881A 1981-10-05 1981-10-05 Excessive light quantity detecting-displaying device for mtf measuring apparatus Pending JPS5860237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15850881A JPS5860237A (en) 1981-10-05 1981-10-05 Excessive light quantity detecting-displaying device for mtf measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15850881A JPS5860237A (en) 1981-10-05 1981-10-05 Excessive light quantity detecting-displaying device for mtf measuring apparatus

Publications (1)

Publication Number Publication Date
JPS5860237A true JPS5860237A (en) 1983-04-09

Family

ID=15673261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15850881A Pending JPS5860237A (en) 1981-10-05 1981-10-05 Excessive light quantity detecting-displaying device for mtf measuring apparatus

Country Status (1)

Country Link
JP (1) JPS5860237A (en)

Similar Documents

Publication Publication Date Title
US5361140A (en) Method and apparatus for dynamic correction of microscopic image signals
US4847680A (en) Image pickup apparatus with white balance control
US4523229A (en) Shading correction device
Forrest et al. The new near-infrared array camera at the university of Rochester.
JP3022166B2 (en) Solid-state imaging device
US5955725A (en) Digitizing CCD array system
US4302780A (en) Photometric system
JPS5860237A (en) Excessive light quantity detecting-displaying device for mtf measuring apparatus
US5576761A (en) Solid-state sensor having direct current control circuitry and logarithmic output signal
US3582220A (en) Light contrast meter for measuring the difference between maximum light intensity and immediately incident light intensity or other intensity
RU87854U1 (en) IMAGE FORMING DEVICE
JP3591183B2 (en) Afterimage detection method and afterimage detection device
RU2099674C1 (en) Method of measurement of object brightness temperature
JP2698578B2 (en) Imaging device
KR920001276B1 (en) Measuring device for a projective resolution in image-making optical systems
JPS58215865A (en) Temperature compensation system
JPH0550685B2 (en)
JPS5991941A (en) Apparatus for measuring pupil diameter
JPS61257069A (en) Correcting method for quantity of light variation
JPS58179323A (en) Optical measuring device
Dimov An Integrating Stellar Spectrophotometer
JPS62124407A (en) Distance measuring instrument
JPH01177265A (en) Film picture reader
JPH0693767B2 (en) Charge storage type image sensor circuit
JPS58178229A (en) Optical measuring device