JPS5859284A - Coke manufacturing unit - Google Patents

Coke manufacturing unit

Info

Publication number
JPS5859284A
JPS5859284A JP15812281A JP15812281A JPS5859284A JP S5859284 A JPS5859284 A JP S5859284A JP 15812281 A JP15812281 A JP 15812281A JP 15812281 A JP15812281 A JP 15812281A JP S5859284 A JPS5859284 A JP S5859284A
Authority
JP
Japan
Prior art keywords
gas
coal
pipe
coke oven
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15812281A
Other languages
Japanese (ja)
Other versions
JPS6156268B2 (en
Inventor
Kunihei Koizumi
小泉 国平
Tomonori Kato
友則 加藤
Hiroaki Nishio
浩明 西尾
Shigeru Ohashi
大橋 茂
Tsuneo Nagaoka
恒夫 永岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP15812281A priority Critical patent/JPS5859284A/en
Publication of JPS5859284A publication Critical patent/JPS5859284A/en
Publication of JPS6156268B2 publication Critical patent/JPS6156268B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

PURPOSE:To control carbon deposition on the inner wall of a pipeline, reduce coking time, increase productivity and save energy consumption, by separating a gas generated in an early period of coke carbonization when a relatively large amt. of fine coal is formed. CONSTITUTION:Hydrous fine material coal 3 is preheated in a gas-stream transfer pipe 2 with a high-temp. crude coke oven gas and separated by a cyclone 6, etc. The coke oven gas is introduced into a chemical plant and the preheated coal is fed to a coke oven 12. In order to prevent oven press. from increasing at the peak of gas evolution in an early period of carbonization, the evolved gas is sucked into a low-temp. gas-collecting pipe 15 by steam or a high-press. ammonia water 13 and cooled, which reduces an amt. of carbon deposited on a high- temp. gas discharge pipe line 1. Then a shut-off valve 16 is opened to send a gas to a high-temp. gas collecting pipe 17, and simultaneously a low-temp. gas collecting pipe 15 is closed by water seal. Until shutdown, a high-temp. crude coke oven gas from each coke oven is mixed with each other in the high-temp. gas collecting pipe 17, introduced into the high-temp. gas discharge pipe 1, and used for drying or preheating coal.

Description

【発明の詳細な説明】 本発明は、コークス概造装置に関するもので、コークス
製造のための原料石炭をコークス炉から発生する高温の
粗コークス炉ガスにより乾燥又は予熱処理した後、コー
クス炉に装入してコークスを製造することを目的とする
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coke making device, in which raw coal for coke production is dried or preheated using high-temperature crude coke oven gas generated from a coke oven, and then loaded into a coke oven. The purpose is to produce coke.

周゛知のように、石炭をコークス炉でコークス化するに
先立って乾燥または予熱処理を行うと、数々の利点を生
ずる。例えば、コークス炉において石炭をコー・クス化
するに徹する時間が短縮され、それだけ生産性が高くな
る。また、斯かる熱処理を受けた石炭からは高品質9コ
ークスが得られる。
As is well known, drying or preheating coal prior to coking it in a coke oven provides a number of advantages. For example, the time required to turn coal into coke in a coke oven is shortened, which increases productivity. Moreover, high quality 9 coke can be obtained from the coal subjected to such heat treatment.

さらに、予熱処理とコークス化に消費されるエネルギー
の合計は、予熱処理を行わないでコークス化する場合に
消費されるエネルギーエ抄低減される等の効果がある。
Furthermore, the total amount of energy consumed in preheating and coking is reduced by the amount of energy consumed in coking without preheating.

このような予熱炭装入法としてCoaltek法、Pr
ecarbon法、Thermocharge法、U、
S、 5teel法がある。例えば、Thermoch
arge 法では、燃焼室においてコークス炉ガスまた
は天然ガスを燃焼させ、循環ガスを混合させるととKよ
ってガス量、ガス温度を調整した後、このガスをスプレ
ーチャン/<−に導入し、ここで水スプレーによりガス
温度微調整してほぼ200℃の高温ガスとし、2本の気
流輸送管において粉状石炭と白滝原理に基づいて接触さ
せて予熱処理を行うものであって、石炭の乾燥は前記の
予熱処理に用いた後の温度の下ったガスを用いる。次に
、この予熱炭はガス流から分離され、コークス炉へ装入
する際の石炭のキャリーオーバーを低減させる丸め−の
オイル添加が行われる。
Coaltek method, Pr
ecarbon method, thermocharge method, U,
S. There is a 5-teel method. For example, Thermoch
In the arge method, coke oven gas or natural gas is combusted in a combustion chamber, circulating gas is mixed with the gas, and after adjusting the gas amount and gas temperature, this gas is introduced into a spray chun. The gas temperature is finely adjusted by water spray to make it a high-temperature gas of approximately 200°C, and preheating treatment is performed by bringing it into contact with powdered coal in two airflow transport pipes based on the Shirataki principle.The coal is dried as described above. The gas whose temperature has been lowered after being used for preheating treatment is used. This preheated coal is then separated from the gas stream and subjected to a rounding oil addition that reduces coal carryover during charging into the coke oven.

又、発明者らのグループが先に特願昭55−62183
号(特開昭54−154404号)をもって提案[7た
コークス炉ガスの熱回収方法は、コークス炉から発生す
る高温の粗コークス炉ガスあるいはこれと酸素を殆んど
含まないガスとの混合ガスによって石炭を乾燥又は予熱
し、これによ秒前記粗コークス炉ガスの熱回収を行うと
共に、該粗コークス炉ガス中に含まれるタール分を石炭
に付着せしめることによって分離するものであった。こ
の方法によるものは、前記Thermoeharge 
 法に比し次の利点があった。■石炭の熱処理に通常は
利用されずに捨てられていた粗コークス炉ガスの保有熱
を有効利用するので消費エネルギーが大巾に低減される
Also, a group of inventors first filed a patent application No. 55-62183.
The heat recovery method for coke oven gas proposed in No. 54-154404 (Japanese Unexamined Patent Publication No. 54-154404) [7] uses high-temperature crude coke oven gas generated from a coke oven or a mixed gas of this and a gas containing almost no oxygen. The coal is dried or preheated by this method, and the heat of the crude coke oven gas is thereby recovered, and the tar contained in the crude coke oven gas is separated by adhering to the coal. According to this method, the Thermoeharge
It had the following advantages over the law. ■Energy consumption is greatly reduced because the heat retained in crude coke oven gas, which is normally not used and thrown away during coal heat treatment, is effectively used.

■熱処理後の石炭にはタール分が付着しているのでオイ
ル添加は必要でなく、かつ発馬による大気汚染も防止で
きる。■石炭に付着したタール分が粘着剤の働きをする
のでコークス強度が向上する。
■After heat treatment, the coal has tar attached to it, so there is no need to add oil, and air pollution caused by mating can be prevented. ■The tar attached to the coal acts as an adhesive, improving coke strength.

しかるに、上記特願昭55−62185号の方法は、そ
れなりの効果はあるものの、利用する高温の粗コークス
炉ガスがコークス炉から石炭の微粉を伴って排出されて
来るので、粗コークス炉ガスが通過する配管内壁に石炭
の微粉が付着し、その一部が熱分解を起して固着・蓄積
するいわゆるカーボントラブルの問題が避けられなかっ
た。このカーボントラブルは、次のようKして起ること
がその後の研究により明らかとなった。即ち、配管内を
通過する粗コークス炉ガスの温度が500℃以上の温度
領域の場合は粗コークス炉ガスに含有される炭化水素の
一部が熱分解を起してカーボンとなり配管内壁に付着す
る。500〜500℃の温度領域では粗コークス炉ガス
に含有されるタールが凝縮と熱分解を活発に起すけれど
も、該ガスが激しく運動する石炭と接触するので配管内
壁への付着が練上され、凝縮タールは石炭へ付着して移
動する。500℃以下の温度領域では凝縮タールは熱分
解しないので石炭と接触後液状で石炭微粉を巻込んで移
動し、配管内壁へ付着はするけれども固着・蓄積はしな
い。
However, although the method disclosed in Japanese Patent Application No. 55-62185 has certain effects, the high-temperature crude coke oven gas used is discharged from the coke oven together with fine coal powder. The problem of so-called carbon trouble, in which fine coal powder adheres to the inner walls of the pipes through which it passes, and some of it thermally decomposes and sticks and accumulates, was unavoidable. Subsequent research has revealed that this carbon trouble occurs as follows. That is, when the temperature of the crude coke oven gas passing through the pipe is in a temperature range of 500°C or higher, a portion of the hydrocarbons contained in the crude coke oven gas undergoes thermal decomposition and becomes carbon, which adheres to the inner wall of the pipe. . In the temperature range of 500 to 500°C, the tar contained in the crude coke oven gas actively condenses and thermally decomposes, but as the gas comes into contact with the rapidly moving coal, it tends to adhere to the inner walls of the piping, causing condensation. Tar adheres to coal and moves. Since condensed tar does not decompose thermally in a temperature range of 500° C. or lower, it moves in a liquid state after contact with coal, entraining fine coal powder, and although it adheres to the inner wall of the pipe, it does not stick or accumulate.

本発明は、上記特願昭55−62183号のコークス炉
ガスの熱回収方法が抱えている問題点である配管内壁へ
のカーボントラブルを、石炭の微粉の比較的多量に発生
するコークス乾溜初期の発生ガスを分離することKより
改善し、結果としてコークス化の時間を短縮し生産性を
高めると共に、消費エネルギーの節約を図るものである
3、又、比較的長期の稼動でどうしても避けることので
きない配管内壁に固着・蓄積したカーボンは定期的に除
去4.4 f付設し、これにより配管内壁のカーボン除
去を容易に行えるようにし7たものである。
The present invention solves the problem of carbon trouble on the inner wall of the piping, which is a problem faced by the coke oven gas heat recovery method of the above-mentioned Japanese Patent Application No. 55-62183, during the early stage of coke dry distillation when a relatively large amount of coal fines is generated. Separating the generated gas is an improvement over K, which results in shortening coking time, increasing productivity, and saving energy consumption3.Also, it is unavoidable in relatively long-term operation. Carbon fixed and accumulated on the inner wall of the pipe is removed periodically by installing a 4.4 f, which makes it easy to remove carbon from the inner wall of the pipe.

即ち、本発明のコークス製造装置の要旨とするところは
、 囚給炭装置と、該給炭装置に連続しかつ底部に高温ガス
吹込口を有する気流輸送管と、該気流輸送管の頂部に連
続するガス・石炭分離用サイクロンとを備えた石炭熱処
理装置、(B)コークス炉に乾溜初期発生ガス排出用配
管及びその後に発生する高温ガス排出用配管を遮断弁を
介して備え、該高温ガス排出用配管の一端を上記気流輸
送管の高温ガス吹込口に連続させた高温ガス供給装置、 上記(A)(B)を設けたことを特徴とするコークス製
造装置である。
That is, the gist of the coke manufacturing apparatus of the present invention is as follows: a captive coal feeding device, an air flow transport pipe connected to the coal feed device and having a high temperature gas inlet at the bottom, and a gas flow transport pipe connected to the top of the air flow transport pipe. (B) A coke oven equipped with piping for discharging the gas generated in the initial stage of dry distillation and piping for discharging the high-temperature gas generated thereafter via a shutoff valve, and discharging the high-temperature gas. This coke manufacturing apparatus is characterized in that it is provided with the above (A) and (B), a high temperature gas supply device in which one end of the pipe is connected to the high temperature gas inlet of the air flow transport pipe.

又、上記高温ガス排出用配管及び気流輸送管の管内壁付
着カーボンを燃焼・除去するためのカーボン燃焼装置を
上記高温ガス排出用配管に付設した特許請求の範囲第1
項記載のコークス製造装置である。
Further, a carbon combustion device for burning and removing carbon adhering to the inner walls of the high-temperature gas discharge pipe and the air flow transport pipe is attached to the high-temperature gas discharge pipe, as claimed in claim 1.
This is the coke manufacturing apparatus described in Section 1.

次に、本発明のコークス製造装置を第1図Vこボす実施
例に基づいて鰭、明する。(13は通常のコークス炉で
あり、6υは装炭車、(2)は石炭塔ホッパー、(9)
は輸送装置又はチェンコンベア、(8′)はスクリュー
フィダーであり、これらはいずれも通常用いられている
ものが利用される。本発明において重要なのは前記コー
クス炉a湯の上昇管a◆に、乾溜初期のガス発生ピーク
時の炉圧上昇を避けるために添加する水蒸気又は高圧安
水の添加装置0と、それに続く定量集気管a喝と、更に
それに続く低温ガス排出用配管(15’)等の低温ガス
配管系を独立して水封可能に設け、この配管系とは別個
に前記上昇管a尋に、遮断弁a11を介して高温集気管
aηと、それに続く高温ガス排出用配管(1)とからな
る高温ガス配管系を設けたことKlす、この高温ガス排
出用配管(1)の一端を後述する気流輸送管(2)の高
温ガス吹込口(2つに連続させである。以上の装置を本
発明では高温ガス供給装置と呼んでいるー前掲の(21
Fi気流輸送管でおって、その底部には前記高温ガス吹
込口(2′)が設けてあり、該biガス吹込口(2′)
の設置位置よ抄若干上方には給炭装置する粉状の原料石
炭(3)が分散機(5)を経て供給される。気流輸送管
(2)の頂部に(tよ、これと連続するガス書石炭分離
用サイクロン(6)が設けである。このサイクロン(6
)は場合によっては複数のサイクロンからなるいわゆる
マルチクロン(7)であってもよい。以上の装置を本発
明では石炭熱処理装置と呼んでいる。
Next, the coke manufacturing apparatus of the present invention will be explained based on the embodiment shown in FIG. (13 is a normal coke oven, 6υ is a coal loading car, (2) is a coal tower hopper, (9)
(8') is a transport device or chain conveyor, and (8') is a screw feeder, both of which are commonly used. What is important in the present invention is the addition device 0 of steam or high-pressure ammonium water added to the riser pipe a◆ of the coke oven hot water a◆ in order to avoid a rise in furnace pressure at the peak of gas generation in the early stage of dry distillation, and the following quantitative air collection pipe. A low-temperature gas piping system such as a low-temperature gas exhaust pipe (15') following the pipe is provided independently and water-sealed, and a shutoff valve a11 is installed separately from this piping system at the bottom of the riser pipe a. A high-temperature gas piping system consisting of a high-temperature gas collection pipe aη and a high-temperature gas discharge pipe (1) following the high-temperature gas collection pipe aη is provided through the high-temperature gas discharge pipe (1). 2) high-temperature gas inlet (two in series). The above device is referred to as a high-temperature gas supply device in the present invention - the above-mentioned (21)
The high temperature gas inlet (2') is provided at the bottom of the Fi airflow transport pipe, and the bi gas inlet (2')
Powdered raw material coal (3) is supplied to the coal feeder through a disperser (5) slightly above the installation position of the coal feeder. At the top of the airflow transport pipe (2), there is a cyclone (6) for separating gas and coal that is continuous with this.This cyclone (6)
) may be a so-called multi-cyclone (7) consisting of a plurality of cyclones as the case may be. The above device is referred to as a coal heat treatment device in the present invention.

(8)はプロワ−であって、約+6■Aqに圧力制御さ
れた前記高温集気管(1η→高温カス排出用配管〈1)
→気流輸送管(2)→サイクロン(6)又はマルチクロ
ン(7)の経路で粗コークス炉ガスを吸引するので系内
は負圧に保たれ、プロワ−(8)前で−800〜−12
00畷Aqの負圧となる。一方、プロワ−(8)で昇圧
された粗コークス炉ガスは、スズレーチャンパーaのに
おいてスプレーQ’Jにより安水の噴霧・冷却を受け8
0〜90Cとなって副生品回収のために系外の化工工場
へ送られる。以上が本発明のコークス製造装置でろる。
(8) is a blower, and the high-temperature air collection pipe (1η→high-temperature waste discharge pipe <1) whose pressure is controlled to about +6 Aq
→ Air flow transport pipe (2) → Crude coke oven gas is sucked through the cyclone (6) or multiclone (7) route, so the system is kept at a negative pressure, and the pressure in front of the blower (8) is between -800 and -12
The negative pressure is 000 Aq. On the other hand, the crude coke oven gas pressurized by the blower (8) is sprayed and cooled with ammonium water by the spray Q'J in the Susley chamber a.
The temperature reaches 0 to 90C and is sent to a chemical factory outside the system for recovery of byproducts. The above is the result of the coke manufacturing apparatus of the present invention.

又、第1図に鎖線結線で示された構成部分はカーボン燃
焼装置である。C11+は燃焼室であり、ここでコーク
ス炉ガ・ス、高炉ガス、天然ガス等の燃料(至)と燃焼
用空気(2)を燃焼させ、一方コークス炉燃焼廃ガス、
高炉の熱風炉燃焼廃ガス等の酸素濃度5−以下、温度3
00℃以下の燃焼廃ガス(2)を導入して前記燃焼ガス
と混合し、酸素+11[4〜10優、温度500〜70
0℃Kv41Jkした燃焼ガスを得、これを予め9窯に
したコークス炉(I望の上昇管a4の上部トップカバー
(25’)を開とした上で、該上昇管0番に連続して設
けられた前記の高温集気管aη→高温ガス排出用配管(
1)→気流輸送管(2)の下部に到る配管内壁の付着カ
ーボンを局部加熱を避けながら燃焼除去するものである
。尚、(2)はバグフィルタ−1(2)は煙突である。
Further, the component shown by chain lines in FIG. 1 is a carbon combustion device. C11+ is a combustion chamber in which fuels (1) such as coke oven gas, blast furnace gas, and natural gas and combustion air (2) are combusted, while coke oven combustion waste gas,
Oxygen concentration of blast furnace hot blast combustion waste gas, etc. is 5- or less, temperature is 3
Combustion waste gas (2) of 00°C or lower is introduced and mixed with the combustion gas, oxygen +11 [4-10], temperature 500-70
Obtain combustion gas at 0°C Kv41Jk, and use it in a coke oven that has been set up in advance in 9 ovens (after opening the upper top cover (25') of riser pipe A4, install it continuously in riser pipe No. 0). The above-mentioned high-temperature air collection pipe aη → high-temperature gas exhaust pipe (
1) → The carbon adhering to the inner wall of the pipe leading to the lower part of the air flow transport pipe (2) is burnt and removed while avoiding local heating. In addition, (2) is a bag filter-1 (2) is a chimney.

付着カーボン燃焼除去の際に気流輸送管(2)を上昇し
た剥離カーボン、酸化灰分、ガス分等は、気流輸送管(
2)に側設された散水装置(財)Kよりミスト状にした
水を供給されてバグフィルタ−(2)の耐熱温度以下に
冷却され、プロワ−(8)の吸引により気流輸゛送管(
2)を上昇し、サイクロン(6)又はマルチクロン(7
)を経て同伴する粉体の大部分を分離除去された後バグ
フィルタ−(ハ)でさらに残留粉体を除去した後煙突(
至)によって大気中に放散される一 本発明のコークス製造装置は以上の構成になるものであ
るが、この装置によってコークスを製造するには、高温
ガス排出用配管(1)から温度400〜800℃の粗コ
ークス炉ガスを垂直に設置した気流輸送管(2)の吹込
口(2′)から流入せしめ、一方給炭装置(4)よシ粒
径6■以・下が80〜85チを占める粉状の水分−6〜
12%を含有する原料石炭を、定菫切出し機構例えばス
クリューフィダー(前記給炭装置に備見られている)か
ら切出し、分散機(5)を経て気流輸送管(2)へ供給
される。粗コークス炉ガスはこの湿った原料石炭を上方
へ移送しつつ熱交換し、含有水分を全量除去し所定の温
度まで加熱するいわゆる予熱操作を行い、がっ粗;−ク
ス炉ガスの温度低下に伴って約520℃から凝縮を開始
するタールを原料石炭に付着せしめる。この間タールは
気流輸送管(2)の内壁にも付着するが。
The exfoliated carbon, oxidized ash, gas, etc. that rose up the airflow transport pipe (2) when burning and removing the attached carbon are removed from the airflow transport pipe (2).
2) is supplied with water in a mist form from the sprinkler system K installed on the side, and is cooled to below the heat-resistant temperature of the bag filter (2), which is then sucked into the airflow transport pipe by the blower (8). (
2) and ascend the Cyclone (6) or Multichron (7)
), most of the entrained powder is separated and removed, the remaining powder is further removed by the bag filter (c), and then the chimney (
The coke production apparatus of the present invention has the above-mentioned configuration, but in order to produce coke with this apparatus, the temperature of 400 to 800 ℃ crude coke oven gas is made to flow in from the inlet (2') of the air flow transport pipe (2) installed vertically, while the coal feeder (4) is fed with a particle size of 6 mm or less and 80 to 85 mm. Powder moisture content -6~
Raw coal containing 12% is cut out from a constant violet cutting mechanism, such as a screw feeder (equipped in the coal feeder), and fed to the pneumatic transport pipe (2) via a disperser (5). The crude coke oven gas is transferred upwards while exchanging heat, removing all the moisture it contains, and performing a so-called preheating operation to heat it to a predetermined temperature. At the same time, tar that starts to condense at about 520°C is deposited on the raw coal. During this time, tar also adheres to the inner wall of the airflow transport pipe (2).

気流輸送される粉状の石炭によって削取られるので成長
することはない。この石炭は上方へ行くに従って熱交換
速度は次第に小さくなり、サイクロン(6)又はマルチ
クロン(7)において粗コークス炉ガスと分離され゛る
。斯くして温度90〜150℃の乾燥または予熱炭が得
られ、一方コークス炉ガスの温度は150〜200℃に
低下し既述した通りプロワ−(8)の吸引によりスプレ
ーチャンノ< −as rtcてさらに冷却され系外の
化工工場へ送られる。
It does not grow because it is scraped away by the powdered coal transported by air currents. The heat exchange rate of this coal gradually decreases as it moves upwards, and it is separated from the crude coke oven gas in a cyclone (6) or multichrone (7). Dry or preheated coal with a temperature of 90-150° C. is thus obtained, while the temperature of the coke oven gas is reduced to 150-200° C. and, as already mentioned, the suction of the blower (8) causes the spray chamber to <-as rtc. It is further cooled and sent to a chemical factory outside the system.

前記石炭熱処理装置において熱処理を受けた石炭は、ス
クリューフィダー(8′)により輸送装置(9)を経(
石炭塔ホッパー輪へ送られ、装炭車QIlへ切出される
。この装炭車aυによ抄装入を必要とするコークス炉a
2まで輸送され装入される。コークス炉nへの装入時お
よび装入後の短期間に、原料石炭に付着したタールの蒸
発と熱分解および石炭の熱分解が激しく起るので、一時
的にガス発生のピークを生ずるーこのピークによる炉圧
上昇を避ける九めに、水蒸気又は高圧安水ti3により
発生ガスを上昇管a◆を経て低温集気管恨9へ吸引し、
冷却する。この期間発生ガスに伴われて多量の石炭の微
次に述べる高温ガス排出用配管(1)へのカーボン付層
量を少くするための配慮によるものである。この期間を
過ぎたところで迦断升O1!を開とし、上昇管口4と高
温集気管07)とを連通せしめると同時に水封により上
昇管(14)と低温集気管09との連通を遮断する。以
後火路ちに至るまでの關間、コークス炉03か゛ら発生
する高温粗コークス炉ガスは、高温状岨のまま高温集気
管αηで炉団を構成する6炉から発生する高鍼粗コーク
ス炉ガスと混合され、平均化されてガス温度、ガス組成
の変動の少ないガスとなり高温ガス排出用配管(1)へ
導かれ、前述のように石炭の乾燥又は予熱処理に使われ
る。以−ヒのように高温集気管aカのほかに低温集気管
a喝を備えることによって、石炭装入時、および石炭装
入終了直後の炉圧上昇に伴うコークス炉αりか−らのガ
ス漏洩が防止されると共に高温集気管fiDと高温ガス
排出用配管(1)の内壁へのカーボン付着量が低減され
る。
The coal that has undergone heat treatment in the coal heat treatment equipment is transported through a transportation device (9) by a screw feeder (8').
It is sent to the coal tower hopper ring and cut to the coal loading car QIl. A coke oven a that requires paper charging into this coal loading car aυ
2 is transported and charged. During charging into a coke oven and for a short period of time after charging, the evaporation and thermal decomposition of the tar adhering to the raw material coal and the thermal decomposition of the coal occur intensely, resulting in a temporary peak of gas generation. To avoid the rise in furnace pressure due to this peak, the generated gas is sucked into the low-temperature air collection pipe 9 through the riser pipe a◆ using steam or high-pressure ammonium water ti3.
Cooling. This is to reduce the amount of carbon deposited on the high-temperature gas exhaust pipe (1), which will be described in the next section, due to the large amount of coal accompanying the gas generated during this period. After this period, the score is O1! The rising pipe port 4 and the high-temperature air collecting pipe 07) are opened, and at the same time, communication between the rising pipe (14) and the low-temperature air collecting pipe 09 is cut off by a water seal. After that, the high-temperature crude coke oven gas generated from the coke oven 03 remains at a high temperature until it reaches the flue, and the high-temperature crude coke oven gas generated from the six furnaces forming the furnace group with the high-temperature air collecting pipe αη. The gas is mixed with and averaged to become a gas with less fluctuation in gas temperature and gas composition, which is guided to the high-temperature gas discharge pipe (1) and used for drying or preheating coal as described above. By providing a low-temperature air collection pipe in addition to a high-temperature air collection pipe as shown below, gas leakage from the coke oven due to the rise in oven pressure during coal charging and immediately after coal charging is prevented. At the same time, the amount of carbon adhering to the inner walls of the high-temperature air collection pipe fiD and the high-temperature gas discharge pipe (1) is reduced.

第1図においてkt 、一本の上昇管a◆に低温集気管
a9と高温集気管0ηの2本の集気管を接続させである
が、上昇管ケ4をマシンサイドとコークサイドに各々1
本宛設け、その夫々に前記集気管を接続させてもよい。
In Fig. 1, two air collection pipes, a low temperature air collection pipe a9 and a high temperature air collection pipe 0η, are connected to one riser pipe a◆, and one riser pipe 4 is connected to the machine side and the coke side, respectively.
The air collecting pipes may be connected to each of the air collecting pipes.

また気流輸送管(2)において粉状の石炭を気流輸送す
るには、石炭の終端速度以上のガス流速が必要でめる。
Furthermore, in order to air-transport powdered coal in the air-flow transport pipe (2), a gas flow velocity higher than the terminal velocity of the coal is required.

ところが、粗コークス炉ガスの発生−1は基本的には生
産計画やコークス炉の稼動率により決定されるが、操業
上これの発生量は時間と共に変動し、もしトラブルが発
生すると変動幅”FisK大きくなる。しかしこのよう
なガス発生量の蜜動にもかかわらず、前述の気流輸送の
ためのガス量を確保しなければならない。このためにプ
ロワ−(8)の後にガス循環用配管(至)を設けその一
端を前記高温ガス排出用配管(1)に接続することによ
ってガス量を補給する。
However, the generation of crude coke oven gas-1 is basically determined by the production plan and the operating rate of the coke oven, but the amount of generated gas fluctuates over time during operation, and if trouble occurs, the fluctuation range "FisK" However, despite such fluctuations in the amount of gas generated, it is necessary to secure the amount of gas for the airflow transport mentioned above.For this purpose, a gas circulation pipe (as far as possible) must be installed after the blower (8). ) and one end thereof is connected to the high temperature gas discharge pipe (1) to replenish the gas amount.

12〜16時間の乾留時間を経過して生成された温度約
1000℃のコークス(2)は押出し機(図示省略)K
よって押出されて消火工程に送られる−このようにして
コークス製造を砂1けると、上昇管Q4)の粗コークス
炉ガス出口から気流輸送管2の下部に到る配管内壁には
カーボンが付着・蓄積してくるので、このカーボンを一
定期間毎に除去しなければなら々い。しかして、この付
着カーボンは管内壁では600〜800℃に加熱されて
いるが、常温の空気に触れさせると着火せず、むしろ逆
に冷却される。従って常温空気による燃焼除去はできな
い。500℃以上に加熱し九空気を用いるとコークスの
場合は着火するが、局部的に高熱になり過ぎて設備の損
傷を惹起する。そこで、局部加熱を起すことなく付着カ
ーボンを燃焼除去するには、酸素濃度4〜10%、温度
500〜700℃の燃焼ガ長を用いればよい。そめため
既述したように燃焼室なりにおいて前記の酸素濃度およ
び温度に調整されたガスを得、このガスを前記高温ガス
排出用配管(1)の上流と下流へ同時又は切替によシ時
期をずらして送る。上流へ向ったガスは高温ガス排出用
配管(1)の部分と高温集気管(171を経て9無にし
たコークス炉の上昇管軸に到る。この上昇管04の上部
のトップカバー(25’)を開としガスを太気放散する
。この場合付着カーボンは酸化されて一部はガス化し、
一部は剥離して粉状のコークスと灰分となり、気流に同
伴され上昇管a4に到る。
The coke (2) at a temperature of about 1000°C produced after 12 to 16 hours of carbonization is sent to an extruder (not shown) K.
Therefore, it is pushed out and sent to the extinguishing process - When coke production is carried out in this way, carbon adheres to the inner wall of the pipe from the crude coke oven gas outlet of the riser pipe Q4) to the lower part of the air flow transport pipe 2. As it accumulates, it is necessary to remove this carbon at regular intervals. Although this deposited carbon is heated to 600 to 800° C. on the inner wall of the tube, when it comes into contact with air at room temperature, it does not ignite, but rather is cooled down. Therefore, combustion removal using room temperature air is not possible. If coke is heated to 500°C or higher and air is used, it will ignite, but the heat will locally become too high and cause damage to equipment. Therefore, in order to burn off the adhering carbon without causing local heating, a combustion chamber with an oxygen concentration of 4 to 10% and a temperature of 500 to 700°C may be used. In order to avoid this problem, as mentioned above, a gas adjusted to the above oxygen concentration and temperature is obtained in the combustion chamber, and this gas is sent to the upstream and downstream of the high temperature gas exhaust pipe (1) at the same time or by switching at the same time. Shift and send. The gas heading upstream passes through the high-temperature gas exhaust pipe (1) and the high-temperature air collection pipe (171) and reaches the riser pipe shaft of the coke oven, which is made up of 9. ) to dissipate the gas into the air.In this case, the attached carbon is oxidized and some of it is gasified,
A portion of the coke is separated into powdered coke and ash, which is carried along with the airflow and reaches the riser pipe a4.

ことで粒径の大きい粉状物はコークス炉0へ落下し、他
は大気放散されるととKなる。下流へ向ったガスは高温
ガス排出用配管(1)の部分を経て気流輸送管(2)へ
入る。この部分の付着カーボンはガスによって酸化され
て一部はガス化し、一部は剥離して粉状のコークスと灰
分となり、気流に同伴されて気流輸送管(2)を、ヒ昇
する。気流輸送管(2)には散水装置(財)が側設され
ているのでこれPCよりガス゛は冷却され、吸引プロワ
−(8)の吸引によりサイクロン(6)又はマルチクロ
ン(7)において粒径の大きい粉状物は分離除去され、
ガスはバグフィルタ−(ハ)を経て煙突(2)よシ大気
放散される 燃焼室Q鄭の出口ガス配管は前述の通り高温ガス排出用
配管(1)に接続させてもよく、又高温集気管afIへ
直接接続させて屯よい。さらに又分岐して上昇管6◆へ
接続させてもよい。
As a result, the powdery substances with large particle sizes fall into the coke oven 0, and the others are released into the atmosphere and become K. The downstream gas passes through the hot gas discharge pipe (1) and enters the airflow transport pipe (2). The adhering carbon in this part is oxidized by the gas, and part of it is gasified, and part of it is peeled off to become powdered coke and ash, which are carried by the airflow and ascend up the airflow transport pipe (2). Since the airflow transport pipe (2) is equipped with a water sprinkler system, the gas is cooled by the PC, and the particle size is reduced in the cyclone (6) or multiclone (7) by suction from the suction blower (8). Large powder particles are separated and removed.
The gas passes through the bag filter (c) and is released into the atmosphere through the chimney (2).The outlet gas pipe of the combustion chamber Q may be connected to the high temperature gas discharge pipe (1) as described above, or it may be connected to the high temperature gas discharge pipe (1). It can be connected directly to the trachea afl. Furthermore, it may be branched and connected to the rising pipe 6◆.

散水装置■は石炭の予熱処理の場合の温度調整に用いる
ことも可能である。
The water sprinkler device (2) can also be used to adjust the temperature in the case of preheating coal.

燃焼室なυで酸素濃度6チ以下、温度600−8001
?:KFJ@整した燃焼ガスを製造17、このガスを気
流輸送管(2)へ送り、石炭を乾燥又は予熱処理するこ
とも可能である。
Oxygen concentration at υ in the combustion chamber is less than 6 cm, temperature 600-8001
? :KFJ@ It is also possible to produce regulated combustion gas 17 and send this gas to the airflow transport pipe (2) to dry or preheat the coal.

本発明のコークス製造装置は以上の構成になるものであ
るから、コークス化の時間が短縮され、それだけ生産性
が高くなるばがシでなく、熱処理を受けた石炭からは高
品質のコークスが得られるし、消費エネルギーも従来の
装置より低減される等の諸効果を奏することが確認され
Since the coke manufacturing apparatus of the present invention has the above-described configuration, the time for coking is shortened and productivity is increased accordingly, and high-quality coke can be obtained from heat-treated coal. It has been confirmed that it has various effects, such as lower energy consumption and lower energy consumption than conventional devices.

【図面の簡単な説明】[Brief explanation of drawings]

笥1図は本発明の装置の系統図である。 (1)高温ガス排出用配管、(2)気流輸送管、(2′
)高温ガス吹込口、(3)原料石炭、(4)給炭装置、
(5)分散機、(6)サイクロン、(7)マルチクロン
、(8)プロワ−1(8’)スクリューフィダー、(9
)輸送装置、(2)石炭塔ポツパー、aυ装炭車、Oク
コークス炉、0水蒸気又は安水添加装置、04上昇管、
(ハ)低温集気管、(15′)低温ガス排出用配管、(
II!断弁、aη高温集気管、Qlスプレーチャンバー
、a優スプレー、01コークスotJ燃焼室、(2)燃
焼廃ガス、の燃料ガス、’;’am焼用空気、(ハ)バ
グフィルタ−1(25’) )、ツブカバー(イ)煙突
、(5)散水装置、(至)ガス循環用配管。 代理人 弁理士  佐 藤 止 年 間 同 木村三朗 同   同   佐々木 宗 治 531
Figure 1 is a system diagram of the apparatus of the present invention. (1) High-temperature gas exhaust pipe, (2) Air flow transport pipe, (2'
) high temperature gas inlet, (3) coking coal, (4) coal feeding device,
(5) Disperser, (6) Cyclone, (7) Multiclone, (8) Prower 1 (8') Screw feeder, (9
) Transportation equipment, (2) Coal tower dropper, Aυ coal loading car, O coke oven, O steam or ammonium water addition device, 04 riser pipe,
(c) Low-temperature air collection pipe, (15') Low-temperature gas discharge pipe, (
II! Valve cut, aη high temperature air collection pipe, Ql spray chamber, a good spray, 01 coke otJ combustion chamber, (2) combustion waste gas, fuel gas, ';'am burning air, (c) bag filter-1 (25 ') ), knob cover (a) chimney, (5) water sprinkler, (to) gas circulation piping. Agent: Patent Attorney: Toshi Sato, same: Saburo Kimura, same: Souji Sasaki, 531

Claims (2)

【特許請求の範囲】[Claims] (1)囚給炭装置と、該給炭装置に連続しかつ底部に高
温ガス吹込口を有する気流輸送管と、該気流輸送管の頂
部に連続するガス・石炭分離用サイクロンとを備えた石
炭熱処理装置、 俤)コークス炉に乾溜初期発生ガス排出用配管及びその
後に発生する高温ガス排出用配管を遮断弁を介して備え
、該高温ガス排出用配管の一端を上記気流輸送管の高温
ガス吹込口に連続させた高温ガス供給装置、 上記(A)03)を設けたことを特徴とするコークス製
造装置。
(1) Coal equipped with a captive coal feeding device, an air flow transport pipe that is continuous to the coal feed device and has a high temperature gas inlet at the bottom, and a gas/coal separation cyclone that is continuous to the top of the air flow transport pipe. Heat treatment equipment, 俤) A coke oven is equipped with piping for discharging gas generated in the initial stage of dry distillation and piping for discharging high-temperature gas generated thereafter via a shutoff valve, and one end of the piping for discharging high-temperature gas is connected to the high-temperature gas injection pipe of the air flow transport pipe. A coke manufacturing apparatus, characterized in that the above (A) 03) is provided, a high temperature gas supply device continuous to the mouth.
(2)上記高温ガス排出用配管及び気流輸送管の管内壁
付着カー〆yを燃焼・除去するだめのカーボン燃焼装置
を上記高温ガス排出用配管に付設した特許請求の範囲第
1項記載のコークス製造装置。
(2) The coke according to claim 1, wherein a carbon combustion device is attached to the high-temperature gas discharge pipe to burn and remove carcasses adhering to the inner walls of the high-temperature gas discharge pipe and the airflow transport pipe. Manufacturing equipment.
JP15812281A 1981-10-06 1981-10-06 Coke manufacturing unit Granted JPS5859284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15812281A JPS5859284A (en) 1981-10-06 1981-10-06 Coke manufacturing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15812281A JPS5859284A (en) 1981-10-06 1981-10-06 Coke manufacturing unit

Publications (2)

Publication Number Publication Date
JPS5859284A true JPS5859284A (en) 1983-04-08
JPS6156268B2 JPS6156268B2 (en) 1986-12-01

Family

ID=15664773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15812281A Granted JPS5859284A (en) 1981-10-06 1981-10-06 Coke manufacturing unit

Country Status (1)

Country Link
JP (1) JPS5859284A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106880A (en) * 1983-11-15 1985-06-12 Hitachi Ltd Method and apparatus for reforming coal
JPS60195187A (en) * 1984-03-16 1985-10-03 Tsukishima Kikai Co Ltd Drying of coal for coke oven
CN105018119A (en) * 2014-04-30 2015-11-04 肖自江 External heating type descending low-temperature pyrolysis furnace for pulverized coal and oil shale powder
CN105018118A (en) * 2014-04-30 2015-11-04 肖自江 Low-temperature pyrolysis method for pulverized coal and oil shale powder and external heating vertical type descending low-temperature pyrolysis furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105921A (en) * 1986-10-21 1988-05-11 Nippon Steel Corp Manufacture of thick high tension steel of more than 90kgf/mm2 class having superior toughness at low temperature

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106880A (en) * 1983-11-15 1985-06-12 Hitachi Ltd Method and apparatus for reforming coal
JPS60195187A (en) * 1984-03-16 1985-10-03 Tsukishima Kikai Co Ltd Drying of coal for coke oven
CN105018119A (en) * 2014-04-30 2015-11-04 肖自江 External heating type descending low-temperature pyrolysis furnace for pulverized coal and oil shale powder
CN105018118A (en) * 2014-04-30 2015-11-04 肖自江 Low-temperature pyrolysis method for pulverized coal and oil shale powder and external heating vertical type descending low-temperature pyrolysis furnace
CN105018118B (en) * 2014-04-30 2018-05-11 肖自江 Fine coal oil shale powder low temperature pyrogenation method and the vertical downlink low temperature pyrogenation stove of outer heat
CN105018119B (en) * 2014-04-30 2018-09-04 肖自江 Hot low temperature downlink pyrolysis oven outside fine coal oil shale powder

Also Published As

Publication number Publication date
JPS6156268B2 (en) 1986-12-01

Similar Documents

Publication Publication Date Title
CN108753368B (en) Circulating fluidized bed coal gasification system and method
CN107200458B (en) A kind of municipal sludge processing method
UA124159C2 (en) Process and apparatus for gasifying biomass
KR20200100196A (en) Sludge treatment method and cement manufacturing system
SU1114342A3 (en) Method for continuous gasification of particles of carbonaceous solid
CN100575505C (en) Utilize red Jiao to add the method for reducing gas in the hot direct reduced iron
JPS5859284A (en) Coke manufacturing unit
CN108384560B (en) Large-scale biomass and waste pyrolysis furnace
CN103820138A (en) Equipment and method for powdered coal dry distillation and high-temperature coal gas purification
CN109680114A (en) A kind of system and method for coal gasification collaboration reduction of iron ore
JPH0113514B2 (en)
US4240877A (en) Method for preheating coal for coking
CZ43993A3 (en) Process for producing heating gas from a low-grade solid fuel, and apparatus for making the same
CN209508148U (en) A kind of biomass continuous carbonization furnace
CN109827178A (en) Using the method for the self- propagating accumulation of heat incinerator removal dry salt organic matter of polyphenylene sulfide by-product
CA1245595A (en) Method for dry cooling coke using the sensible heat formed during dry cooling
CN113528189B (en) Entrained flow bed gasification system and method
CN113831923A (en) Method and apparatus for increasing pyrolysis efficiency of pyrolysis furnace
CN207659390U (en) A kind of system of pyrolysis of coal and fluidisation gas coupling processed
CN112126470A (en) TFB gasification furnace with double-stage sealed feeding
RU2448144C2 (en) Dry coke quenching apparatus
JPS598385B2 (en) Heat treatment method and equipment for crushed lignite
JP2001263625A (en) Method and system for heating thermal decomposition gas
CN209065829U (en) A kind of three-stage rotary kiln face dry distillation of coal device
US4344769A (en) Process and installation for treating coking coal