JPS585867B2 - Method for manufacturing glass fiber reinforced magnesium carbonate hardened body - Google Patents

Method for manufacturing glass fiber reinforced magnesium carbonate hardened body

Info

Publication number
JPS585867B2
JPS585867B2 JP16418680A JP16418680A JPS585867B2 JP S585867 B2 JPS585867 B2 JP S585867B2 JP 16418680 A JP16418680 A JP 16418680A JP 16418680 A JP16418680 A JP 16418680A JP S585867 B2 JPS585867 B2 JP S585867B2
Authority
JP
Japan
Prior art keywords
magnesium carbonate
slurry
heating
glass fiber
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16418680A
Other languages
Japanese (ja)
Other versions
JPS5788051A (en
Inventor
花岡春雄
佐々木丈夫
山口幸男
重本正
柳正光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Industries Cement Co Ltd
Original Assignee
Mitsubishi Industries Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Industries Cement Co Ltd filed Critical Mitsubishi Industries Cement Co Ltd
Priority to JP16418680A priority Critical patent/JPS585867B2/en
Publication of JPS5788051A publication Critical patent/JPS5788051A/en
Publication of JPS585867B2 publication Critical patent/JPS585867B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】 本発明は軽量でかつ強度の大なるガラス繊維補強炭酸マ
グネシウム硬化体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a glass fiber-reinforced hardened magnesium carbonate body that is lightweight and has high strength.

炭酸マグネシウム板については、日本工業規格(A−6
701)に示すように、塩基性炭酸マグネシウム(XM
gCO3 ・yMg(OH)2 ・XH20)と補強繊
維材料として石綿、ロックウール、セルロース質パルプ
及び有機質合成繊維を使用、抄造によりカサ比重0.3
より1.1の範囲のボード製造を規定している。
Regarding magnesium carbonate plates, Japanese Industrial Standards (A-6
701), basic magnesium carbonate (XM
gCO3 ・yMg(OH)2 ・XH20) and asbestos, rock wool, cellulose pulp, and organic synthetic fibers are used as reinforcing fiber materials, and the bulk specific gravity is 0.3 due to paper making.
1.1 specifies board manufacturing within the range.

上記炭酸マグネシウム板の製法は水酸化マグネシウムM
g(OH)2 を炭酸化するか、または塩化マグネシウ
ムに炭酸ソーダあるいは炭酸アンモニウムを加えて正炭
酸マグネシウム(MgCO3・3H20 )とし、この
正炭酸マグネシウムのスラリーに、石綿ロックウール、
セルロース質パルプ及び有機質合成繊維を混合し、該ス
ラリー中に均一に分散させ、抄造方式で成形した後、加
熱により正炭酸マグネシウムを塩基性炭酸マグネシウム
に変化させ、結晶の変化に伴って生ずる硬化力を利用し
て強度を発現させボードとするものである。
The manufacturing method of the above magnesium carbonate plate is magnesium hydroxide M
Either carbonate g(OH)2 or add sodium carbonate or ammonium carbonate to magnesium chloride to obtain magnesium orthocarbonate (MgCO3.3H20), and add asbestos rock wool, asbestos rock wool, or
After mixing cellulose pulp and organic synthetic fibers and uniformly dispersing them in the slurry and forming them using a papermaking method, the normal magnesium carbonate is changed to basic magnesium carbonate by heating, and the hardening force that occurs as the crystal changes. This is used to develop strength and create a board.

このボードは水に対する溶解度が低く、カサ比重1,0
以下の軽量断熱材として住宅外装用に利用されている。
This board has low solubility in water and has a bulk specific gravity of 1.0.
It is used for the exterior of houses as a lightweight insulation material.

しかしながら、上記炭酸マグネシウム板は抄造方式で製
造し、例えば丸網式でメーキングロールによって捲き取
り積層する場合には、ロール圧により加圧脱水されるた
め、軽量たとえば、カサ比重0.5以下とすることは困
難であり、また断熱材として使用するため厚みを必要と
するが、上記丸網式では、15mm厚以上ではひびわれ
を生じ易くかつ生産効率も低下する。
However, when the above-mentioned magnesium carbonate plate is manufactured by a paper-forming method, and is rolled up and laminated using a making roll using a circular screen method, for example, it is pressurized and dehydrated by roll pressure, so it has to be lightweight, for example, with a bulk specific gravity of 0.5 or less. It is difficult to do this, and it requires a certain thickness to be used as a heat insulating material. However, in the above-mentioned circular mesh type, if the thickness is 15 mm or more, cracks tend to occur and production efficiency decreases.

押出し方式による場そには、オーガー中で加圧して原料
を押し出すので押出しに必要な粘度を得るため、水量を
減少させさらにメチルセルロース等可塑性付与材料を加
える必要があり、結果として製造されるものは中空パネ
ルが主で、製造されたパネルは全体のカサ比重は0.5
以下でも、肉厚部分は0.8〜1.0のカサ比重となっ
ている。
In the extrusion method, the raw material is extruded under pressure in an auger, so in order to obtain the viscosity necessary for extrusion, it is necessary to reduce the amount of water and add a plasticizing material such as methyl cellulose. Mainly hollow panels, the overall bulk specific gravity of the manufactured panels is 0.5
In the following, the bulk specific gravity of the thick portion is 0.8 to 1.0.

一方、たとえばカサ比重0,5以下の軽量の炭酸マグネ
シウム板の製造方法として、正炭酸マグネシウムスラリ
ーに石綿及びパルブを加え、蒸気吹込みまたは加熱によ
りスラリーを膨潤させ、これをモールド中に流し込み、
加圧脱水して成形体を得る方法が報告されているが、石
綿は資源的には国外に依存しかつ発がん物質としての制
限を受けており、またパルプの多量の使用は得られた炭
酸マグネシウム板を耐火性、難燃性の点から建材として
不適なものとする。
On the other hand, as a method for manufacturing a lightweight magnesium carbonate plate with a bulk specific gravity of 0.5 or less, for example, asbestos and pulp are added to a magnesium carbonate slurry, the slurry is swollen by steam injection or heating, and the slurry is poured into a mold.
A method of obtaining molded bodies by pressurized dehydration has been reported, but asbestos is dependent on overseas resources and is restricted as a carcinogen, and large amounts of pulp are used because of the magnesium carbonate obtained. This makes the board unsuitable as a building material in terms of fire resistance and flame retardancy.

本発明者らはかかる客観的状勢の下において一般に市販
される無害なガラス繊維を使用し、軽量でかつ強度の大
なる炭酸マグネシウム硬化体の製造方法を提供すべく検
討を重ねた結果、本発明に到達した。
Under such objective circumstances, the present inventors have conducted repeated studies to provide a method for producing a lightweight and strong hardened magnesium carbonate body using generally commercially available harmless glass fibers, and as a result, they have developed the present invention. reached.

すなわち、本発明の要旨とするところは、 (1)正炭酸マグネシウム(MgCO3・3H20)懸
濁スラリーに、製品中の重量配合で、セルロース質パル
プ1〜5%及び繊維長5〜40mmのガラス繊維2〜1
0%を混合した後、蒸気吹込みまたは加熱により該スラ
リーを膨潤させ、これをモールド中に流し込み、加圧脱
水成形し、次いで蒸気吹込みまたは加熱により上記正炭
酸マグネシウムを塩基性炭酸マグネシウムに変化せしめ
ることを特徴とするガラス繊維補強炭酸マグネシウム硬
化体の製造方法、 (2)正炭酸マグネシウム(MgC03・3 H20
)懸濁スラリーに、製品中の重量配合で、セルロース質
パルプ1〜5%を混合した後、蒸気吹込みまたは加熱に
より該スラリーを膨潤させ、これをモールド中に流し込
むと同時に繊維長10〜60vIlのガラス繊維を2〜
10%の範囲にて該スラリー中に吹きつけて混合させた
後、加圧脱水成形し、次いで蒸気吹込みまたは加熱によ
り上記正炭酸マグネシウムを塩基性炭酸マグネシウムに
変化せしめることを特徴とするガラス繊維補強炭酸マグ
ネシウム硬化体の製造方法、にある。
That is, the gist of the present invention is as follows: (1) 1 to 5% cellulosic pulp and glass fibers with a fiber length of 5 to 40 mm are added to a suspension slurry of magnesium carbonate (MgCO3.3H20) by weight in the product. 2-1
After mixing 0%, the slurry is swollen by steam blowing or heating, poured into a mold, dehydrated under pressure, and then the above normal magnesium carbonate is changed to basic magnesium carbonate by steam blowing or heating. A method for producing a glass fiber-reinforced hardened magnesium carbonate body characterized by: (2) normal magnesium carbonate (MgC03.3 H20
) After mixing 1 to 5% of cellulosic pulp to the suspension slurry based on the weight ratio in the product, the slurry is swollen by steam blowing or heating, and at the same time it is poured into a mold with a fiber length of 10 to 60 vIl. Glass fiber of 2~
A glass fiber characterized in that the above-mentioned normal magnesium carbonate is transformed into basic magnesium carbonate by spraying and mixing into the slurry in a range of 10%, followed by pressure dehydration molding, and then by steam blowing or heating. A method for producing a reinforced hardened magnesium carbonate body.

本発明は正炭酸マグネシウムを出発物質とするのでガラ
ス繊維としては耐アルカリ性ガラス繊維を使用する必要
なく通常のガラス繊維を使用できる。
Since the present invention uses magnesium orthocarbonate as a starting material, it is not necessary to use alkali-resistant glass fibers, and ordinary glass fibers can be used as the glass fibers.

また上記の第1の製造方法は平板(ボード)製造のみな
らず、シリンダー状保温筒等異形材の製造にも適した方
法であり、第2の製造方法は平板の製造に適した方法で
ある。
In addition, the first manufacturing method described above is suitable not only for manufacturing flat plates (boards) but also for manufacturing irregularly shaped materials such as cylindrical heat-insulating tubes, and the second manufacturing method is suitable for manufacturing flat plates. .

すなわち、第1の製造方法では、スラリー濃度10〜2
0%の正炭酸マグネシウム懸濁スラリーに、製品中の重
量配合で、セルロース質パルプを1〜5%の範囲内で加
え、ついで繊維長5〜40mmの比較的短かいガラス繊
維を2〜10%の範囲で加えて均一に分散するまで十分
に混合した後、蒸気吹込みまたは通常の熱風による加熱
により約80℃に昇温すると、スラリー中の正炭酸マグ
ネシウムの表面の一部が塩基性炭酸マグネシウムに変化
し、スラリー全体が膨潤状態となる。
That is, in the first manufacturing method, the slurry concentration is 10 to 2
To 0% magnesium orthocarbonate suspension slurry, cellulose pulp is added in the range of 1 to 5% by weight in the product, followed by 2 to 10% of relatively short glass fibers with a fiber length of 5 to 40 mm. After mixing thoroughly until uniformly dispersed, the temperature is raised to about 80°C by steam blowing or heating with normal hot air, and a part of the surface of the magnesium orthocarbonate in the slurry turns into basic magnesium carbonate. The entire slurry becomes swollen.

これをモールド中に流し込み脱水しながら加圧し成形す
る。
This is poured into a mold and molded under pressure while being dehydrated.

得られた成形体を蒸気吹込みまたは通常の熱風による加
熱により最高150℃、好ましくは約80℃に保つこと
によって、正炭酸マグネシウムを塩基性炭酸マグネシウ
ムに変化させ、結晶の変化に伴って生ずる硬化力で強度
を発現させ、所要のガラス繊維補強炭酸マグネシウム硬
化体を製造するものである。
By keeping the obtained molded body at a maximum temperature of 150°C, preferably about 80°C, by blowing steam or heating with ordinary hot air, the normal magnesium carbonate is converted to basic magnesium carbonate, and the hardening that occurs as the crystal changes. This method uses force to develop strength and produces the required glass fiber-reinforced hardened magnesium carbonate body.

この第1の製造方法は、ガラス繊維を混合によって分散
させた後、モールド中に流し込む方法であり、ガラス繊
維が混合中にからみ合って塊状になることを回避するた
め上記のごとき比較的短いガラス繊維を使用し、混合に
よる分散によって該ガラス繊維の方向性をもたせず、ラ
ンダムに位置せしめるようにしたものである。
In this first manufacturing method, the glass fibers are dispersed by mixing and then poured into a mold.In order to avoid the glass fibers from becoming entangled and clumpy during mixing, relatively short glass fibers such as those described above are used. Glass fibers are used and dispersed through mixing so that the glass fibers have no directionality and are positioned randomly.

従って、この第1の製造方法は上述したように、平板の
みならず異形材の製造に適した方法である。
Therefore, as described above, this first manufacturing method is suitable for manufacturing not only flat plates but also irregularly shaped materials.

次の第2の製造方法では、スラリー濃度10〜20%の
正炭酸マグネシウム懸濁スラリーに、製品中の重量配合
で、セルロース質パルプを1〜5係の範囲で加え、一様
に分散させた後、蒸気吹込みまたは通常の熱風による加
熱により約80℃に昇温させて上記のようにスラリーを
膨潤させてモールド中に流し込むと同時にガラス繊維(
ロービング)を連続的に切断機により比較的長い10〜
60mmの長さに切断しながらモールド内のスラリー上
に吹きつけ、その中に一様に分散させるようにしたもの
である。
In the following second manufacturing method, cellulose pulp was added to a magnesium orthocarbonate suspension slurry with a slurry concentration of 10 to 20% in a range of 1 to 5 parts according to the weight ratio in the product, and was uniformly dispersed. After that, the slurry is heated to about 80°C by steam blowing or heating with ordinary hot air to swell the slurry as described above, and at the same time pour it into the mold.
roving) is continuously cut by a relatively long 10~
The slurry was sprayed onto the slurry inside the mold while being cut to a length of 60 mm, so that it was uniformly dispersed therein.

吹きつけるガラス繊維量は2〜10%の範囲である。The amount of glass fiber sprayed ranges from 2 to 10%.

吹きつけ後、スラリーを脱水加圧して成形体とし、得ら
れた成形体を蒸気吹込みまたは通常の熱風による加熱に
より最高150℃、好ましくは約80゜Cに保つことに
よつて、正炭酸マグネシウムを塩基性炭酸マグネシウム
に変化させ、結晶の変化に伴って生ずる硬化丈で強度を
発現させ、所要のガラス繊維補強炭酸マグネシウム硬化
体とすることは上記第1の製造方法の場合と同じである
After spraying, the slurry is dehydrated and pressurized to form a molded body, and the resulting molded body is kept at a maximum temperature of 150°C, preferably about 80°C, by steam blowing or heating with ordinary hot air, thereby producing magnesium orthocarbonate. It is the same as in the case of the first production method that the magnesium carbonate is changed into basic magnesium carbonate, and the strength is developed by the hardening length that occurs with the change of the crystal, and the required glass fiber reinforced magnesium carbonate hardened body is obtained.

この第2の製造方法はガラス繊維を切断しながらモール
ド内のスラリー上に吹きつける方法であり、上から吹き
つけられたガラス繊維はスラリー内で主に二次元的に配
向されるのでガラス繊維としては比較的長いものを使用
することができる。
This second manufacturing method is a method in which the glass fibers are cut and blown onto the slurry in the mold, and the glass fibers blown from above are mainly oriented two-dimensionally within the slurry, so they are treated as glass fibers. can be relatively long.

従って、この第2の製造方法は上述したように、平板の
製造に適した方法である。
Therefore, as described above, this second manufacturing method is suitable for manufacturing flat plates.

以上の第1の製造方法および第2の製造方法において、
正炭酸マグネシウム懸濁スラリーのスラリー濃度は10
〜20%の範囲であるが、スラリー濃度が20%を超え
ると、スラリーの流動性が著しく低下し、ガラス繊維の
分散を困難とする。
In the above first manufacturing method and second manufacturing method,
The slurry concentration of the magnesium orthocarbonate suspension slurry is 10
The slurry concentration is in the range of ~20%, but when the slurry concentration exceeds 20%, the fluidity of the slurry decreases significantly, making it difficult to disperse the glass fibers.

配合されるセルロース質パルプは軽量化ならびに強度発
現に寄与するものであることはもちろんであるが、ガラ
ス繊維の分散の促進に効果的であるその配合量としては
製品中の重量配合で1〜5%の範囲であり、配合量が1
%未満では配合効果が少なく、また5%を超えると、製
品の耐火性、難燃性を低下させる。
It goes without saying that the cellulosic pulp that is blended contributes to weight reduction and strength development, but it is effective in promoting the dispersion of glass fibers. % range, and the blending amount is 1
If it is less than 5%, the blending effect will be small, and if it exceeds 5%, the fire resistance and flame retardance of the product will be reduced.

主補強材としてのガラス繊維の配合量は製品中の重量配
合で2〜10%の範囲である。
The amount of glass fiber as the main reinforcing material is in the range of 2 to 10% by weight in the product.

配合量が2%未満では補強効果が少なく、また10%を
超えると、分散性を悪化させる。
If the blending amount is less than 2%, the reinforcing effect will be small, and if it exceeds 10%, the dispersibility will deteriorate.

また、成形前の約80℃の加熱によってスラリーを膨潤
させることは成形を容易ならしめるためのものである。
Further, the purpose of swelling the slurry by heating to about 80° C. before molding is to facilitate molding.

上記の第1の製造方法または第2の製造方法にによって
製造された硬化体は実施例で示すようにカサ比重は0.
5以下で強度は犬であり、さらに吸水性はきわめて低く
、耐火性、難燃性においてもすぐれており、かつコスト
的に有利である。
As shown in the examples, the cured product produced by the first production method or the second production method has a bulk specific gravity of 0.
5 or less, the strength is on par, the water absorption is extremely low, the fire resistance and flame retardance are excellent, and the cost is advantageous.

従って、本発明によって得られるガラス繊維補強炭酸マ
グネシウム硬化体は内、外装用建材としての適性を有す
るものである。
Therefore, the glass fiber-reinforced hardened magnesium carbonate body obtained by the present invention is suitable as an interior and exterior building material.

次に、本発明を実施例によってさらに具体的に説明する
Next, the present invention will be explained in more detail with reference to Examples.

本発明はその要旨を超えない限り以下の実施例によって
限定されるものではない。
The present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例 1 スラリー濃度15%の正炭酸マグネシウムスラリーにパ
ルブ、ガラス繊維(Eガラス)を第1表に実施例1〜4
として示す配合割合で混合、均一に分散させ、蒸気を吹
込み約80゜Cでスラリーを膨潤させた後、モールド中
に流し込み所定の厚さとなるまでスラリーを加圧脱水に
より成形し、成形体をそれぞれ80゜Cで4時間養生乾
燥する。
Example 1 Pulv and glass fiber (E glass) were added to a magnesium orthocarbonate slurry with a slurry concentration of 15% as shown in Table 1. Examples 1 to 4
After mixing and uniformly dispersing the slurry at the compounding ratio shown as below, blowing steam to swell the slurry at about 80°C, pour it into a mold, and mold the slurry by pressure dehydration until it reaches a predetermined thickness. Each was cured and dried at 80°C for 4 hours.

得られた平板(ボード)の物性をそれぞれ第1表に示す
The physical properties of the obtained flat plates (boards) are shown in Table 1.

これらの実施例と同様に処理した比較例1および2の原
料配合および得られた平板の物性を第1表に併記する。
The raw material formulations and physical properties of the obtained flat plates of Comparative Examples 1 and 2, which were treated in the same manner as in these Examples, are also listed in Table 1.

実施例 2 スラリー濃度10%の正炭酸マグネシウムスラリーにパ
ルプを第2表に実施例5〜8として示す配合割合で混合
、均一に分散させた後、蒸気を吹込み約80℃でスラリ
ーを膨潤させ、これをモールド中に流し込み、同時にガ
ラス繊維(Eガラス)を切断しながらモールド中のスラ
リーに吹込み混合後、15驚で脱水加圧成形し、成形体
をそれぞれ80℃で4時間養生乾燥し、得られた平板(
ボード)の物性をそれぞれ第2表に示す。
Example 2 Pulp was mixed and uniformly dispersed in magnesium orthocarbonate slurry with a slurry concentration of 10% in the proportions shown in Examples 5 to 8 in Table 2, and then steam was blown in to swell the slurry at about 80°C. This was poured into a mold, and the glass fibers (E-glass) were cut at the same time while being blown into the slurry in the mold. After mixing, dehydration and pressure molding was performed for 15 minutes, and each molded product was cured and dried at 80°C for 4 hours. , the obtained flat plate (
Table 2 shows the physical properties of each board).

これらの実施例と同様に処理した比較例3および4の原
料配合および得られた平板の物性を第2表に併記する。
The raw material formulations and physical properties of the obtained flat plates of Comparative Examples 3 and 4, which were treated in the same manner as in these Examples, are also listed in Table 2.

Claims (1)

【特許請求の範囲】 1 正炭酸マグネシウム(MgC03 ・3H20)懸
濁スラリーに、製品中の重量配合で、セルロース質パル
プ1〜5%及び繊維長5〜40mmのガラス繊維2〜1
0%を混合した後、蒸気吹込みまたは加熱により該スラ
リーを膨潤させ、これをモールド中に流し込み、加圧脱
水成形し、次いで蒸気吹込みまたは加熱により上記正炭
酸マグネシウムを塩基性炭酸マグネシウムに変化せしめ
ることを特徴とするガラス繊維補強炭酸マグネシウム硬
化体の製造方法。 2 正炭酸マグネシウム(MgCO3・3 H20 )
懸濁スラリーに、製品中の重量配合で、セルロース質バ
ルブ1〜5%を混合した後、蒸気吹込みまたは加熱によ
り該スラリーを膨潤させ、これをモールド中に流し込む
と同時に繊維長10〜60mmのガラス繊維を2〜10
%の範囲にて該スラリー中に吹きつけて混合させた後、
加圧脱水成形し、次いで蒸気吹込みまたは加熱により上
記正炭酸マグネシウムを塩基性炭酸マグネシウムに変化
せしめることを特徴とするガラス繊維補強炭酸マグネシ
ウム硬化体の製造方法。
[Scope of Claims] 1. 1 to 5% cellulosic pulp and 2 to 1% glass fibers with a fiber length of 5 to 40 mm in a suspension slurry of magnesium orthocarbonate (MgC03 .3H20) in the weight composition of the product.
After mixing 0%, the slurry is swollen by steam blowing or heating, poured into a mold, dehydrated under pressure, and then the above normal magnesium carbonate is changed to basic magnesium carbonate by steam blowing or heating. A method for producing a glass fiber reinforced magnesium carbonate hardened body. 2 Orthomagnesium carbonate (MgCO3.3 H20)
After mixing 1 to 5% cellulosic bulb into the suspension slurry based on the weight ratio in the product, the slurry is swollen by steam blowing or heating, and simultaneously poured into a mold to form fibers with a fiber length of 10 to 60 mm. 2 to 10 glass fibers
After spraying and mixing into the slurry in the range of %,
A method for producing a glass fiber-reinforced hardened magnesium carbonate product, which comprises performing pressure dehydration molding and then converting the above-mentioned normal magnesium carbonate into basic magnesium carbonate by steam blowing or heating.
JP16418680A 1980-11-21 1980-11-21 Method for manufacturing glass fiber reinforced magnesium carbonate hardened body Expired JPS585867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16418680A JPS585867B2 (en) 1980-11-21 1980-11-21 Method for manufacturing glass fiber reinforced magnesium carbonate hardened body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16418680A JPS585867B2 (en) 1980-11-21 1980-11-21 Method for manufacturing glass fiber reinforced magnesium carbonate hardened body

Publications (2)

Publication Number Publication Date
JPS5788051A JPS5788051A (en) 1982-06-01
JPS585867B2 true JPS585867B2 (en) 1983-02-02

Family

ID=15788325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16418680A Expired JPS585867B2 (en) 1980-11-21 1980-11-21 Method for manufacturing glass fiber reinforced magnesium carbonate hardened body

Country Status (1)

Country Link
JP (1) JPS585867B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159558U (en) * 1987-04-08 1988-10-19

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159558U (en) * 1987-04-08 1988-10-19

Also Published As

Publication number Publication date
JPS5788051A (en) 1982-06-01

Similar Documents

Publication Publication Date Title
JP2547008B2 (en) Lightweight insulation board and method of manufacturing the same
US4613627A (en) Process for the manufacture of shaped fibrous products and the resultant product
US3658564A (en) Water-insensitive bonded perlite structures
CN107512924B (en) Wooden light building concrete and preparation method thereof
CN101391872A (en) Novel thermal insulation composite material composition and method of making the same
CN101250039B (en) Preparation technology of coal ash fiberboard material
CN110054471B (en) Magnesium-based plant fiberboard and preparation method thereof
CN103304260A (en) Foamed concrete heat preservation plate and preparation method thereof
CN1051033A (en) Non-burning antifire light profile and manufacture method thereof
CN107840632A (en) A kind of flame-proof antibiotic type heat-insulating sound-insulating building board and preparation method thereof
CN114853439A (en) Phosphogypsum-based fireproof door core board and preparation process thereof
US6869475B1 (en) Calcium silicate insulating material containing blast furnace slag cement
CN102503299B (en) Expanded-vermiculite-containing building interior fireproof plate and manufacturing method thereof
CN114276071A (en) Durable building wall material and processing method
KR101885600B1 (en) Keeping warm boards and fabricating method thereof
CN101811846B (en) Polymer vitrified microsphere building heat-insulating mortar
KR20180075268A (en) Semi-nonflammable board using Kenaf non-woven fabric and manufacturing method thereof
RU2125029C1 (en) Composition for fibrous heat- and sound-insulation material and method of manufacturing thereof
JPS585867B2 (en) Method for manufacturing glass fiber reinforced magnesium carbonate hardened body
CN115108805A (en) Glass magnesium board with low wet expansion rate and preparation method thereof
CN111943719B (en) Flocculent fiber powder mixed core material and preparation method thereof
JPH02267148A (en) Production of gypsum board
JPH0338966B2 (en)
CN109293312B (en) Anti-crack recycled concrete and preparation method thereof
CN109180101A (en) A kind of preparation method of civil engineering foam concrete