JPS5858802A - Chopper controlled electric motor vehicle - Google Patents

Chopper controlled electric motor vehicle

Info

Publication number
JPS5858802A
JPS5858802A JP56153986A JP15398681A JPS5858802A JP S5858802 A JPS5858802 A JP S5858802A JP 56153986 A JP56153986 A JP 56153986A JP 15398681 A JP15398681 A JP 15398681A JP S5858802 A JPS5858802 A JP S5858802A
Authority
JP
Japan
Prior art keywords
chopper
controlled electric
main
center line
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56153986A
Other languages
Japanese (ja)
Other versions
JPH039681B2 (en
Inventor
Kazumasa Ishizu
石津 一正
Naohiro Kitagawa
北川 直弘
Yoshitaka Fujiwara
藤原 喜隆
Toshiyuki Ooyama
大山 俊行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPANESE NATIONAL RAILWAYS<JNR>
Fuji Electric Co Ltd
Japan National Railways
Nippon Kokuyu Tetsudo
Original Assignee
JAPANESE NATIONAL RAILWAYS<JNR>
Fuji Electric Co Ltd
Japan National Railways
Nippon Kokuyu Tetsudo
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPANESE NATIONAL RAILWAYS<JNR>, Fuji Electric Co Ltd, Japan National Railways, Nippon Kokuyu Tetsudo, Fuji Electric Manufacturing Co Ltd filed Critical JAPANESE NATIONAL RAILWAYS<JNR>
Priority to JP56153986A priority Critical patent/JPS5858802A/en
Publication of JPS5858802A publication Critical patent/JPS5858802A/en
Publication of JPH039681B2 publication Critical patent/JPH039681B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To prevent the occurrence of an induction defect by disposing a main smoothing reactor forming a pair of chopper circuits having phase difference of 180 deg. symmetrically to the center line of a body under the body and arranging a shielding plate at the lower side of the reactor. CONSTITUTION:Chopper circuits CH1, CH2 which are operated with the phase difference of 180 deg. from each other are provided. Main smoothing reactors MSL1, MSL2 are disposed at the position symmetrical to the center line 0 of a body B at the central axis of each coil under the floor of the body B, and a shielding plate Sh made of conductors is arranged at the lower side of the reactors. In this manner, the occurrence of the induction defect based on the reactors can be effectively preented, and the cooling of the reactors can be smoothly and efficiently performed.

Description

【発明の詳細な説明】 この発明は、チ四ツバ制御により駆動される電気車の改
良に関し1%にチョッパ制御による電磁誘導障害を低減
して電気車の制御に誤動作を生じないようにしたチョッ
パ制御電気車に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the improvement of electric cars driven by four-way control, and the present invention relates to a chopper that reduces electromagnetic induction interference caused by chopper control to 1% and prevents malfunctions in the control of electric cars. This relates to a controlled electric vehicle.

電気車等においては、カ行時の速度制御の効率向上中乗
心地の向上を図るためにチョッパ制御方式を採用し、し
かもこのチョッパ制御方式によ)制動時に回生制動を行
って消費電力の低減を図っている。
In electric vehicles, etc., a chopper control method is used to improve the efficiency of speed control when moving and to improve riding comfort.In addition, this chopper control method performs regenerative braking during braking to reduce power consumption. We are trying to

しかるに、この種のチョッパ制御電気車においては、一
般にサイリスタスイッチを使用して電流の断続を行う丸
め、主回路に紘多くの高調波成分を含んだ電流が流れる
。このような高調波成分を多く含むtfltが架線やレ
ールに流出すると、通信設備や地上信号設備が障害を受
けて不良動作することがある。この穐の障害は、一般に
誘導障害として問題視されたが、今日においては電気車
の電源側にフィルタリアクトルおよびフィルタコンデン
サを設け、高調波電流成分の流出を制限することによシ
解決されている。
However, in this type of chopper-controlled electric vehicle, a thyristor switch is generally used to turn on and off the current, and a current containing many harmonic components flows through the main circuit. If tflt containing many such harmonic components flows out onto overhead wires or rails, communication equipment and ground signal equipment may be disturbed and malfunction. This interference was generally regarded as an inductive disturbance, but today it has been solved by installing a filter reactor and a filter capacitor on the power supply side of the electric vehicle to limit the outflow of harmonic current components. .

また、この樵のチョッパ制御電気車における誘導障害と
して1例えば電気車の床下に配設される主平滑リアクト
ルから漏れる磁束が、レールと車軸によって囲まれるル
ープと鎖交し、左右レール間に妨害電圧が発生すること
により起生ずるものかある。この妨害電圧には、同様に
高調波成分か豊富Ktまれてお)、特にこの妨害電圧に
よって踏切制御子が大きな影響を受け。
In addition, one of the induction disturbances in the chopper-controlled electric car of this woodcutter is 1. For example, the magnetic flux leaking from the main smoothing reactor installed under the floor of the electric car interlinks with the loop surrounded by the rail and axle, causing a disturbance voltage between the left and right rails. It may be caused by the occurrence of. This disturbance voltage also contains an abundance of harmonic components (Kt), and in particular, the level crossing controller is greatly affected by this disturbance voltage.

踏切制御子に静動作を生じる可能性が大きい。There is a high possibility that static movement will occur in the level crossing controller.

従って、この妨害電圧に対する有効な対策′が望まれで
いる。
Therefore, an effective countermeasure against this interference voltage is desired.

なお、従来のチョッパ制御電気車において、前記フィル
タリアクトルも一般に電気車の床下に配設されるが、架
線電流の高調波りプル成分をJp等の規定値以下に抑え
るため、このリアクトルは充分に大きなフィルタ時定数
に設定されているので、誘導障害の面でフィルタリアク
トルの影響は無視することができる。
Note that in conventional chopper-controlled electric cars, the filter reactor is also generally installed under the floor of the electric car, but in order to suppress the harmonic pull component of the overhead line current to below a specified value such as Jp, this reactor is sufficiently installed. Since a large filter time constant is set, the influence of the filter reactor can be ignored in terms of inductive disturbances.

第1図は、前述した従来のチョッパ制御電気車における
誘導障害の発生原理を示すものである。すなわち、第1
図において、参照符号Rはレール、ムXは車軸、Lは電
気車の床下に配設される主平滑リアクトル、lは踏切制
御子、Tiは踏切制御子の入力端子、 Toは踏切制御
子の出力端子、そしてXは継電器を夫々示す、#I/図
から明らかなように、主平滑リアクトルL。
FIG. 1 shows the principle of occurrence of induction disturbances in the conventional chopper-controlled electric vehicle mentioned above. That is, the first
In the figure, reference symbol R is the rail, M is the axle, L is the main smoothing reactor installed under the floor of the electric car, l is the level crossing controller, Ti is the input terminal of the level crossing controller, and To is the level crossing controller's input terminal. output terminal, and X indicates a relay, #I/as is clear from the figure, the main smoothing reactor L.

Lによって起生ずる磁束Φ、Φは、一対のレールR,R
と前後に位置する車軸AX、AIとによ      ・
1つて形成されるループと鎖交する。また、この磁束Φ
は5時間的に変化しているため、前記ループにはdΦ/
diなる電圧が誘起され、しかもこのループには前記電
圧dΦ/ d tをレールROインピーダンスで割った
飯からなる電流が流れ。
The magnetic flux Φ, Φ caused by L is the magnetic flux Φ, Φ caused by the pair of rails R, R
and the axles AX and AI located in the front and rear.
It interlinks with the loop formed once. Also, this magnetic flux Φ
changes over time, so the loop has dΦ/
A voltage di is induced, and a current consisting of the voltage dΦ/dt divided by the rail RO impedance flows in this loop.

この結果左右レールR,R間には電圧が発生することに
なる。
As a result, a voltage is generated between the left and right rails R, R.

踏切制御子には、通常両切制御の目的で使用され1列車
が特定の区間に存在することを検知するものであり、「
列車な口」の場合には継電器Xは動作し、「列車あシ」
の場合には継電器Xは「釈放」となるよう動作する。と
の場合、例えはりアクドルLを設けない車輌もしくはり
アクドルLを設けてもその高調波成分の漏れ磁束が少な
い場合、前記電圧dΦ/ d tは小さく。
Level crossing controllers are usually used for the purpose of controlling both crossings and detect when a train is present in a specific section.
In the case of "train opening", relay X operates and "train opening" occurs.
In this case, relay X operates to be "released". In this case, the voltage dΦ/dt is small, for example, if the vehicle is not provided with the axle L, or even if the axle L is provided, the leakage flux of the harmonic component is small.

従って左右のレール間電圧すなわち踏切制御子KO大入
力端子Ti間加わる電圧は、踏切制御子にの感応電圧に
対して充分小さい値となり、継電器Xは適正に釈放状態
となる。しかしながら、車輌の床下に配設されたリアク
トルしにおける高調波成分の漏れ磁束が大きく、左右の
レール間に踏切制御子KO感応電圧を超える電圧dΦ/
dtが発生する場合は、「列車あシ」の状態にも拘らず
、継電器Xが動作状態となる殖産がある。
Therefore, the voltage between the left and right rails, that is, the voltage applied between the large input terminal Ti of the level crossing controller KO, has a value that is sufficiently smaller than the sensitive voltage of the level crossing controller, and the relay X is appropriately released. However, the leakage magnetic flux of harmonic components in the reactor installed under the floor of the vehicle is large, and the voltage dΦ / exceeding the level crossing controller KO sensitive voltage between the left and right rails is
When dt occurs, there is a delay in which the relay X is activated despite the "train rest" condition.

このような問題点t−解決するため1例えば第一図に示
すように1 リアクトルLの両isに辿蔽板sb t−
配置し、リアクトルLから外部に漏れる磁束ψを抑制す
ることが考えられる妙1、この場合リアクトルLの内部
に冷却風を通すことができないため、冷却の面から不利
となる欠点がある0代案として、第3図に示すように、
リアクトルLをその中心軸がレールRの長手方向と平行
となるよう配置し、リアクトルLの起生ずる磁束Φが左
右のレールR,Rと鎖交しないようにすることも考えら
れるが、この場合にも冷却の面もしくはm装の面から制
約を受ける難点がある。
To solve this problem, for example, as shown in Figure 1, a tracing plate sb t- is placed on both sides of the reactor L.
The first option is to suppress the magnetic flux ψ leaking from the reactor L to the outside by arranging the , as shown in Figure 3,
It is also possible to arrange the reactor L so that its center axis is parallel to the longitudinal direction of the rail R so that the magnetic flux Φ generated by the reactor L does not interlink with the left and right rails R, but in this case, However, it also has the disadvantage of being restricted in terms of cooling or mounting.

そこで、本発明者等は、前述した従来のチョッパ制御電
気車において発生する各種誇導#害を有効に防止するこ
とができる手段を得るべく種々検討を重ねた結果、偶数
のチョッパ回路を並列接続して相互に相差運転するよう
構成し九チョッパ制御電気車において、それぞれito
”の位相差をもって運転されるチョッパ回路の主平滑リ
アクトルを、各コイルの中心軸が車体の中心線と直角に
なる同一軸上になるよう指向させると共に単体の中心−
に対し対称となるよう配置することにより、一対のレー
ルと車軸とによって形成されるループに対し主平滑リア
クトルにおいて起生ずる奇数次または偶数次の高調波成
分の磁束が鎖交するのを有効に防止し、さらに前記主平
滑りアクドルの下側部に導体からなる鐘蔽板を水平に配
設すること1ζよC,IJtJ記ループループ主平滑り
アクドルにおいて起生ずる他方の偶数次または奇数次の
1161!iI波成分の磁束が鎖交するのを有効に低減
することができ。
Therefore, the inventors of the present invention have conducted various studies in order to obtain means that can effectively prevent various types of damage caused by the above-mentioned conventional chopper-controlled electric vehicles. In nine chopper-controlled electric vehicles, each of which is configured to operate in a phased manner,
The main smoothing reactor of the chopper circuit, which is operated with a phase difference of
By arranging them symmetrically, it effectively prevents the magnetic flux of odd-order or even-order harmonic components occurring in the main smoothing reactor from interlinking with the loop formed by the pair of rails and the axle. In addition, a bell shielding plate made of a conductor is horizontally arranged on the lower side of the main smooth sliding axle. ! Interlinkage of the magnetic flux of the iI wave component can be effectively reduced.

前記従来のチョッパ制御電気車におけるI4障害に関す
る問題点を解消し得ることを突き止め九。
9. It has been found that the problem regarding the I4 failure in the conventional chopper-controlled electric vehicle can be solved.

従って1本発明の目的は、チョッパ制御電気単において
、主平滑リアクトルに基づく鋳導障書の発生を有効に防
止すると共に、主平滑リアクトルの冷却およびm鯨を円
滑かつ効率よく達成することかで龜るチョッパ1iII
I御電気′:ilL′t−提供するにある。
Therefore, an object of the present invention is to effectively prevent the occurrence of casting defects due to the main smoothing reactor in a chopper-controlled electric unit, and to achieve smooth and efficient cooling and cooling of the main smoothing reactor. Kamaru Chopper 1iIII
I'm here to provide electricity.

前記の目的を達成するため、本発明において線、偶数の
チョッパ回ji&を並列接続して相互に相差運転するよ
う構成したチョッパ制御電気単において、lざOoの位
相差を1する一対のチョツA5jJ路を構成する主平滑
りアクドルを、それぞれ車体の下部に車体の中心線に対
して対称となる位置に配置し、さらにこれらの主平滑リ
アクトルの下側部に導体からなる鐘蔽板を配設すること
を特徴とする。
In order to achieve the above object, in the present invention, in a chopper control electric unit configured to connect an even number of chopper circuits ji& in parallel and operate with a phase difference between them, a pair of choppers A5jJ that makes the phase difference of lzaOo 1 is used. The main smooth sliding axles that make up the road are placed at the bottom of the car body in symmetrical positions with respect to the center line of the car body, and bell shield plates made of conductors are placed below these main smoothing reactors. It is characterized by

前記のチョッパ制御電気車において、車体の中心線に対
して対称に配置される一対の主平滑りアクドルは、各コ
イルの中心軸が車体の中心線と直角な同一軸上に指向さ
せれば好適である。
In the chopper-controlled electric vehicle described above, it is preferable that the pair of main flat sliding axles arranged symmetrically with respect to the center line of the vehicle body are oriented on the same axis with the center axes of each coil perpendicular to the center line of the vehicle body. It is.

また、車体の中心線に対し対称に配置される一対の主平
滑りアクドルは、相互に差動接続もしくは和動接続する
ことができる。
Further, the pair of main flat sliding axles arranged symmetrically with respect to the centerline of the vehicle body can be differentially connected or harmonically connected to each other.

次に、本発明に係るチョッパ制御電気車の実施例につき
添付図面を参照しながら以下詳細に説明する。
Next, embodiments of a chopper-controlled electric vehicle according to the present invention will be described in detail below with reference to the accompanying drawings.

側参図および第5図は、本発明に係るチョッパ制御電気
車のチョッパ回路構成と車体の構成配置とのそれぞれ一
実施例を示すものである。
The side drawings and FIG. 5 each show one embodiment of the chopper circuit configuration and the vehicle body configuration arrangement of the chopper-controlled electric vehicle according to the present invention.

まず1本発明チョッパ制御電気車においては、チョッパ
回路を2回路以上の偶数回路を配置することを条件とす
る。第参図に示す実施例は。
First, in the chopper-controlled electric vehicle of the present invention, it is a condition that two or more even-numbered chopper circuits are arranged. The embodiment shown in FIG.

チョッパ回路を2回路設け、各チ曹ツバ回路は相互にi
to’の位相差をもって相差運転されるλ相1重チョッ
パ回路を示したものである。すなわちslg”図におい
て、参照符号−pH架線Tより給電を行うパンタグ27
.PLはフイルメリアクトル4 FCはフィルメコンデ
ンサ1M/。
Two chopper circuits are provided, and each chopper circuit is
This figure shows a λ-phase single chopper circuit operated with a phase difference of to'. In other words, in the figure ``slg'', reference symbol - Pan tag 27 that supplies power from the pH overhead wire T.
.. PL is film capacitor 4, FC is film capacitor 1M/.

Mコは直流電動機、M8L/、MALコは主平滑リアク
トル、CH/、CH2はチョッパ、FWD/。
M is a DC motor, M8L/, MAL are main smoothing reactors, CH/, CH2 are choppers, FWD/.

FWD−はフリーホイールダイオードを示し。FWD- indicates a freewheel diode.

チョッパ制御電気車のカ行時にお秒る主回路構成を示す
。しかるに、このように回路構成される土平eリアクト
ルMAL/ 、MfiLJは、それぞれ車体Bに対し%
jg−を図に示すようKW構成配置る。すなわち第5図
において、わ起生平滑リアクトルMSL/ 、M8L2
は、単体Bのし゛ミ下において、各コイルの中心軸が車
体Bの中心線0と直角となる一j−軸H上に位置決めし
、しかも車体Bの中心線0に対し対称的に配置する。
This figure shows the main circuit configuration of a chopper-controlled electric vehicle when it moves. However, the Tsuchihira e-reactors MAL/ and MfiLJ configured in this way are each % of the vehicle body B.
Jg- is arranged in a KW configuration as shown in the figure. That is, in FIG. 5, the smoothing reactor MSL/ , M8L2
The coils are positioned under the frame of the unit B on the j-axis H, where the center axis of each coil is perpendicular to the center line 0 of the car body B, and arranged symmetrically with respect to the center line 0 of the car body B. .

さらに、このように配置した主平滑リアクトルMSL/
 、MSLコのレールR,Rと対向する下側部に導体か
らなる匙蔽板Shを水平に配置する。
Furthermore, the main smoothing reactor MSL/
A spoon shielding plate Sh made of a conductor is horizontally arranged on the lower side of the MSL, facing the rails R, R.

次に、このように構成された本発明に係るチョツハIl
制御篭気車の作用につき説明する。
Next, the chotsuha Il according to the present invention configured as described above will be described.
The operation of the control cage wheel will be explained.

まず1本発明において、チョッパ回路を偶数回路設けて
、これらのチョッパ回路を相互に相差運転するよう構成
することにより、架線Tに流出する高調波電流成分を低
減し得るものであり、このことは従来のチョッパ制御電
気車においても実施されている。
First, in the present invention, by providing an even number of chopper circuits and configuring these chopper circuits to operate out of phase with each other, harmonic current components flowing into the overhead wire T can be reduced. It is also implemented in conventional chopper-controlled electric vehicles.

しかるに、本発明においては、iro”の位相差を有す
る2回路からなるチョッパ回路を構成する主平滑リアク
トルM8L/ 、M8Lコを前述したように車体Bの床
下に対称配置することを特徴とするものである。この場
合、前記主平滑リアクトルMSL/、M8Lコには、第
4図(島)。
However, the present invention is characterized in that the main smoothing reactors M8L and M8L constituting the chopper circuit consisting of two circuits having a phase difference of "iro" are arranged symmetrically under the floor of the vehicle body B as described above. In this case, the main smoothing reactors MSL/, M8L are shown in FIG. 4 (islands).

(b)に示すような基本波形からなるiro”の位相差
を有する電流’MIiL、+ 1゜L2が流れる。
A current 'MIiL, +1°L2 having a phase difference of "iro" flows having a basic waveform as shown in (b).

これらの電流’MSLI l iゎL2を7一リエ級数
展開すると次式が得られる。
When these currents 'MSLI l iゎL2 are expanded into a 7 series, the following equation is obtained.

十・・・・・・・・・)        ・・・・・・
・・・ (1)−・・・・・・・・・)       
・・・・・・・・・(2)但し、ID! 平均直流電流 I2:  電流のりプル幅 α :通流率 ω0= チョッパ素角周波数 前記式+1) 、 (2)を比較すれば、電流iMAL
 Tと’MIL2とでは、奇数次高調波の位相は同相で
10・・・・・・・・・) ・・・・・・
... (1)-......)
・・・・・・・・・(2) However, ID! Average DC current I2: Current pull width α: Conductivity factor ω0 = Chopper elementary angular frequency If we compare the above formula +1) and (2), the current iMAL
For T and 'MIL2, the odd-numbered harmonics are in phase.

偶数次高調波の位相が逆相であることが明らかである。It is clear that the even-numbered harmonics are out of phase.

従って、これらの電流1M1L11 ’MaL2に基づ
いて発生する磁束Φ1.Φ2の位相も前記と同様となる
Therefore, the magnetic flux Φ1. generated based on these currents 1M1L11'MaL2. The phase of Φ2 is also the same as above.

このような状9において、主平滑リアクトルMSL/ 
、MSL、2が、第3図に示すように車体Bの中心*O
K対し対称配置され、しかも各主平滑リアクトルM8L
/ 、MSLコが互いの直流磁束の向きが逆向きとなる
よう接続されていれば、これらの主平滑りアクドルMA
L/、M8Lコに基づく磁束は、第7図に示すように1
奇数次高詞波成分の磁束Φ。が破線で示すように起生し
、偶数次高調波成分の磁束Φ6が実線で示すように起生
ずる。この場合、奇数次高調波成分の磁束Φ。は、レー
ルR,Rと車軸ムX、ムX(第1図参照)とによって形
成されるループとは鎖交しないため、ループにはこの磁
束Φ。による電流は流れない。従って、レール間電圧に
は奇数次高調波成分は含まれないことになる。
In such a state 9, the main smoothing reactor MSL/
, MSL, 2 is the center *O of the vehicle body B as shown in FIG.
symmetrically arranged with respect to K, and each main smoothing reactor M8L
/ , if the MSLs are connected so that the directions of their DC magnetic fluxes are opposite, these main flat sliding axles MA
The magnetic flux based on L/, M8L is 1 as shown in Figure 7.
Magnetic flux Φ of odd-order high-order wave component. occurs as shown by the broken line, and magnetic flux Φ6 of even-order harmonic components occurs as shown by the solid line. In this case, the magnetic flux Φ of odd harmonic components. does not interlink with the loop formed by the rails R, R and the axles X, X (see Figure 1), so this magnetic flux Φ is present in the loop. No current flows. Therefore, the rail-to-rail voltage does not include odd harmonic components.

一方、偶数次高調波成分の磁束Φ。は、前記ループと鎖
交し、ループにはこの磁束Φ、によって電流が流れるた
め、レール間電圧には偶数次高調波成分が含まれること
になる。このように、本発明においては、主平滑リアク
トルM8L/。
On the other hand, the magnetic flux Φ of even harmonic components. interlinks with the loop, and current flows through the loop due to this magnetic flux Φ, so the inter-rail voltage includes even-order harmonic components. Thus, in the present invention, the main smoothing reactor M8L/.

MSL−を車体Bの中心ll1lOに対して対称配置す
ることによって、レール間電圧の奇数次高調波成分を除
去し得るものであり、このため前記主平滑リアクトルM
SL/ 、MSL、2の車体Bに対する取付位置は極め
て重要である。すなわち、主平滑リアクトルM8L/ 
、M8Lλの車体Bに対する取付位置が対称位置から偏
位することによシ、レール間電圧に奇数次高調波成分が
含まれることになる。
By arranging MSL- symmetrically with respect to the center ll1lO of the vehicle body B, it is possible to remove odd harmonic components of the voltage between the rails, and for this reason, the main smoothing reactor M
The mounting positions of SL/, MSL, and 2 with respect to the vehicle body B are extremely important. That is, main smoothing reactor M8L/
, M8Lλ with respect to the vehicle body B deviates from the symmetrical position, so that the inter-rail voltage includes odd harmonic components.

また、前記偶数次高調波成分の磁束Φ。に対し1本発明
においては、主平滑りアクドルMSL/ 、MAL−の
下側面に導体からなる遮蔽板sbを配設することによシ
、レール間電圧に及ぼす影畳を防止している。すなわち
、第を図から明らかなように、導体の遮蔽板sbには、
各主平滑リアクトルMAL/ 、MSLコが起生する偶
数次高調波成分の磁束ψ。が通過することになり、この
結未趣蔽板shの内部には磁束Φ。
Further, the magnetic flux Φ of the even-order harmonic components. In contrast, in the present invention, a shielding plate sb made of a conductor is provided on the lower surface of the main flat sliding axle MSL/, MAL-, thereby preventing the influence on the voltage between the rails. That is, as is clear from the figure, the shielding plate sb of the conductor has:
Magnetic flux ψ of even-order harmonic components generated by each main smoothing reactor MAL/, MSL. passes through, and a magnetic flux Φ is inside this unbound shield plate sh.

の変化によって渦電流を生じ、この渦電流が起生ずる磁
束かもとの磁束Φ8を打ち消すよう作用し、遮蔽板sh
を透過してレール8面にまで達する偶数次高調波成分の
磁束Φ6は非常に小さくなる。従って、レール間電圧の
偶数次高調波成分は充分小さくすることができる。 ゛
前述したところから明らかなように1本実施例によれば
、レール間に発生する全ての高調波成分電圧を除去ない
しは著しく低減することができ、地上信号設備に対する
誘導障害を有効に防止することができる。
This change causes an eddy current, and this eddy current acts to cancel the generated magnetic flux and the original magnetic flux Φ8, and the shielding plate sh
The magnetic flux Φ6 of even-order harmonic components that passes through and reaches the surface of the rail 8 becomes extremely small. Therefore, even-order harmonic components of the rail-to-rail voltage can be made sufficiently small.゛As is clear from the above, according to this embodiment, all harmonic component voltages generated between the rails can be removed or significantly reduced, and induction disturbances to ground signal equipment can be effectively prevented. I can do it.

なお、前記笑施例において、主平滑リアクトルMSL/
 、M8L2の接続につき、ILIL磁束の向きが互い
に逆向きとなるよう接&(差動級絖)する場合について
説明したが、直流磁束の向きが互いに神」じ向きになる
よう接続(和動接続)することも可能である。この場合
に線、奇数次高調波成分の磁束と偶数次高調波成分の磁
束との関係が反対となシ、主平滑りアクドルM8L/。
In addition, in the above embodiment, the main smoothing reactor MSL/
Regarding the connection of M8L2, we have explained the case where the ILIL magnetic fluxes are connected in opposite directions (differential connection), but it is also connected so that the directions of the DC magnetic flux are in the same direction (harmonic connection). ) is also possible. In this case, the relationship between the magnetic flux of odd-order harmonic components and the magnetic flux of even-number harmonic components is opposite, and the main flat-slip axle M8L/.

M8Lλの対称配置によって偶数次高論波成分の磁束に
よるレール間電圧への影替を防止し。
The symmetrical arrangement of M8Lλ prevents the even-order high logic wave component magnetic flux from affecting the rail-to-rail voltage.

また導体からなる遮蔽板shの配設によって奇数次高調
波成分の磁束によるレール間電圧ヘノ影響を防止するこ
とができる。
Furthermore, by providing the shielding plate sh made of a conductor, it is possible to prevent the influence of the magnetic flux of odd harmonic components on the inter-rail voltage.

また1本発明に係るチョッパ制御1iIE気阜は。Furthermore, the chopper control 1iIE concept according to the present invention is as follows.

前記コ相チョッパ回路に限らず、チョッパ回路が偶数回
路有するもので、そのうち各コ回路が/Iθ0の位相差
をもって運転されるものであれば、多相または多重チ冒
ツバ(9)路を備えるチョッパ制御電気車にも応用する
ことができる。#!り図は、弘相チョッパ回路を備える
チョッパ制御電気車のカ行時における主回路構成を示す
ものである。この場合、チョッパ回路1と服、チョッパ
回路1と■がそれぞれiro@の位相差で運転されるも
のとすれば、lX10図および第1/図に示すように、
チョッパ回路■の主平滑リアクトルM8L/ とチョッ
パ回路Iの主平滑りアクドルM8LJ、 チョッパ回路
層の主平滑りアクドルM8Lコとチョッパ回路■の主平
滑りアクドルM8L4I−をそれぞれ組合わせて、車体
Bの中心線OK対して対称に配置し、さらにその下側部
に導体からなる遮蔽板sbを配設する。このように構成
することによシ、前述し九実施例と全く同様にして、レ
ール間に発生する全ての高調波成分電圧を充分低減し、
地上信号設備に与える誘導障害を防止することができる
Not limited to the above-mentioned co-phase chopper circuit, if the chopper circuit has an even number of circuits, and each of the co-circuits is operated with a phase difference of /Iθ0, it is provided with a multi-phase or multi-chip circuit (9). It can also be applied to chopper-controlled electric vehicles. #! The figure shows the main circuit configuration of a chopper-controlled electric vehicle equipped with a Hirosho chopper circuit when it is in motion. In this case, if the chopper circuit 1 and the clothes, and the chopper circuit 1 and ■ are each operated with a phase difference of iro@, as shown in Figure 1X10 and Figure 1/,
By combining the main smoothing reactor M8L/ of the chopper circuit ■, the main smooth sliding axle M8LJ of the chopper circuit I, the main smooth sliding axle M8L of the chopper circuit layer, and the main smooth sliding axle M8L4I- of the chopper circuit ■, They are arranged symmetrically with respect to the center line OK, and furthermore, a shielding plate sb made of a conductor is arranged on the lower side thereof. With this configuration, all harmonic component voltages generated between the rails can be sufficiently reduced in exactly the same manner as in the ninth embodiment described above,
Induction disturbances to ground signal equipment can be prevented.

前述した種々の実施例から明らかなように、本発明によ
れば、/10@の位相差をもって運転される一対のチョ
ッパ回路の各主平滑リアクトルを、車体の中心線に対し
て対称な位置に配置し、−aらにこれら主平滑りアクド
ルの下匈部に導体からなる遮蔽板を配設することによシ
、各主平滑リアクトルにおいて起生ずる奇数次高調波成
分および偶数次高調波成分からなる磁束が、車軸との関
においてループを形成するレールに対して鎖交するのを
有効に除去ないしは低減することができ、レール間に発
生する全ての高調波成分電圧を充分小さくシ、地上信号
設備に与える誘導障害を確実に防止することができる。
As is clear from the various embodiments described above, according to the present invention, each main smoothing reactor of a pair of chopper circuits operated with a phase difference of /10@ is positioned symmetrically with respect to the centerline of the vehicle body. By arranging a shielding plate made of a conductor on the lower part of these main smoothing reactors, it is possible to prevent odd-order harmonic components and even-order harmonic components occurring in each main smoothing reactor. It is possible to effectively eliminate or reduce the interlinkage of magnetic flux with the rails that form a loop in relation to the axle, and to sufficiently reduce all harmonic component voltages generated between the rails, thereby reducing the need for ground signals. Induction disturbances to equipment can be reliably prevented.

ま九、本発明によれば、各主平滑リアクトルの向きは従
来過少レールの長手方向と直角でよく、しかも各リアク
トルの両端部Kjl蔽板を配設する必要もないため、冷
却および線輪の面において有利である。
(9) According to the present invention, the direction of each main smoothing reactor can be perpendicular to the longitudinal direction of the conventional undersized rail, and there is no need to provide shielding plates at both ends of each reactor. It is advantageous in terms of

以上、本発明の好適な実施例について説明したが1本発
明の精神を逸脱しない範囲内において種々の設計変更を
なし得ることは勿論である。
Although the preferred embodiments of the present invention have been described above, it goes without saying that various design changes can be made without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のチョッパ制御電気車における誘導障害の
発生状態を示す原m説明図、gコ図はりアクドルの発生
する磁束を履蔽する手段を示す説明図、第3図はレール
間におけるリアクトルの配置状態を示す説明図、第V図
は本発明に係るfEソバ制御電気車のカ行時におけるチ
ョッパ回路を台む主回#6#l成の一実施例を示す結線
図、第3図は本発明に係るチョッパ制御電気車の主平滑
リアクトルの構成配置を示す車体説明図、第6図(&)
 l (b)は第V図および第5図に示す主平滑リアク
トルと流れるill流の位相関係を示す波形図4g7図
は第5図に示す主平滑リアクトルの起生ずる高調波成分
の磁束の経路を示すNgl明図、第1図は第5図に示す
主平滑りアクドルの起生ずる高am成分の磁束と遮蔽板
との関係を示す説明図、第り図はグ相チョッパ回路から
なるチョッパ制御電気車のカ行時における主回路構成を
示す結ll1i1図、第10図は#!2図に示す主回路
構成を有するチョッパ制御電気車の主平滑リアクトルの
#II成配Iliを示す車体の平面説明図、第1/図は
第7Q図に示す車体の正面説明図である。 R・・・レール     Ax・・・単 軸L・−・主
平滑りアクドル  K・・・踏切*1+御子X01.継
電益      Ti・・・入力端子TO・・・出力端
子     sb・・・遮蔽板Φ・・・磁 束    
 T・・・架 線P・・・パンタグラフ   FL・・
・フィルタリアクトルFC・・・フィルタコンデンサ 
M/、Mコ・・・直流電動機CH/ 、CH2・・・チ
ョッパ M8L/ 、M8Lコ・・・主平滑リアクトルFWD/
、FWDJ・・・フリーホイールダイオードIGj
Figure 1 is an explanatory diagram showing the state of occurrence of induction disturbance in a conventional chopper-controlled electric vehicle, Figure 3 is an explanatory diagram showing a means for shielding the magnetic flux generated by the beam axle, and Figure 3 is an explanatory diagram showing the means for shielding the magnetic flux generated by the beam axle. Fig. V is a wiring diagram showing an embodiment of the main circuit #6#l configuration that supports the chopper circuit when the fE buckwheat control electric vehicle according to the present invention is in motion; FIG. 6 is an explanatory diagram of the vehicle body showing the configuration and arrangement of the main smoothing reactor of the chopper-controlled electric vehicle according to the present invention.
l (b) is a waveform diagram showing the phase relationship between the main smoothing reactor shown in Fig. V and Fig. 5 and the flowing ill flow. Figure 1 is an explanatory diagram showing the relationship between the magnetic flux of the high am component generated by the main flat sliding axle shown in Figure 5 and the shielding plate, and Figure 2 is an illustration of the chopper control electric diagram consisting of a G-phase chopper circuit. Figure 10 shows the main circuit configuration when the car is in motion. FIG. 2 is an explanatory plan view of the vehicle body showing the #II configuration Ili of the main smoothing reactor of the chopper control electric vehicle having the main circuit configuration shown in FIG. 2, and FIG. 1 is an explanatory front view of the vehicle body shown in FIG. 7Q. R...Rail Ax...Single Axis L...Main flat sliding axle K...Railway crossing *1 + Miko X01. Relay power Ti...Input terminal TO...Output terminal sb...Shielding plate Φ...Magnetic flux
T... Overhead line P... Pantograph FL...
・Filter reactor FC...filter capacitor
M/, Mco...DC motor CH/, CH2...Chopper M8L/, M8Lco...Main smoothing reactor FWD/
, FWDJ...freewheel diode IGj

Claims (4)

【特許請求の範囲】[Claims] (1)  偶数のチョッパ回路を並列接続して相互に相
差運転するよう構成したチョッパ制御電気車において、
 ito@の位相差を有する一対のチョッパ回路を構成
する主平滑リアクトルt。 それぞれ車体の下部に車体の中心線に対して対称となる
位置に配置し、さらにこれらの主平滑リアクトルの下側
部に導体からなる遮蔽板を配設することを!黴とするチ
ョッパ制御電気車。
(1) In a chopper-controlled electric vehicle configured to connect an even number of chopper circuits in parallel and operate out of phase with each other,
A main smoothing reactor t constitutes a pair of chopper circuits having a phase difference of ito@. Place them at the bottom of the car body in symmetrical positions with respect to the center line of the car body, and also place shielding plates made of conductors on the lower side of these main smoothing reactors! A chopper-controlled electric car with mold.
(2)  !許請求の範囲第1項記載のチョッパ制御電
気車において、車体の中心線に対して対称に配置される
一対の主平滑りアクドルは、各コイルの中心軸が車体の
中心線と直角な同一軸上に指向させてなるチョッパ制御
電気車。
(2)! In the chopper-controlled electric vehicle according to claim 1, the pair of main flat sliding axles arranged symmetrically with respect to the center line of the vehicle body are arranged on the same axis, with the center axis of each coil being perpendicular to the center line of the vehicle body. A chopper-controlled electric car that is directed upwards.
(3)特許請求の範囲第1.IItたは第2項記載のチ
ョッパ制御電気単において、車体の中心線に対し対称に
配置される一対の主平滑りアクドル酸、相互に差動接続
してなるチョッパ制御電気車。
(3) Scope of Claims No. 1. IIt or the chopper-controlled electric vehicle according to item 2, in which a pair of main flat sliding acrylates arranged symmetrically with respect to the center line of the vehicle body are differentially connected to each other.
(4)特#I!Flill求の範囲第1項または第一項
記載のチョッパ制御電気車において、車体の中心線に対
し対称に配置される一対の主平滑リアクトルは、相互に
和動接続してなるチョッパ制御電気車。
(4) Special #I! The chopper-controlled electric vehicle according to item 1 or 1 of the above-mentioned scope of requests for Frill, wherein the pair of main smoothing reactors arranged symmetrically with respect to the center line of the vehicle body are harmonically connected to each other.
JP56153986A 1981-09-30 1981-09-30 Chopper controlled electric motor vehicle Granted JPS5858802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56153986A JPS5858802A (en) 1981-09-30 1981-09-30 Chopper controlled electric motor vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56153986A JPS5858802A (en) 1981-09-30 1981-09-30 Chopper controlled electric motor vehicle

Publications (2)

Publication Number Publication Date
JPS5858802A true JPS5858802A (en) 1983-04-07
JPH039681B2 JPH039681B2 (en) 1991-02-12

Family

ID=15574406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56153986A Granted JPS5858802A (en) 1981-09-30 1981-09-30 Chopper controlled electric motor vehicle

Country Status (1)

Country Link
JP (1) JPS5858802A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216720A (en) * 1975-07-31 1977-02-08 Hitachi Ltd Method of shielding electric vehicle
JPS5554806U (en) * 1978-10-07 1980-04-14

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216720A (en) * 1975-07-31 1977-02-08 Hitachi Ltd Method of shielding electric vehicle
JPS5554806U (en) * 1978-10-07 1980-04-14

Also Published As

Publication number Publication date
JPH039681B2 (en) 1991-02-12

Similar Documents

Publication Publication Date Title
EP2494677B1 (en) Transferring electric energy to a vehicle, using a system which comprises consecutive segments for energy transfer
US10075097B2 (en) Power conversion device and AC electric-vehicle drive system
JP4614020B1 (en) Power converter for vehicle
EP2870023B1 (en) Electric power supply system, vehicle and method of operating a vehicle
EP2516201B1 (en) Providing a plurality of vehicles, in particular track bound vehicles, with electric energy
JPS5858802A (en) Chopper controlled electric motor vehicle
JPH0847244A (en) Noise-proof device and noise-proof filter of power converter
JP2000184625A (en) Non-contact feeding method for transport cars in transporting system
WO2016170088A1 (en) A circuit arrangement and a method of operating a circuit arrangement for a system for inductive power transfer
JPH0739005A (en) Power converter for electric car
JPS62104401A (en) Grounding circuit of electric rolling stock
WO2024105813A1 (en) Power conversion device for railway vehicle
JPS62210802A (en) Controller for electric rolling stock
JPH0993702A (en) Power converter for railway vehicle
JP4461538B2 (en) Power line carrier communication equipment
JPH04120221U (en) Vehicle reactor
JPS6094834A (en) Device for preventing propagation of track potential of electric railroad
JP2012060792A (en) Power conversion system for electric vehicle
JPH09130914A (en) Control device of electric vehicle
JPH0793762B2 (en) Electric vehicle guidance obstacle prevention device
WO2017203708A1 (en) Electric car propulsion control device
JPH04154440A (en) Power dispatching system for electric rolling stock
JPS58157302A (en) Control signal supplying method and signal device
JPH10201144A (en) Power-supply apparatus
OGASA Harmonic Compensator for 50/60-Hz Fed AC Railway Vehicles