JPS5858522A - Electrochemical display element - Google Patents

Electrochemical display element

Info

Publication number
JPS5858522A
JPS5858522A JP56156971A JP15697181A JPS5858522A JP S5858522 A JPS5858522 A JP S5858522A JP 56156971 A JP56156971 A JP 56156971A JP 15697181 A JP15697181 A JP 15697181A JP S5858522 A JPS5858522 A JP S5858522A
Authority
JP
Japan
Prior art keywords
iron
ecd
electrolyte
film
cations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56156971A
Other languages
Japanese (ja)
Inventor
Kingo Itaya
板谷 謹悟
Kimio Shibayama
柴山 乾夫
Shinobu Sotojima
外島 忍
Tatsuaki Ataka
龍明 安宅
Koji Iwasa
浩二 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP56156971A priority Critical patent/JPS5858522A/en
Priority to AU83096/82A priority patent/AU8309682A/en
Priority to DE8282302687T priority patent/DE3272553D1/en
Priority to EP82302687A priority patent/EP0068635B1/en
Priority to US06/381,800 priority patent/US4498739A/en
Priority to BR8203034A priority patent/BR8203034A/en
Priority to KR1019820002321A priority patent/KR830010396A/en
Publication of JPS5858522A publication Critical patent/JPS5858522A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • G02F2001/1517Cyano complex compounds, e.g. Prussian blue

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To obtain a stable ECD having good driving performance and visibility by using display electrodes provided with iron hexacyano-ferrate films on a substrate having a conductive surface and using univalent cations as one of mobile ions of an electrolyte. CONSTITUTION:Iron hexaamino-ferrate as an electrochemical coloring material is electrolytically deposited on transparent electrodes provided with an SiO2 film on a glass substrate to provide a working electrode of an ECD. The EC film is a blue pigment known as prussian blue, and its chemical structure is expressed by the formulasI, II. Said film is a mixed valency complex wherein tervalent iron and bivalent iron exist simultaneously in the same crystal. If the tervalent iron is fully reduced to the bivalent iron, the blue color disappears without any change in crystal structure and becomes colorless. The chloride contg. univalent cations expressed by the formula II is used as an electrolyte of the ECD. The ion radii of the cations resemble and the cations go into and out from the EC film complex, thus providing the ECD having long-term stable driving performance.

Description

【発明の詳細な説明】 この分−は、電気化学的な酸化還元反応に°よる電気イ
ビ学腎色物質の可逆な光学変化を利用したエレクトロク
ロミック表示素子f関し1%に電気化学発色物質として
ヘキサシアノ鉄酸鉄を用いた場合の電解質VrIglす
る。
DETAILED DESCRIPTION OF THE INVENTION This component is an electrochromic display element that utilizes the reversible optical change of an electrochromic color substance caused by an electrochemical redox reaction. Electrolyte VrIgl when iron hexacyanoferrate is used.

近年、エレクトロニクス技術の進歩にと−なって、たと
えば、腕時計、電卓等の小型携帯情報機器の出力装酵と
しての表示装置への需曹が、非常に高まっている。現在
、そのような**を一足する表示装置としては、液晶を
用いたものがある。
In recent years, with the advancement of electronics technology, the demand for display devices as output devices for small portable information devices such as wristwatches and calculators has increased significantly. Currently, there are display devices that use liquid crystals that provide such **.

沿晶表示装瞳は、一応許容できる速さの応答、ある程度
証明されつつある寿命等の長所を有するが。
Crystalline display pupils have some advantages, such as an acceptable fast response and a somewhat proven longevity.

一般に表示が暗く、斜め方向からの視1件が愁い視角依
存性がある等1表示装置と1てけ最も大切な特性である
べき、みやすさ、美しさ等に欠けるという無視できない
短所がある。それら液晶表示装置の持つ欠点を解決する
新しい表示と[、て、電シ作字的酸什還元によって、あ
る柚の物質が四「逆的な色調の変化を示す現象をオリ用
1. fc、ニレ、クトロクロミツク表示装着の研究開
賢が活発に行われてきている。そのような電気化学発色
物質と【7てり、従来は主として、γ0 、T3−ジピ
リジルのアルキル四級化物訪導体であるビオロゲン、あ
るいけ、酸化タングステンを代表とする遷移金楓酸什物
等が甲いられている。
In general, the display is dark, viewing from an oblique direction is difficult, and there is a viewing angle dependence, and there are disadvantages that cannot be ignored, such as lack of visibility and beauty, which should be the most important characteristics of a display device and a display device. A new display that solves the drawbacks of liquid crystal display devices and a phenomenon in which a certain yuzu substance exhibits a reverse color change due to electrographic acid reduction have been developed. Research and development of elm and trochrochromic displays have been actively carried out.Such electrochemical color-forming substances and [7teri] have conventionally been mainly used with viologen, which is an alkyl quaternary conductor of γ0, T3-dipyridyl. In addition, transition metal oxides such as tungsten oxide are used.

この賢明は、上記と異り従来知られていなかった新しい
電気イヒ字発色物買である。ヘキサシアノ鉄酸鉄塩を甲
いるエレクトロクロミック表示装置に関する。
This smart product is a new electric coloring product that was previously unknown, unlike the above. This invention relates to an electrochromic display device containing iron hexacyanoferrate.

従来の電気化学発色物質として、たとえば、ビオロゲン
を用いる場合Tlrは、ビオロゲンを溶解した電解量を
電解還元した時、陰極表面に9色したビオロゲンラジカ
ルが析出する(1)式の反応を利手している。
For example, when using viologen as a conventional electrochemical coloring substance, TLR takes advantage of the reaction of formula (1) in which nine colored viologen radicals are precipitated on the cathode surface when the electrolytic amount in which viologen is dissolved is electrolytically reduced. ing.

P:アルキル基 このように電解液中からも電接表面ヘル合櫂が析出する
形の反応を甲いる糸でに、表示の色−が。
P: Alkyl group In this way, the color shown is because the reaction occurs in the form of electrolytic surface Hellopods being deposited even from the electrolyte.

重極衣−への析出物の爺によって定まるため1電極の雛
位面積轟りの電荷量を稍密に制御しなければ一定の色調
を得られない欠点があり、また、有機物質であるビオロ
ゲン自体の作字的安定性に欠けるため、!!1化還元の
繰り返しによって劣イビし易い欠点があった。
Since it is determined by the amount of precipitates deposited on the deuterium, it has the disadvantage that a constant color tone cannot be obtained unless the amount of charge in the prime area of one electrode is precisely controlled. Because it lacks stability in writing itself! ! It had the disadvantage of being susceptible to deterioration due to repeated monoxide reduction.

まfC,従来の璽気化学発臼物質として、:II!移金
属酸化物である酸化タングステンを用いる系では。
MafC, as a conventional acetic chemical agitating substance: II! In systems using tungsten oxide, which is a transferable metal oxide.

電極表面に固定された酸化タングステンの層ff。A layer of tungsten oxide ff fixed on the electrode surface.

W極からの電子と、電解液中から金属イオンが一時に注
入ばれる反応によって生成するタングステンブロンズの
着色、 (2)式を利用している。
Equation (2) is used to color tungsten bronze, which is produced by a reaction between electrons from the W pole and metal ions injected from the electrolyte at once.

(2)式4)反応が電気化学的に可逆であるためには、
(2)式においてX≦(1Sでなければならず、x>1
5では反応が不可逆となるため表示には使えない。した
がって、そのような非作字量論的な反応をオリ用する表
示装置では、Xの大舞さが可逆性をホするが囲を超えな
いように、電解量を常Kfltl1611Lなければな
らないため、駆動が困難で賽用に向かないという欠点が
あった。
(2) Equation 4) In order for the reaction to be electrochemically reversible,
In formula (2), X≦(1S must be satisfied, and x>1
5 cannot be used for display because the reaction is irreversible. Therefore, in a display device that uses such a non-stoichiometric reaction, the amount of electrolyte must be kept constant so that the large jump of X does not exceed the range of reversibility. The drawback was that it was difficult to drive and was not suitable for playing games.

この発明では、上記した従来の電気化学発色物質にみら
れる楠々の欠点を有しない、新しいすぐれた電気化学発
色物質として、ヘキサシアノ鉄酸鉄塩を甲いている。こ
の発明で用いられるヘキサシアノ鉄酸鉄塩とけ、一般V
rは、プルシアンブルーとして知られている青色の顔料
と基本的に−1じ化合物であり1次に作字式(4)、(
5)で示される化合物の群を色合している。
The present invention uses iron hexacyanoferrate as a new and excellent electrochemical coloring material that does not have the drawbacks of the conventional electrochemical coloring materials described above. Hexacyanoferrate iron salt used in this invention, general V
r is basically a -1 compound with the blue pigment known as Prussian blue, and has the linear composition formula (4), (
The group of compounds shown in 5) is shaded.

F e(fall(’F e(1’lF e(1)(0
14) a ) s・・・不溶性プルシアンブルー  
 (4)M”(V e(m)F (30I)(011)
 @ )−・・・可溶性プルシアンブルー   (5)
こ\で、M けh Li  、laa  、K  、R
b  。
F e(fall('F e(1'lF e(1)(0
14) a) s...Insoluble Prussian blue
(4) M”(V e(m)F (30I) (011)
@ ) - Soluble Prussian blue (5)
Here, M keh Li , laa , K , R
b.

NH4”  等の一価の金属イオンをさす。Refers to monovalent metal ions such as NH4''.

(4)、(5)とも、一般には不溶性の立方体−造を呈
する三次元錯体として存在しており、シアノ基がFe(
TIJとFe(I[)とをブリッジした基本−造の上F
、(4)では第二鉄イオンが、また(5)では金−イオ
ンM+が、インターステシアルに存在する結晶−造を有
し、そのようVr同一結晶内に二価の鉄と三価の鉄とが
同時に存在する。いわゆる混合原子価錯体であることに
よって、プルシアンブルー特有の美しい青色を呈してい
る。もし、結晶ll造中の三価の鉄が、すべて二価の鉄
に還元された場合KFi、結晶−造そe)ものには大き
な変化を生じないが、青色は失なわれて無色に変化する
Both (4) and (5) generally exist as three-dimensional complexes exhibiting an insoluble cubic structure, and the cyano group is Fe(
Basic upper F that bridges TIJ and Fe (I[)
, in (4) the ferric ion and in (5) the gold ion M+ have an interstitial crystal structure, such that divalent iron and trivalent iron exist in the same Vr crystal. Iron exists at the same time. Because it is a so-called mixed valence complex, it exhibits the beautiful blue color characteristic of Prussian blue. If all the trivalent iron in the crystal formation is reduced to divalent iron, there will be no major change in KFi, the crystal structure, but the blue color will be lost and it will turn colorless. do.

この賢明け、上記した混合原子価錯体中の三価の鉄を電
気イヒ字還元と酸化によって三価と二価の間で可逆的に
変化させることによって色調を肇什させる原理Vr基づ
いており1反応け(6)式および(6Y式で示される。
This idea is based on the principle Vr of changing the color tone by reversibly changing the trivalent iron in the above-mentioned mixed valence complex between trivalent and divalent through electric reduction and oxidation. The reaction is shown by formula (6) and formula (6Y).

電気化学分色物質としてへ゛キサシアノ鉄[3地を用い
るエレクトロクロミック表示装置では、予め、不溶性の
三次元錯体の薄膜として1表示極表電に固定されている
層の電気化学的な反応による色調の変イビを利用するの
であって、前述したビオロゲンのようVrlW中からの
析出と溶解の繰や返しを用いるのでけないから、合の一
1r材、ヘキサシアノ鉄酸鉄塩の噛の厚さで定まる一定
濃#If@に緒持することができる。また1反応式(6
)で明らかなようF、酸化タングステンの反応(2)式
の場合のように反応が非化学量論的ではなく、作字童論
的な工電子反応であるから1表示装置を駆動する際に電
解量を嵯密に制御する必豐がなく。
In an electrochromic display device using hexacyanoiron as an electrochemical color separation substance, the color tone is changed by electrochemical reaction of a layer fixed in advance on the surface of one display electrode as a thin film of an insoluble three-dimensional complex. Since it uses a modified iron and does not involve repeating precipitation and dissolution from VrlW like the viologen mentioned above, it is determined by the thickness of the combined 1r material and hexacyanoferrate iron salt. It can be held at a certain concentration #If@. In addition, one reaction formula (6
) As is clear from the reaction of F and tungsten oxide, the reaction is not non-stoichiometric as in the case of formula (2), but is an electronic reaction based on the writing theory.1 When driving a display device, There is no need to closely control the amount of electrolysis.

駆動か容謳である。また、プルシアンブルーとして知ら
れる青色顔料は、塗料や印刷インキの顔料として昔から
広く実用に供されておシ、そぐ)作字的安定性にも不安
がない、ヘキサシアノ鉄酸鉄塩を用いるこの発明は、上
記のように、一定濃度の色調で表示を容易に駆動でき1
着色種の化学的安w性についてはイヒ学的に証明ζわて
いる。美り、い紺青(プルシアンブルー)色のエレクト
ロクロミック表示装置を実現するものである。
Is it driving or flattering? In addition, the blue pigment known as Prussian blue has been widely used as a pigment in paints and printing inks since ancient times. As described above, the present invention allows the display to be easily driven with a color tone of a constant density.
The chemical stability of colored species has been scientifically proven. The present invention realizes a beautiful, dark blue (Prussian blue) electrochromic display device.

次ff、この発明で用いるヘキサシアノ鉄酸鉄を電気化
学的発色物質とする場合、いかに電解質の選択が重畳で
あるかについて述べる。
Next, when using iron hexacyanoferrate used in this invention as an electrochemical coloring substance, we will discuss how the selection of electrolytes is a matter of superposition.

ヘキサジ7ノ鉄酸鉄が、(4)式で示す不溶性プル  
  )シアンブルーであるにせよ、(5)式で示す可溶
性プルシアンブルーであるにせよ、を色状態から無色状
部の間の酸化還元に伴い、発色物質中Vrは電子の出入
と(ロ)時にその負電荷を補償するため正電荷をもつカ
チオンの出入も不可欠である。作字N6式(6)および
(6)lを見るかぎり、形式的にはいかなるカチオンに
よっても反応式は成り立つようVr費える。しかし7.
プルシアンブルーl1iat図に示すように三次元構造
を有する混合原子価錯体であり。
Iron hexadi-7-ferrate has an insoluble pull as shown by formula (4).
) Whether it is cyan blue or the soluble Prussian blue shown in equation (5), Vr in the coloring substance changes due to the oxidation and reduction between the color state and the colorless state. In order to compensate for the negative charge, the entry and exit of positively charged cations is also essential. Formation N6 As far as formulas (6) and (6)l are concerned, Vr can be used so that the reaction formula formally holds true with any cation. But 7.
Prussian blue is a mixed valence complex with a three-dimensional structure as shown in the diagram.

格子定数IQ、2Aの立方晶系に属する結晶である。It is a crystal belonging to the cubic system with a lattice constant IQ of 2A.

面14j1隔51スであるが、格子を形成する各イオン
が原子の大きさを考慮したボトルネックの大★さけ第2
図に示すように五5スである。このボトルネックの大き
ζことは、プルシアンブルーの酸化や還元に伴って出入
するイオンの大きさを制限するものと予想される。
The plane 14j1 interval is 51st, but each ion forming the lattice has a large bottleneck considering the size of the atom.
As shown in the figure, it is 55s. The size of this bottleneck ζ is expected to limit the size of ions that enter and exit during oxidation and reduction of Prussian blue.

本賢明のit曹さは、上記の理由に基づき、ヘキサジ7
ノ鉄酸鉄を分色物質としたエレクトロクロミックディス
プレーの電解質、 %ffカチiンの選択を適切に行っ
たところKある。
Based on the above reasons, this wisdom is based on Hexaji 7.
The electrolyte for electrochromic displays using iron ferrate as a color separation substance, %ff cation, was properly selected.

DJ下賽施fllff基づき1本賢明の具体的な説明を
行う。
I will give a concrete explanation of Ippon Wise based on DJ Shimosaise fullff.

実施例1゜ 分色物質であるヘキサシアノ鉄酸鉄け、電気化学的手法
により1表示電極表面に形成した。まず。
Example 1 Iron hexacyanoferrate, a color separation substance, was formed on the surface of one display electrode by an electrochemical method. first.

+111f20ξリモル/リットルの7エリシアンイと
カリ、ラム(KsIFe ((3N )@)水溶液と、
塩酸()I(?!/)陶疲が(102規定水溶液に濃麿
20ミリモルlリットルとなるように溶解した塩化第二
鉄水溶滴とを一容量混合し茶褐色透明とする。この茶褐
色透明溶液中に、その表面にヘキサシアノ鉄酸畝を形成
しようとする表面に電子伝導性を有する面積寥−の透明
11% (snow )  を浸漬t、、rらI/r面
積tooaIIの白金電極を浸漬する・透明電極−を陰
極、白金電*仙を陽極とし、10μムの電電流電解を1
0分間行った。電解終了後、透明電極上に青色のへキサ
シアノ鉄酸鉄が形成された。
+111f20ξ mol/liter of 7 Elysian and potassium, rum (KsIFe ((3N)@) aqueous solution,
Hydrochloric acid () I (?!/) is mixed with a volume of ferric chloride aqueous droplets dissolved in a 102N aqueous solution to give a concentration of 20 mmol liter to give a brownish-transparent solution.This brownish-brown transparent solution A platinum electrode with an area of 11% (snow) having electron conductivity on the surface of which hexacyanoferric acid ridges are to be formed is immersed in the solution.・The transparent electrode is used as a cathode, the platinum electrode is used as an anode, and a current of 10 μm is electrolyzed at 1
It lasted 0 minutes. After the electrolysis was completed, blue iron hexacyanoferrate was formed on the transparent electrode.

次Vr、このようにして形成したヘキサシアノ鉄酸鉄で
被覆された透明電極を作用電極として、最適な電解質を
選択する実験を行った。まず、前記作用電&1面積10
0−の白金対極さらに飽和甘木電極を参照とした5電極
式電解槽を形成し1種種の電解質中で作用電極の電位を
参照電極上に対1=、 −(L2Vと+〇、6vの間を
ffl汲tltHzcr>矩彰波パルスによh駆動し発
消色を行わせた0表示W極である作用電極は、参照電極
に対する電位−α2vで無色&+0.6’Vで青色の状
態である。
Next, an experiment was conducted to select an optimal electrolyte using the thus formed transparent electrode coated with iron hexacyanoferrate as a working electrode. First, the above-mentioned action voltage &1 area 10
A 5-electrode electrolytic cell is formed using a 0- platinum counter electrode and a saturated Amagi electrode as a reference, and the potential of the working electrode is set between 1=, -(L2V and +〇, 6V on the reference electrode) in one type of electrolyte. The working electrode, which is the 0-display W pole, is driven by a rectangular wave pulse to perform color development and decolorization, and is colorless at a potential of -α2V and blue at +0.6'V with respect to the reference electrode. .

このような発消色のサイクルを多く行わせることにより
、電解質カチオンの選択を行った。
The electrolyte cation was selected by performing many cycles of color development and decolorization.

評価の基準は、残膜率という数値を用いた。The evaluation standard used a numerical value called residual film rate.

残膜率の定義は1作用電極であるヘキサシアノ鉄酸鉄被
轡電極のもつ電気量を用い次σ)ように行った。
The residual film rate was defined using the amount of electricity possessed by one working electrode, an electrode covered with iron hexacyanoferrate, as follows.

電気量の測定は、lI前記5電極式電解槽に電量計Cク
ーロンメーター)を接続して行った。
The amount of electricity was measured by connecting a coulometer (coulomb meter) to the five-electrode electrolytic cell.

残膜率の減少は1発情色に伴い発色物質であるヘキサシ
アノ&IP!!#鉄に出入する電解質カチオンによる膜
の破壊の目安になると思われる。
The reduction in the residual film rate is due to the color-forming substance Hexacyano & IP! ! #This is thought to be an indicator of membrane destruction due to electrolyte cations entering and exiting iron.

評価する電解質として、 HC/、LiCff、NaO
f。
As electrolytes to be evaluated, HC/, LiCff, NaO
f.

K、Of、’BbCl、  と080/  (’)61
1度11Nの水溶液を用い前記のブイクルテストを行っ
た。HC/  μj外はPH4,[)VrM整した。結
果は第5図に示す。
K,Of,'BbCl, and080/ (')61
The vehicle test described above was carried out once using a 11N aqueous solution. Outside HC/μj, PH4 and [)VrM were adjusted. The results are shown in Figure 5.

95図から明らかなようff、KcI Rt+O/ と
C−5ol  が安定にヘキサシアノ鉄酸鉄表示電極を
駆動で央ることが分った。
As is clear from Fig. 95, it was found that ff, KcI Rt+O/ and C-5ol stably drive the iron hexacyanoferrate display electrode.

実施例2゜ 発色物質であるヘキサシアノ赦酸鉄表示電極の形成法、
テスト法は実施fll 1と(ロ)様である。
Example 2 Method for forming a display electrode using iron hexacyanoacetate, which is a color-forming substance,
The test method is as follows: 1 and (b).

評価する電解質として* BeCt m + Mg O
/ 諺TOak/@  とSrC!/mのアルカリ土類
塩化物の飽和溶滴を用いた。PHti4.0に一瞥り、
実施例1とIW1機のテストを行ったところ、B!Lc
/’l  のみが。
As the electrolyte to be evaluated* BeCt m + Mg O
/ Proverb TOak/@ and SrC! /m of saturated alkaline earth chloride droplets were used. A glance at PHti4.0,
When we tested Example 1 and one IW machine, B! Lc
/'l only.

10サイクルで残膜率20%の結果を得た。他の電解質
け10サイクルも行うことかで轡なかった。
A residual film rate of 20% was obtained after 10 cycles. I didn't mind doing 10 cycles with other electrolytes.

Banjos  も10サイクルでは実用に供すること
ができず、2価のアルカリ土類金楓は不適当であること
が分った。
Banjos could not be put to practical use after 10 cycles, and divalent alkaline earth gold Kaede was found to be unsuitable.

実施例& 発色物質であるヘキサシアノ鉄酸鉄表示電極の形成法、
テスト法は11施か口と同様である。
Examples & Method of forming a display electrode using iron hexacyanoferrate, which is a color-forming substance,
The test method is the same as the 11th test.

評価する電解質として*  N H4C/ 訃よびNM
@a CI  NKta Cl 、  NPr101と
 NBuaG/の@4類アンモニウム塩を用いた。濃1
hNH*oeが[L I N h他は飽和水溶油を用い
た。
As an electrolyte to evaluate* NH4C/ NM and NM
@aCI NKtaCl, NPr101 and NBuaG/@4 class ammonium salts were used. Dark 1
hNH*oe was [L I N h et al. used saturated aqueous oil.

PI(け、4.0に調整した。PI (adjusted to 4.0).

結果けNHaC/  については第S図に示すようにま
ったく安定にサイクルテストを行うことができ、ヘキサ
シアノ鉄酸鉄被梼電極の電解質と【、て適当であること
が分った。仙の躯4級アンモニウム塩は、 t)ずかI
FNMe4Clが、  Lie/  と−鞘1すなわち
、10mサイクルで20%の減膜凍をボしたが、他はま
ったく不適当であった。
As a result, as shown in Figure S, the cycle test for NHaC/ was found to be completely stable, and it was found to be suitable as an electrolyte for the iron hexacyanoferrate covered electrode. Sen's body quaternary ammonium salt is t) Zuka I
FNMe4Cl caused 20% thinning in Lie/ and -sheath 1, ie 10 m cycles, but otherwise was completely inadequate.

旬十実施か1.2.5を簡IILにまとめると、ヘキサ
シアノ鉄酸鉄被積雷極** K”0wb”、cg”とN
 Ha  の−価カチオンのみにより安定f駆動するこ
とかで負る。このことけ1次に示す表1と第2図のボト
ルネックの天真さとから合理的ffviL明することが
できる。表1には、イオンのmlと水利イオン半径の一
つの表示であるストックス半径。
Summarizing 1.2.5 in simple IIL, hexacyanoferrate-accumulated lightning pole** K"0wb", cg" and N
This is due to stable f-drive by only Ha-valent cations. This fact can be rationally clarified from Table 1 shown below and the naivety of the bottleneck shown in Figure 2. Table 1 shows the Stocks radius, which is one indication of the ion ml and the irrigated ion radius.

さらに結晶イオン半径を示した。安定にヘキサシアノ鉄
酸IF出入できるイオンの種類とストークスイオン半径
11−t、おどるくほどよい対応を示している。
Furthermore, the crystal ionic radius is shown. There is a surprisingly good correspondence between the types of ions that can stably enter and exit the hexacyanoferrate IF and the Stokes ion radius of 11-t.

表型  イオンの種類とイオン半径 本発明により、ヘキサシアノ鉄酸鉄被横電椿を安定Vr
駆動することのできるカチオンを選択できたことFi、
エレクトロクロシズムディスプレーの長轡命什という観
点からその価値は重曹であり。
Surface type Ion type and ion radius According to the present invention, iron hexacyanoferrate can be stabilized by Vr.
Fi that we were able to select a cation that could be driven;
Its value in terms of longevity of electrocrocism display is baking soda.

工業的価値は大である。The industrial value is great.

4、1面のヤ輌な峻、明 第1図に、ヘキサシアノ鉄酸鉄の結晶格子を示す図で、
○印が鉄イオンを示し、炭tar蘭合っているのがFe
 (II)、 I!i4素Nに隣合っているのがFe(
2))である。さらff、インターステイシャルのFe
(2)まfcは一価カチオンは簡単のため省略した。
4. One plane of sharp contrast. Figure 1 shows the crystal lattice of iron hexacyanoferrate.
The circle indicates the iron ion, and the one that matches the charcoal is Fe.
(II), I! Fe(
2)). Saraff, Interstitial Fe
(2) Monovalent cations for fc are omitted for simplicity.

鉋2図は、ヘキサシアノ鉄酸鉄のボトルネックの大負さ
を示す図である。第5図は1種々のカチオンをIIr解
質と17で甲いた場合についてヘキサシアノ鉄酸鉄被神
電極の残膜穿とサイクル数の1443俵を示すグラフで
ある。
Figure 2 is a diagram showing the magnitude of the bottleneck of iron hexacyanoferrate. FIG. 5 is a graph showing the residual film perforation and cycle number of the iron hexacyanoferrate-coated electrode for the case where various cations were mixed with IIr solute and 17 times.

釣上 出願人 株式会社 第二梢工舎Fishing Applicant: Daini Kozue Kosha Co., Ltd.

Claims (1)

【特許請求の範囲】 (1)少なくとも9面が電子伝導性を有する基材上に密
着したヘキサシアノ鉄酸鉄被膜を表示番としさらに電解
質と亀う一力の電極とから#I成これる電気化学表示素
子において、電解質中の一方の可動イオンが一価カチオ
ンであるととを%会とする電気化学表示素子。 (2、特許請求の範囲第一項記載の一価カチオンがアル
カリ金属イオンであることを特徴とする電気化学表示素
子。 (5)特許請求のか囲第二項紀載のアルカリ金属イオン
が、カリウムイオン、ルビジウムイオン。 セシウムイオンであることを%徴とする%lr!f#I
lf求の範囲第一項、叩二項記載の電気化学表示素子。 (4)―許請求の範囲第一項記載の一価カチオンがアン
モニウムイオンであることを叫微とする電気化学表示素
子。 (5)特許請求の範囲第一項記載の一価カチオンがカリ
ウムイオン、ルビジウムイオン、セシウムイオンおよび
アンモニウムイオンのうち少なくとも・2つ以上の組み
合わせであることを特徴とする電気化学的表示素子。
[Claims] (1) An iron hexacyanoferrate film in close contact with a base material having electron conductivity on at least 9 sides is used as an indicator, and an electrolyte and a strong electrode are used to generate #I electricity. An electrochemical display element in which one mobile ion in the electrolyte is a monovalent cation. (2. An electrochemical display element characterized in that the monovalent cation described in claim 1 is an alkali metal ion. (5) The alkali metal ion described in claim 2 is potassium ion, rubidium ion. %lr!f#I which is a cesium ion
The electrochemical display element according to the first and second terms of the range of lf requirements. (4) - An electrochemical display element characterized in that the monovalent cation according to claim 1 is an ammonium ion. (5) An electrochemical display element characterized in that the monovalent cation described in claim 1 is a combination of at least two of potassium ions, rubidium ions, cesium ions, and ammonium ions.
JP56156971A 1981-05-26 1981-10-02 Electrochemical display element Pending JPS5858522A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP56156971A JPS5858522A (en) 1981-10-02 1981-10-02 Electrochemical display element
AU83096/82A AU8309682A (en) 1981-05-26 1982-04-28 Electrochromic display device
DE8282302687T DE3272553D1 (en) 1981-05-26 1982-05-25 Electrochromic display device
EP82302687A EP0068635B1 (en) 1981-05-26 1982-05-25 Electrochromic display device
US06/381,800 US4498739A (en) 1981-05-26 1982-05-25 Electrochromic display devices using iron(III) hexacyanoferrate(II) salt
BR8203034A BR8203034A (en) 1981-05-26 1982-05-25 ELECTRONCHONIC DISPLAY DEVICE
KR1019820002321A KR830010396A (en) 1981-05-26 1982-05-26 Electrochemical display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56156971A JPS5858522A (en) 1981-10-02 1981-10-02 Electrochemical display element

Publications (1)

Publication Number Publication Date
JPS5858522A true JPS5858522A (en) 1983-04-07

Family

ID=15639323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56156971A Pending JPS5858522A (en) 1981-05-26 1981-10-02 Electrochemical display element

Country Status (1)

Country Link
JP (1) JPS5858522A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603862A (en) * 1983-06-22 1985-01-10 Seiko Instr & Electronics Ltd Secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603862A (en) * 1983-06-22 1985-01-10 Seiko Instr & Electronics Ltd Secondary battery
JPH0527227B2 (en) * 1983-06-22 1993-04-20 Seiko Instr & Electronics

Similar Documents

Publication Publication Date Title
US4498739A (en) Electrochromic display devices using iron(III) hexacyanoferrate(II) salt
US5876581A (en) Film of iron (III) hexacyanoferrate (II) and process of synthesizing same
US5215821A (en) Solid-state electrochromic device with proton-conducting polymer electrolyte and Prussian blue counterelectrode
CA1089061A (en) Electrochromic display device
EP0180204B1 (en) Electrochromic display device
JPS6087316A (en) Electrochromic element
US4726664A (en) Electrochromic device
JPS5858522A (en) Electrochemical display element
US4326777A (en) Electrochromic display device
JPS5814652B2 (en) electrochromic display device
JPH0340073B2 (en)
JPS6244719A (en) Electrochromic display element
JPS6360799B2 (en)
JPS5943071B2 (en) electrochromic display element
JPS6360887B2 (en)
JPS6360888B2 (en)
JPS6328289B2 (en)
JPH05224242A (en) Electrochromic display device
JPS6181478A (en) Electrochromic display element
JPS629385A (en) Electrochromic display element
JPS60194431A (en) Electrochromic element
JPS5936247B2 (en) electrical display device
JPS6327693B2 (en)
JP2934933B2 (en) Electrochromic display device
JPS6125136B2 (en)