JPS5859327A - Air-fuel ratio control method for internal-combustion engine - Google Patents

Air-fuel ratio control method for internal-combustion engine

Info

Publication number
JPS5859327A
JPS5859327A JP15611981A JP15611981A JPS5859327A JP S5859327 A JPS5859327 A JP S5859327A JP 15611981 A JP15611981 A JP 15611981A JP 15611981 A JP15611981 A JP 15611981A JP S5859327 A JPS5859327 A JP S5859327A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
region
rotational speed
changes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15611981A
Other languages
Japanese (ja)
Other versions
JPH0536613B2 (en
Inventor
Kenji Kato
健治 加藤
Toshio Yamada
敏生 山田
Soichi Matsushita
宗一 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP15611981A priority Critical patent/JPS5859327A/en
Publication of JPS5859327A publication Critical patent/JPS5859327A/en
Publication of JPH0536613B2 publication Critical patent/JPH0536613B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/0205Circuit arrangements for generating control signals using an auxiliary engine speed control

Abstract

PURPOSE:To improve operating characteristics, by controlling the air-fuel ratio at a specified value or more in the region where an engine speed is a specified rotational speed or more, changing the air-fuel ratio in response to the change in the rotational speed below the specified rotational speed, and controlling torque fluctuation at the operating region at the low engine speed. CONSTITUTION:A control circuit 18 computes and controls a valve opening time of a fuel injection valve 28 based on the detected value of a crank angle sensor 22 provided in a distributor 20 and the detected value of a pressure sensor 14 provided in an air intake path 12, and controls the air-fuel ratio of air-fuel mixture. The control device 18 controls the air-fuel ratio in such a way that the air-fuel ratio is 20 in the region where the engine speen N is 1,200rpm or more, and the air-fuel ratio is changed at a changing rate of 1.25-2.75 every time the engine speed changes by 100rpm in the region less than 1,200rpm. Thus the torque fluctuation due to the misfiring at the low engine speed region and the low torque at the high engine speed region are improved.

Description

【発明の詳細な説明】 本発明は、超希薄燃焼式内燃機関の空燃比制御方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control method for an ultra-lean burn internal combustion engine.

理論**比よ〉はるかにり一ン側の超り−/空燃比、例
えばム/r≧20 K機関O空燃比を制御すれば、排気
ガス中0NOx成分が滅委し、★た燃料消費率が向上す
る。しかしながら、全て011転領域でこt)1mO超
リーン空燃比制御を行うと次の如會闘題が生じる。即ち
、低回転運転領域もしくは低負荷運転領域では、空燃比
が希薄過ぎると夫夫等が生じシルク変動が発生する。i
九、高負荷運転領域ある一拡高一転運転領竣において充
分な機関シルクが得られず、運@特性が悪化す為。
Theory ** Ratio> If you control the air-fuel ratio, for example, m/r≧20 K engine O air-fuel ratio, the 0NOx component in the exhaust gas will be eliminated and the fuel consumption will be reduced. rate will improve. However, if the 1 mO ultra-lean air-fuel ratio control is performed entirely in the 011 range, the following problem arises. That is, in a low-speed operation region or a low-load operation region, if the air-fuel ratio is too lean, turbulence etc. will occur and silk fluctuation will occur. i
9. Sufficient engine silk cannot be obtained in the high-load operation region, which is one expansion and height change operation region, and the operation characteristics deteriorate.

本発明は、超希薄燃焼を行った場合O上述し九如き問題
点を解決するものである。即ち、本発明の目的は、超リ
ーン空燃比によシ運転を行う内燃機関において低回転運
転領域あるいは高負荷運転領域における運転費性を向上
させることKある。
The present invention solves the above-mentioned problems when performing ultra-lean combustion. That is, an object of the present invention is to improve operating costs in a low-speed operating range or a high-load operating range in an internal combustion engine that operates at a super-lean air-fuel ratio.

上述し丸目的を達成する本発明の特徴は、機関回転速度
が1200fll1以上の領域では空燃比を20以上に
制御せしめ、回転速度が1200−以下の領域では回転
WIl!Iが100−変化する場合に空燃比がt25乃
至175変化するように空燃比を制御することKある。
The feature of the present invention that achieves the above-mentioned objectives is that the air-fuel ratio is controlled to 20 or more in the region where the engine rotational speed is 1200fl1 or more, and the rotation WI1! is controlled in the region where the engine rotational speed is 1200fl1 or less. The air-fuel ratio may be controlled so that when I changes by 100, the air-fuel ratio changes by t25 to 175.

鵞た、さらに、吸気管内圧力が640wHp以下に相当
する運転領域で轄空燃比を20以上に制御し、吸気管内
圧力が640嘗iH9以上に相当する運転領域では吸気
管内圧力が1011111f変化する場合に空燃比が0
.5乃至to変化するようKl!働比を制御することが
望ましい。
Furthermore, in the operating range where the intake pipe internal pressure is 640wHp or less, the control air-fuel ratio is controlled to 20 or more, and in the operating range where the intake pipe internal pressure is 640wHp or higher, when the intake pipe internal pressure changes by 1011111f. Air fuel ratio is 0
.. Kl to change from 5 to! It is desirable to control the working ratio.

以下図面を用いて本発明の詳細な説明する二部1図には
本発明の一実施例として、iイクロコンピーータによシ
燃料噴射量−一を行いこれによって空燃地割−を行う内
燃4j@’(D−例が概略的に示されている。同図にお
いて、10は機関の吸気通路12の途中に設けられたス
pットル弁であシーこのス四ットル弁10の下流の吸気
通路12には、吸気管内圧力圧を検出してその検出値に
対応する電圧を発生する圧力センサ14の圧力取出しポ
ート14aが開口している。圧力センサ14の出力電圧
は、纏16を介して制御回路18に送ル込まれゐ。
The following is a detailed explanation of the present invention with reference to the drawings. Part 2 and Figure 1 show an embodiment of the present invention in which the i-microcomputer controls the fuel injection amount and thereby performs air-fuel ratio distribution. Internal combustion 4j@' (D- example is schematically shown. In the figure, 10 is a throttle valve provided in the middle of the intake passage 12 of the engine. A pressure output port 14a of a pressure sensor 14 that detects the pressure inside the intake pipe and generates a voltage corresponding to the detected value is open in the intake passage 12. It is sent to the control circuit 18.

機関のディスシリビ稟−夕20には、そのディストリビ
為−タ軸20mが所定角度、例えばクランク角に換算し
て30° 回動する毎に角度位置信号を発生するクラン
ク角センナ22が設けられている。クランク角センナ2
2からの角度位置信号社、線24を介して制御回路1B
に送り込まれる。
The distributing shaft 20 of the engine is provided with a crank angle sensor 22 that generates an angular position signal every time the distributing shaft 20 m rotates by a predetermined angle, for example, 30 degrees in terms of crank angle. There is. crank angle senna 2
Angular position signal from 2, control circuit 1B via line 24
sent to.

制御剛路、18からは、纏26を介して単数又は−歇O
燃料噴射弁28に噴射信号が送シ込まれ、これによシ噴
射弁28は図示しない燃料供給系からの加圧燃料を吸気
ポート部に間欠的に噴射する。
From the control rigid path 18, through the wire 26, the singular or -
An injection signal is sent to the fuel injection valve 28, and the injection valve 28 intermittently injects pressurized fuel from a fuel supply system (not shown) into the intake port.

第2図紘111図O制御鋪路18の一例を表わすプ四ツ
ク図である。
FIG. 2 is a four-wheel diagram showing an example of the control road 18. FIG.

圧力センサ14からの出力電圧は本発明と直接関係しな
いため図示されていない他のセンサからの電圧と共に1
アナログ!ルテプレクサを含むA/D変換器50に送妙
込まれる。A/D毅挟器3、Oにおいて、入力電圧は、
所定の変換周期で順次2進伽号に変換される。
Since the output voltage from the pressure sensor 14 is not directly related to the present invention, the output voltage from the pressure sensor 14 is 1 along with voltages from other sensors not shown.
analog! The signal is sent to an A/D converter 50 including a luteplexer. In the A/D switch 3, O, the input voltage is
It is sequentially converted into a binary sign at a predetermined conversion cycle.

クラ7角センサ22からのり2ンク角60°毎の角度位
置信号は、速度信号形成(ロ)l#152に送り込まれ
、さらに、クランク角同期割込み信号として中央処理装
置l1ll(CPU)34に送り込まれる。
The angular position signal for every 60 degrees of crank angle from the crank angle sensor 22 is sent to the speed signal generator (b) l#152, and further sent to the central processing unit l1ll (CPU) 34 as a crank angle synchronization interrupt signal. It will be done.

この速度信号形成回路52Fi、クランク角30″毎の
上述の信号によって開閉制御されるゲートとこのゲート
を通過するりqツク発生回路56からのクロックパルス
の歌を計数するカウンタとを備メておシ、機関の回転!
Ifに応じた儲を有する2龜の適度信号を形成する。な
お、速度信号形成回路52を設けず、CPU34内でソ
フトウェアによシ速度信号を形成するようにしても良い
This speed signal forming circuit 52Fi is equipped with a gate that is controlled to open and close by the above-mentioned signal every 30'' of crank angle, and a counter that counts the number of clock pulses that pass through this gate and are output from the q-tock generating circuit 56. Shi, the rotation of the engine!
Two moderate signals with profits corresponding to If are formed. Note that the speed signal forming circuit 52 may not be provided, and the speed signal may be formed by software within the CPU 34.

CPU34内らバス′5B食介して出力ボート400所
定位置に噴射時間゛τに等し6持一時間を有する噴射信
号が4見られると、仁の信号は駆動回路42を介して燃
料噴射弁28に送シ込會れ、その結電、時間丁だけ噴射
弁28が付勢され、この時間TK応じ大量の燃料が機関
の燃焼室に送シ込壕れる。
When an injection signal having an injection time of 6 hours and an hour equal to the injection time τ is seen at a predetermined position of the output boat 400 from within the CPU 34 via the bus '5B, the signal is sent to the fuel injection valve 28 via the drive circuit 42. When the power is connected, the injection valve 28 is energized for a time TK, and a large amount of fuel is injected into the combustion chamber of the engine according to the time TK.

A/D *換器50、速度信号形成回路32、及び出力
ポート40は、マイクロプンビ凰−夕の各構成要素であ
るとζろのCPU34、リードオン9fiモV(ROM
)44、ランダムアクセスメモリ(RAM)t6、及び
クロック発生回路36にパス38を介して!I続されて
おル、このパス3Bを介して入出力データの転送を行う
。なお、第2FMIKは示されていないが、マイクロコ
ンビ島−タとしては、さらに入出力制#回路、メモリ制
御回路等が間知の方法で設けられている。
The A/D converter 50, the speed signal forming circuit 32, and the output port 40 are the components of the micropunbi 34 and the lead-on 9fimo V (ROM).
) 44, random access memory (RAM) t6, and clock generation circuit 36 via path 38! I/O data is transferred via this path 3B. Although the second FMIK is not shown, the microcombiner island is further provided with an input/output control circuit, a memory control circuit, etc. by a known method.

ROM44内には、後述するメイン処理ルーチングログ
ツム等のプログラムと、それらの演算処理に必要なテー
ブル、走数等があらかじめ格納せしめられている。
In the ROM 44, programs such as a main processing routine logsum, which will be described later, as well as tables, number of runs, etc. necessary for the arithmetic processing thereof are stored in advance.

次に、上述Oマイク日コンビ暴−夕の燃料噴射処理a(
空燃比制御)の処理内容を$115!Hを用いて概略的
に説明する。同図に示す如く、CPU54は電源投入が
行われるとイニシャライズルーチン50を奥行し、RA
M46の内容のリセット処理及び各定数の初期値セット
娘珈等を打う。次いでメインルーチン51へ進み、後述
する燃料噴射−演算等を繰り返して実行する。また、ク
ランク角センサ22からのクランク角!So’毎のクラ
ンク角同期割込み信号による割込みルーチン52が用宇
回実行される毎、例えば、クランク角12o0あるいは
180°毎に噴射信号を形成し、これを串カボート40
に転送する燃料噴射処理を実行する。なお、この燃料噴
射処理は、?9r定廟期毎のタイマ割込み信号による割
込みルーチン53によって実行しても良い。
Next, the fuel injection process a(
Air-fuel ratio control) processing details for $115! This will be briefly explained using H. As shown in the figure, when the power is turned on, the CPU 54 executes an initialization routine 50 and performs an RA
Performs processing to reset the contents of M46 and sets initial values for each constant. Next, the program proceeds to the main routine 51, where fuel injection calculations and the like, which will be described later, are repeatedly executed. Also, the crank angle from the crank angle sensor 22! Each time the interrupt routine 52 based on the crank angle synchronization interrupt signal for each So' is executed, for example, an injection signal is generated at every crank angle of 12o0 or 180°, and this is sent to the skewer boat 40.
Execute fuel injection processing to transfer to. What is this fuel injection process? The interrupt routine 53 may be executed using a timer interrupt signal every 9r period.

一方、CPU54は、メイン処場ルーチン中、あるいは
他の割込みルーチン中で機関の回転適度Nを褒わすデー
タを速度信号形成回路32から取シ込み、RAMJ6内
の所定領域に格納する。また、所定時間毎もしくは断定
クランク角度位置母に奥行されるA/D 変換割込みル
ーチンが終了すると、吸気管内絶対圧Pを表わすデータ
をム/D変換器30から取シ込み、RAM46内の所定
領域に格納する。
On the other hand, the CPU 54 receives data representing the engine speed N from the speed signal forming circuit 32 during the main processing routine or other interrupt routine, and stores it in a predetermined area in the RAM J6. Further, when the A/D conversion interrupt routine, which is executed at predetermined time intervals or at a determined crank angle position, is completed, data representing the intake pipe absolute pressure P is fetched from the M/D converter 30 and stored in a predetermined area in the RAM 46. Store in.

第4図は燃料噴射量演算処理ルーチンを示すフローチャ
ートである。CPU34ti、メインルーチンの途中で
第4図に示す演算処理を奥行する。
FIG. 4 is a flowchart showing the fuel injection amount calculation processing routine. The CPU 34ti performs the arithmetic processing shown in FIG. 4 in the middle of the main routine.

まずステップ60にシいて、RAM44から、回転速度
Nt−慶わす検出データを取込み、次のステップ、61
において、吸気管内圧力pVtsわす検出データをRA
Mt6から取込む。次いでステップ62において、基本
噴射パルス幅τ1 を同転速度N及び吸気管内圧力Pか
らマツプを用いて算出する。80M44内には第5図も
しくは86m1IC示す如′Ii回転速度N及び吸気管
内絶対圧PK対する基本噴射パルス幅丁、の特性がマツ
プの形であらかじめ格納されておル、ステップ62では
凰ムM46から取込んだN及びPからこのマツプを用い
てt、が算出されゐ。この場合、必#に応じて補間計算
が用いられることも参ゐ。次いで、ステップ63におい
て、最終的な燃料噴射パルス−丁が、基本噴射パルス輔
τ藤、バッテリ電圧等に応じて定められる無効噴射時開
τ7、吸ヤ温、 加i!!4Piけ、暖機度合等に応じ
て定められる補正係数αから次式の幀(算出される。
First, in step 60, the detection data representing the rotational speed Nt is loaded from the RAM 44, and in the next step, 61
, the intake pipe internal pressure pVts is set to RA
Take in from Mt6. Next, in step 62, the basic injection pulse width τ1 is calculated from the rotational speed N and the intake pipe internal pressure P using a map. In the 80M44, the characteristics of the basic injection pulse width with respect to the rotational speed N and the absolute pressure PK in the intake pipe are stored in advance in the form of a map as shown in Fig. 5 or 86m1IC. Using this map, t is calculated from the imported N and P. In this case, interpolation calculations may be used as necessary. Next, in step 63, the final fuel injection pulse is determined according to the basic injection pulse value, the ineffective injection time τ7 determined according to the battery voltage, etc., the suction temperature, and the addition time! ! 4Pi is calculated from the following equation from the correction coefficient α determined according to the degree of warming up, etc.

τ =τ鳳・α十嘗V このようにして算出され九燃料噴射パルスー丁は、次の
ステラ・プロ4において、RAMA6の所定輪域に格納
される。この格納され九τは、4g3図1C承した燃料
噴射処理割込みルーチン52もしくは53で読み出され
、噴射信号に変換されて出力ポート40に送シ出され、
斯くして、燃料噴射パルス、従って、空燃北側−が行わ
れる。
τ=τ鳳・α10嘗V The nine fuel injection pulses calculated in this way are stored in a predetermined wheel area of RAMA6 in the next Stella Pro 4. This stored 9τ is read out by the fuel injection processing interrupt routine 52 or 53 shown in FIG. 1C, converted into an injection signal, and sent to the output port 40.
Thus, the fuel injection pulse, and therefore the air/fuel north side, is performed.

次に、第5図もしくは116図のマツプを用いて基杢噴
射パルス暢丁二 を算出するヒとにより、空燃比がどの
ように制御されるかを鹸明する。15図及び116図に
おいて、fBua空燃比(A/F )が14、τ塾14
Fiム/F=16、τ、1.はA/)’=18、τ は
A/F = 20、τ、3.はム/F=22に制御され
る20 如き噴射パルス幅をそれぞれ表わしている。従りて、機
関の回転速度N及び吸気管内圧力Pに応じて空燃比は、
第5図屯しく控部6図に対応して上述の如く制御される
Next, we will explain how the air-fuel ratio is controlled by someone who calculates the base injection pulse rate using the map shown in FIG. 5 or 116. In Figures 15 and 116, fBua air-fuel ratio (A/F) is 14, τJuku 14
Fim/F=16, τ, 1. is A/)' = 18, τ is A/F = 20, τ, 3. Each represents an injection pulse width of 20 μm controlled by H/F=22. Therefore, depending on the engine rotational speed N and the intake pipe pressure P, the air-fuel ratio is
The control shown in FIG. 5 and in accordance with the control section shown in FIG. 6 is performed as described above.

即ち、本発明によれに1回転速度が12001%以上の
領竣亀しくは、1200〜2400−の領域で空燃比は
20〜24程度に制御され、回転速度が80Of1m及
び2800ralの付近では空拳比が13〜151i度
に制御される。そして、800〜12QOrgIAO領
域もしくは2400〜2800%の領域で社、回転速度
が1001’Pl変化する場合に空燃比が125〜2.
75変化するように制御されるO なお、上述の空燃比の変化率125は、かも算出され、
壜た変化率2.75ti、から算出され・るものである
That is, according to the present invention, when the rotational speed is 12001% or more, the air-fuel ratio is controlled to about 20 to 24 in the range of 1200 to 2400, and the air-fuel ratio is controlled to about 20 to 24 when the rotational speed is around 80of1m and 2800ral. is controlled to 13 to 151i degrees. Then, when the rotational speed changes by 1001'Pl in the 800-12QOrgIAO region or the 2400-2800% region, the air-fuel ratio changes from 125 to 2.
The rate of change 125 of the air-fuel ratio described above is also calculated by
It is calculated from the rate of change of 2.75ti.

第7111に示す如く、空燃比を20以上に制御すれば
、NOx排出量が大幅に低減(1−される。さらに燃料
消費率も非常に小さくなる。しかしながら、空噂比を起
り一ンとした場合、回転一度の低い鴫着では、第8図に
示す如く、失火等によってトルク変動が着しく大きくな
りてしまり。従って、120〇−以下では空燃比をリッ
チ方向に変化させ、800rfllのアイドル1転if
fでは空燃比が1′5〜1511度となるように制御す
る仁とにより、超リーン空燃比制御式のS間においても
低回転鳴度領域における運転特性向上を計ることができ
る。
As shown in No. 7111, if the air-fuel ratio is controlled to 20 or more, NOx emissions will be significantly reduced (1-1).Furthermore, the fuel consumption rate will also be extremely small.However, if the air-fuel ratio is controlled to 1- In this case, when the engine speed is low and the rotation rate is low, as shown in Fig. 8, the torque fluctuation becomes large due to misfire etc. Therefore, below 1200, the air-fuel ratio is changed to rich direction, and the idle 1 of 800 rfl. If you change
By controlling the air-fuel ratio to be between 1'5 and 1511 degrees at f, it is possible to improve the driving characteristics in the low rotational noise region even in the S interval of the ultra-lean air-fuel ratio control type.

なお、2400f以上の回転速度領域においては、NO
x排出量を抑制するよりも、機関の出力を増大させるこ
とが先決であるため、空燃比をリッチ方向に変化Aせ、
28001%以上で祉空燃比が13〜15程度となるよ
うに制御せしめられる。
In addition, in the rotational speed region of 2400f or more, NO
Since increasing engine output is a priority rather than suppressing x emissions, the air-fuel ratio is changed to richer A.
The air-fuel ratio is controlled to be approximately 13 to 15 at 28001% or more.

また、本発明によれは、吸気管内圧力が6401+11
 H)以下の領域で、空燃比は20〜24根攻、にII
J11御され、吸気管内圧力が760igaHpの付l
lrでは空燃比が12〜141!11に制御される。そ
して640〜7dOiuHp′の領域では吸気管内圧力
が10鶴H?変化する場合に空燃比がcL5〜1.0変
化するように制御される。なお、上述の空燃比の変化率
α5ti、 され、また、変化率to杜、 邑されるものである。640馳1以上の吸気管内圧力領
域(高負荷領域)においては、Noxmffi量を抑制
するよシも一機関の出力を増大させることが優先される
ため、空燃比をリッチ方向に変化させ、760tlH9
1即ち、大気圧(スロットル全開)で空燃比が12〜1
4程度となるように制御せしめられる・ なお、回転速度の変化及び吸気管内圧力0羨化KNする
前述した空燃比の変化は、111段状に変化するもので
あっても良いし、また連続的に変化するものであって4
良い。
Further, according to the present invention, the pressure inside the intake pipe is 6401+11
H) In the following range, the air-fuel ratio is 20 to 24, to II
J11 is controlled, and the pressure inside the intake pipe is 760igaHp.
In lr, the air-fuel ratio is controlled to 12-141!11. And in the region of 640 to 7 dOiuHp', the pressure inside the intake pipe is 10 TsuruH? When the air-fuel ratio changes, the air-fuel ratio is controlled to change by cL5 to 1.0. Note that the above-mentioned rate of change of the air-fuel ratio α5ti is set, and the rate of change to is also set. In the intake pipe internal pressure region (high load region) of 640tlH9 or higher, priority is given to increasing the output of one engine, even though suppressing the Noxmffi amount, so the air-fuel ratio is changed to the rich direction, and the 760tlH9
1, that is, the air-fuel ratio is 12 to 1 at atmospheric pressure (fully open throttle).
The above-mentioned change in the rotational speed and the change in the air-fuel ratio to reduce the intake pipe pressure to 0 may be changed in 111 steps, or may be changed continuously. 4.
good.

吸気管内圧力を圧力奄ンサで検出する代りに、スロット
ル弁開度、吸入空気流量と回転速(との比等を検出して
吸気管内圧力の代用とすることも可能である。
Instead of detecting the intake pipe internal pressure with a pressure sensor, it is also possible to detect the throttle valve opening, the ratio between the intake air flow rate and the rotational speed, etc., and use it as a substitute for the intake pipe internal pressure.

上述の実施例では、空燃比制御を燃料噴射弁から−の噴
射皿を制御することによって実行しているが、電子制御
式キャブレタ得により、燃料供給皺もしくはエアブリー
ド量を制御することによっても空燃比制御は可能である
。さらにまた、2次空t!c流量、EGR量等を制御し
ても空燃比は制御−jhビである。
In the above embodiment, the air-fuel ratio control is performed by controlling the injection plate from the fuel injection valve, but the air-fuel ratio can also be controlled by controlling the fuel supply wrinkle or air bleed amount using an electronically controlled carburetor. Fuel ratio control is possible. Furthermore, secondary sky t! Even if c flow rate, EGR amount, etc. are controlled, the air-fuel ratio remains at control -jh bi.

以上vP酬に説明し友ように本発明によれは、回転速度
が1200118以上の領域では空燃比を20以上に制
御し、@@II度が1200≠以ドの領域では、回転i
s匿が100T%変化する場合に空燃、比か125乃至
2.75−変化するように空燃比制御しているため、超
り一ン空燃比により薄板を行う機関、特にガソリン機関
において、低回転遅転伽域におけるトルク変動を抑制し
運転特性を向上させることができる。
As explained above, according to the present invention, the air-fuel ratio is controlled to 20 or more in the region where the rotational speed is 1200118 or more, and the air-fuel ratio is controlled to 20 or more in the region where @II degree is 1200≠ or less.
Since the air-fuel ratio is controlled so that when the air-fuel ratio changes by 100T%, the air-fuel ratio changes from 125 to 2.75. It is possible to suppress torque fluctuations in the slow rotation range and improve driving characteristics.

また、吸気管内圧力が6゛40■aH9以下に相当する
運転領域で空燃比を20以上に制御し、吸気管内圧力か
640璽■H?以上に相幽する運転領域では、吸気管内
圧力が10s+nHp変化する場合に空燃比が0.5乃
至to変化するように空燃比制御すれば、鰯す−ン空燃
比弐機関において、高負荷運転領域で充分なトルクが得
られ、運転特性が大幅に向上する◎
In addition, the air-fuel ratio is controlled to 20 or more in the operating range where the intake pipe internal pressure is 6゛40■aH9 or less, and the intake pipe internal pressure is 640㎜H? In the operating range where the above conflicts occur, if the air-fuel ratio is controlled so that the air-fuel ratio changes from 0.5 to Sufficient torque is obtained and driving characteristics are greatly improved◎

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の概略図、第2図は第1図の
制御回路のブロック図、第3図は!イクaコンビ轟−タ
O処理内容の概略説明図、第4図はマイクロコンビ晶−
夕の制御プログラムの一部のフローチャート、第5図、
第6図は回転速度及び吸気管内圧力に対する基本噴射パ
ルス幅の特性図、第7図は空燃比に対するNOx排出量
及び燃料消費率の特性図、第8図は回転速度に吋するト
ルク変動の特性図である。 14・・・圧力センナ、18・・・制御回路、22・・
・クランク角センナ、28・・・燃料噴射弁、30・・
・ム/D羨換響、32・・・速度信号形成回路、54・
・・CP U。 40・・・出力ボート、44・・・ROM、46・・・
RA M、。 特許出願人 トヨタ自動車工業株式会社 特許出願代理人 弁理士青水 朗 弁理士 西 舘 和 之 弁理士山口昭之
Fig. 1 is a schematic diagram of an embodiment of the present invention, Fig. 2 is a block diagram of the control circuit of Fig. 1, and Fig. 3 is! A schematic explanatory diagram of the contents of the Iku A combination crystal O process, and Figure 4 is a micro combination crystal.
Flowchart of part of the evening control program, FIG.
Figure 6 is a characteristic diagram of basic injection pulse width with respect to rotational speed and intake pipe internal pressure, Figure 7 is a characteristic diagram of NOx emission amount and fuel consumption rate with respect to air-fuel ratio, and Figure 8 is a characteristic diagram of torque fluctuation as a function of rotational speed. It is a diagram. 14...Pressure sensor, 18...Control circuit, 22...
・Crank angle senna, 28...Fuel injection valve, 30...
・Mu/D encyclopedia, 32...Speed signal formation circuit, 54.
...CPU. 40...Output boat, 44...ROM, 46...
R.A.M. Patent applicant: Toyota Motor Corporation Patent agent: Patent attorney: Akira Aomizu, patent attorney: Kazuyuki Nishidate, patent attorney: Akiyuki Yamaguchi

Claims (1)

【特許請求の範囲】 t 機関の回転速度と吸気管内圧力もしく唸吸入空気流
量とを機関の運転状態パラメータとして検出し、蒙検出
し九運転状態パラメータに応じて機関に供給する混合気
の空燃比を制御する空燃比制御方法において、機関回転
速度が1200Ip1以上の領域では、空燃比を20以
上に制御せしめ、回転速度が1200−以下の領域で祉
闘転速度が100−変化する場合に空燃比がt2g乃至
2.75変化するように空燃比制御すゐことを特徴とす
る内燃機関の空燃比制御方法。 2.11転速度が1200−以下の領域において、−転
装置の変化に対して空燃比が段階的に変化する特誇諦窮
のlll1嬉1項記戦O空燃比制御方法。 & 回転速度が1200−以下O領域KThいて、回転
11度O変化に対して空燃比が連続的に蛮化すゐ轡許曽
求oia@第1項記載O空燃比制御方法。 4 @気管内圧力が640mHf以下に相当する運転領
域では、空燃比を20以上に制御し、吸気管内圧力が6
40mHf  以上に相当する運転領域では、吸気管内
圧力が10tlHp変化する場合に空燃比が0.5乃至
10変化すゐように空燃比制御する特許請求の範囲第1
項の空燃比制御方法。 atit気管内圧力が640tlHp以上に相当する運
転領域において、吸気管内圧力の変化に対して空燃比が
段階的に変化する特許請求の範囲第4項記載空燃比制御
方決。 ’4  II気管内圧力が640−Hf以上に相当する
運転領域において、吸気管内圧力の変化に匈して空燃比
が連続的に変化する特許請求の範S第4項記載O空燃比
制御方法・ 7  WA転速度が1200−以上かつ2400f以下
の領域で社空燃比を20以上に制御せしめ、回転速度が
2400−以上の領域では翻転速度が100r%羨化す
る場合に空燃比が125乃至2.75変化するように空
燃比制御する特許請求の鴨lfi第1項もしくは第4項
6職の空燃比制御方決。 8、 11転達度が2400−以上の領域において一回
転11度の変化に*して空燃比が段階的に変化する特許
請求の範囲第7項紀l!の空燃比制御方法。 ?、  @板速度が2400−以上の領域において、回
転速度の変化に9#シて空燃比が連続的に変化する特許
請求の範囲第7項記載の空燃比制御方法。
[Claims] t. Engine rotational speed and intake pipe internal pressure or intake air flow rate are detected as engine operating condition parameters, and air-fuel mixture is supplied to the engine according to the operating condition parameters. In the air-fuel ratio control method for controlling the fuel ratio, the air-fuel ratio is controlled to 20 or more in the region where the engine rotational speed is 1200Ip1 or more, and the air-fuel ratio is controlled to be 20 or more in the region where the engine rotational speed is 1200Ip1 or less, and when the engine speed changes by 100 in the region where the engine rotational speed is 1200Ip1 or less. An air-fuel ratio control method for an internal combustion engine, characterized in that the air-fuel ratio is controlled so that the fuel ratio changes from t2g to 2.75. 2.11 A unique air-fuel ratio control method in which the air-fuel ratio changes stepwise in response to changes in the rotational speed in a range of 1200 or less. & The air-fuel ratio control method described in paragraph 1, in which the rotational speed is in the O region KTh of 1200° or less, and the air-fuel ratio continuously becomes brutal with respect to a rotational change of 11 degrees. 4 @ In the operating region where the tracheal pressure is 640 mHf or less, the air-fuel ratio is controlled to 20 or more, and the intake pipe pressure is 640 mHf or less.
In the operating range corresponding to 40 mHf or more, the air-fuel ratio is controlled so that the air-fuel ratio changes by 0.5 to 10 when the intake pipe internal pressure changes by 10 tlHp.
Air-fuel ratio control method in section. 5. The air-fuel ratio control method according to claim 4, wherein the air-fuel ratio changes stepwise with respect to changes in the intake pipe pressure in an operating region where the tracheal pressure is equal to or higher than 640 tlHp. '4 II O air-fuel ratio control method according to claim S, in which the air-fuel ratio changes continuously in response to changes in the intake pipe pressure in an operating region where the tracheal pressure is equal to or higher than 640-Hf. 7 The air-fuel ratio is controlled to 20 or more in the area where the WA rotational speed is 1200- or more and 2400- or less, and in the area where the rotational speed is 2400- or more, when the rotational speed increases to 100r%, the air-fuel ratio is 125 to 2. The air-fuel ratio control method according to the first or fourth paragraph of the patent claim, which controls the air-fuel ratio so that the air-fuel ratio changes by .75. 8, 11 In the region where the degree of conversion is 2400 or more, the air-fuel ratio changes stepwise with a change of 11 degrees per rotation. air-fuel ratio control method. ? 8. The air-fuel ratio control method according to claim 7, wherein the air-fuel ratio changes continuously by 9 degrees with changes in rotational speed in a region where the plate speed is 2400 or more.
JP15611981A 1981-10-02 1981-10-02 Air-fuel ratio control method for internal-combustion engine Granted JPS5859327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15611981A JPS5859327A (en) 1981-10-02 1981-10-02 Air-fuel ratio control method for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15611981A JPS5859327A (en) 1981-10-02 1981-10-02 Air-fuel ratio control method for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS5859327A true JPS5859327A (en) 1983-04-08
JPH0536613B2 JPH0536613B2 (en) 1993-05-31

Family

ID=15620730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15611981A Granted JPS5859327A (en) 1981-10-02 1981-10-02 Air-fuel ratio control method for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS5859327A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228740A (en) * 1984-04-27 1985-11-14 Toyota Motor Corp Air-fuel ratio controller for internal-combustion engine
US5016595A (en) * 1989-05-29 1991-05-21 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control device for internal combustion engine
US5067465A (en) * 1990-02-15 1991-11-26 Fujitsu Ten Limited Lean burn internal combustion engine
US5125235A (en) * 1989-06-21 1992-06-30 Toyota Jidosha Kabushiki Kaisha Supercharged lean burn internal combustion engine
US5190008A (en) * 1990-02-15 1993-03-02 Fujitsu Ten Limited Lean burn internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110224A (en) * 1974-07-16 1976-01-27 Nippon Soken NAINENKIKAN
JPS5352825A (en) * 1976-10-25 1978-05-13 Toyota Motor Corp Fuel supply system for internal-combustion engine
JPS5388414A (en) * 1977-01-14 1978-08-03 Hitachi Ltd Combustion controlling for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110224A (en) * 1974-07-16 1976-01-27 Nippon Soken NAINENKIKAN
JPS5352825A (en) * 1976-10-25 1978-05-13 Toyota Motor Corp Fuel supply system for internal-combustion engine
JPS5388414A (en) * 1977-01-14 1978-08-03 Hitachi Ltd Combustion controlling for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228740A (en) * 1984-04-27 1985-11-14 Toyota Motor Corp Air-fuel ratio controller for internal-combustion engine
US5016595A (en) * 1989-05-29 1991-05-21 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control device for internal combustion engine
US5125235A (en) * 1989-06-21 1992-06-30 Toyota Jidosha Kabushiki Kaisha Supercharged lean burn internal combustion engine
US5067465A (en) * 1990-02-15 1991-11-26 Fujitsu Ten Limited Lean burn internal combustion engine
US5190008A (en) * 1990-02-15 1993-03-02 Fujitsu Ten Limited Lean burn internal combustion engine

Also Published As

Publication number Publication date
JPH0536613B2 (en) 1993-05-31

Similar Documents

Publication Publication Date Title
US4442812A (en) Method and apparatus for controlling internal combustion engines
EP0152288B1 (en) Fuel supply control method for multicylinder internal combustion engines
EP0152287B1 (en) Fuel supply control method for multicylinder internal combustion engines
JPS6149150A (en) Control device of fuel injection quantity in internal-combustion engine
JPS6263147A (en) Air-fuel ratio controlling method for internal combustion engine and device thereof
JPS5859327A (en) Air-fuel ratio control method for internal-combustion engine
JPS5828568A (en) Fuel supply control of internal combustion engine
JPS6217332A (en) Fuel-injection control device for internal-combustion engine
JPS61108847A (en) Control device of fuel increase in quantity in internal-combustion engine
JP2586101B2 (en) Control device for multi-cylinder internal combustion engine
JPH0338426B2 (en)
JPH02221668A (en) Egr rate detecting device for internal combustion engine
JP2522209B2 (en) Electronically controlled fuel injector
JPH0599041A (en) Electronically controlled fuel injection equipment for internal combustion engine
JPS58107825A (en) Fuel feed quantity control method of internal- combustion engine
JPH0231778B2 (en)
JPH0326847A (en) Air-fuel ratio controller for internal combustion engine
JPH02215944A (en) Fuel controller for engine
JPH0362895B2 (en)
JPH0742882B2 (en) Fuel supply control device for internal combustion engine
JPH023019B2 (en)
JPS58152130A (en) Controlling method for fuel injection of internal- combustion engine
JPS6245955A (en) Electronic control fuel injection controller
JPS60222538A (en) Additional fuel feed device for internal-combustion engine
JPH0275741A (en) Air/fuel ratio controller for engine