JPS5858444A - Laser raman spectroscopical method and device for elimination of fluorescence - Google Patents

Laser raman spectroscopical method and device for elimination of fluorescence

Info

Publication number
JPS5858444A
JPS5858444A JP15749181A JP15749181A JPS5858444A JP S5858444 A JPS5858444 A JP S5858444A JP 15749181 A JP15749181 A JP 15749181A JP 15749181 A JP15749181 A JP 15749181A JP S5858444 A JPS5858444 A JP S5858444A
Authority
JP
Japan
Prior art keywords
fluorescence
laser
scattered light
light
raman
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15749181A
Other languages
Japanese (ja)
Inventor
Kenji Tochigi
栃木 憲治
Yoshiaki Haniyu
羽生 孔昭
Yutaka Hiratsuka
豊 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15749181A priority Critical patent/JPS5858444A/en
Publication of JPS5858444A publication Critical patent/JPS5858444A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To measure a Raman spectrum with a high S/N, by irradiating a sample with the laser for exciting the Raman scattered light and the laser for exciting the fluorescence of a prescribed intensity alternately in the same duration and subjecting detection values of excited lights to the subtraction processing. CONSTITUTION:A sample 9 is irradiated with two kinds of laser light from a laser 1 for exciting the Raman scattered light and a laser 2 for exciting the fluorescence, which has the intensity adjusted so that the fluorescence having the same intensity as the fluorescence in the Raman scattered light excited by the laser light of the laser 1 is excited, alternately through an optical chopper 3 in the same duration. Photoelectron pulses corresponding to the excited Raman light and the fluorescence from the sample 9 are detected by a spectrometer 11 and a detector 12 and are subjected to the subtraction processing in a photoelectron pulse adding/subtracting counter 14 to eliminate a fluorescence spectrum in the Raman spectrum. Noise components are eliminated simultaneously, and thus, the laser Raman spectroscopical measurement based on the Raman spectrum is performed with a high S/N.

Description

【発明の詳細な説明】 本発明は、ケイ光によるラマン散乱光測定の妨害を除去
するV−ザラマン分光方法とその鉄@VC関する 半導体、薄膜製品等に付着した微小なゴイ、異物の分析
法としてレーザt−励起光源とするりマン分光法が有力
であるが、試料によルラマン散乱光の他に、強いケイ光
が発生する場合がある。特に不純物が多い工業用材料中
熱履脂を経た試料では、高率でケイ光が発生する。かか
るケイ光は、一般に2マン散乱光よプ強く、幅も広いた
め、うiン散乱光が隠されてしまうので、ケイ光か発生
すると分析が不可能となる。しかし、微小な試料でに試
料のみを取シ出し、精製などの操作を行うことができな
い、従って、分析装置にケイ光除去機能を付与すること
が必豊となる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a V-Zaraman spectroscopy method for eliminating interference with Raman scattering light measurement due to fluorescence, and a method for analyzing minute goi and foreign substances attached to iron@VC-related semiconductors, thin film products, etc. As a method, Luraman spectroscopy using a laser t-excitation light source is effective, but in addition to Luraman scattered light, strong fluorescent light may be generated by the sample. In particular, samples of industrial materials containing many impurities that have been subjected to medium heat abrasion generate fluorescence at a high rate. Such fluorescence is generally stronger than the 2-man scattered light and has a wider width, so that the back-scattered light is hidden, making analysis impossible if fluorescence occurs. However, it is not possible to extract only a small sample and perform operations such as purification. Therefore, it is necessary to provide the analyzer with a fluorescence removal function.

従来よ)ラマン散乱光測定の際に妨害となるケイ光管除
去するため、ケイ光の寿命上利用する時間分解法や、ケ
イ光、ライン散乱光の偏光性の違いを利用した方法が行
われている。し力・し、これらの方法はケイ光の寿命が
短いものでにピコ秒1!度、長いものでは秒程度まで多
様であ〕、一定でないこと、偏光性の違いについても一
般的に成立する物理的性質ではないことから、汎用性の
ある方法ではない。− また、1台の連続発振A レーザで多数本の発振at同
時発振させ、このうち4■−襲、5145畔の光を用い
て48ζa糟でケイ光を励起し、514.5S琳でラマ
ン散乱光とケイ光の重畳スペクトルを測定して、48ζ
QSIKで励起されたケイ光スペクトルを差し引く汎用
性の高い方法が行われている。この方法では、48a、
Ωm++aお工び51へ釦屏會それぞれ透過する半円状
フィルタを貼ル合わぜて円板状とし、この円板フィルタ
に回転を与え。
Conventionally, in order to remove fluorescent tubes that interfere with Raman scattered light measurements, time-resolved methods that take advantage of the lifetime of fluorescent light and methods that utilize the difference in polarization between fluorescent light and line scattered light have been used. ing. However, these methods have short fluorescent lifetimes of 1 picosecond! It is not a versatile method because it is not constant and the difference in polarization is not a generally valid physical property. - In addition, one continuous wave A laser is used to simultaneously oscillate multiple oscillations, and among these, 4 - 5145 beams are used to excite fluorescent light at 48ζa, and 514.5S is used for Raman scattering. By measuring the superimposed spectrum of light and fluorescence, 48ζ
A versatile method of subtracting the QSIK-excited fluorescence spectrum has been used. In this method, 48a,
Ωm++a Semicircular filters that pass through each button screen are attached to the workpiece 51 to form a disk shape, and rotation is applied to this disk filter.

回転させた円板フィルタに多数本同時に発振しているレ
ーザ光を通して、48ζG%票と51ζ、%n@の光を
交互に取〕出して試料に照射し、514.5S琳で励起
されて発生するストークスラマン散乱光領域管分光器で
分散し、検出器で検出する。
A large number of laser beams are oscillated simultaneously through a rotating disc filter, and 48ζG% light, 51ζ, and %n@ light are alternately extracted and irradiated onto the sample, which is excited by 514.5S Rin and generated. The Stokes Raman scattered light is dispersed by a field tube spectrometer and detected by a detector.

その検出器出力は、円板フィルタの回転に同期したゲー
トの開閉で488.Os纂熱照射時出力51<5as照
射時出力に2分割され、それぞれ周波数−電圧良変換番
會経て記録針の(+) fill 、 C−’) i4
に出力され、それぞれの出力の差が記録される。−この
方法は、ケイ光の妬光波長が入射光の波糞に依存しない
性質を利用してお〕、48ζ0%易による励起では51
45ssで励起されるストークスラマン散乱領域にケイ
光のみ塊われることに基づいている( J、F、Mar
&@*gm、ApplimcL 0ptics、15(
2)、2?49(1974))* Lかし、この方法で
は1台のV−fで同時に発振する488.い^514.
Ssm f 用いるため、レーザ光出力を独立に調整で
きず、48B、 O算襲励起時のケイ光のレベルを周波
数−電圧変換器の出力を減衰器で落とすことにょシ調整
するため、S/v比の向上は望めず、またケイ光が強い
場合、ケイ光を引き算し切れない欠点がある。しかも、
レーザ光の選別にフィルタを使用するため、試料に照射
されるレーザ光強直が弱くな)、発生するラマン散乱光
の強度4弱くす)、ノイズ増加の原因となる。
The output of the detector is 488. The output during thermal irradiation is divided into two parts, and after a frequency-voltage conversion cycle, the output of the recording needle is (+) fill, C-') i4.
are output, and the difference between each output is recorded. - This method takes advantage of the property that the optical wavelength of fluorescent light does not depend on the wave density of the incident light.
It is based on the fact that only fluorescence is concentrated in the Stokes Raman scattering region excited by 45ss (J, F, Mar
&@*gm, ApplimcL 0ptics, 15(
2), 2?49 (1974))*L However, in this method, 488. ^514.
Because Ssm f is used, the laser light output cannot be adjusted independently, and the level of fluorescence during 48B, O arithmetic excitation is adjusted by reducing the output of the frequency-voltage converter with an attenuator. An improvement in the ratio cannot be expected, and if the fluorescence is strong, the fluorescence cannot be subtracted completely. Moreover,
Since a filter is used to select the laser beam, the intensity of the laser beam irradiated onto the sample is weak (4), the intensity of the generated Raman scattered light is weakened (4), and noise is increased.

また、前述の方法の改良策として、21にのレーザ光源
を用い、それぞれ独立にレーザ光出力を1III11シ
、光学スイッチ切換に工つてケイ光スペクトルおよびラ
イン散乱光とケイ光の重畳したスベ夛トルを周期的かつ
交互に取9出し、ケイ光スペクトル強at励起し−ザ光
出カの一整によル、ラマン散乱光に重畳したケイ光の強
直と勢しくした後、検出器出方を光学スイッチ切換周波
数にてクロックイン増幅すると、ケイ光の妨Wt除去で
き、また出力信号に1なったランダムなノイズも除去さ
れるため、ラマン散乱光検出のS/7v比も向上できる
。しかし、ラマン特に大部分の有機物ではその強度が1
0  W7cya”以下となる。この揚台、光検出器か
らの出力波形は直流ではなくな9、光電子パルス列とな
る。
In addition, as an improvement to the above-mentioned method, we used 21 laser light sources, independently changed the laser light output to 1III11, and changed the optical switch to obtain a fluorescence spectrum and a smooth spectrum in which line scattered light and fluorescence were superimposed. The fluorescence spectrum is excited periodically and alternately, and the fluorescence spectrum superimposed on the Raman scattered light is made stronger and stronger by adjusting the light output, and then the detector output direction is adjusted. By performing clock-in amplification at the optical switch switching frequency, it is possible to remove the interference Wt of fluorescent light, and also remove random noise that becomes 1 in the output signal, so that the S/7v ratio of Raman scattered light detection can be improved. However, for Raman, especially for most organic materials, its intensity is 1.
0 W7cya'' or less.The output waveform from this platform and photodetector is not a direct current but a photoelectron pulse train9.

14 このため、ラマン散乱光強度が10−8以下の微弱な領
域では、直流の増幅法であるロックイン増幅方式では十
分な大きさのスペクトル信号を得ることはできない。
14 Therefore, in a weak region where the Raman scattered light intensity is 10-8 or less, it is not possible to obtain a sufficiently large spectral signal using the lock-in amplification method, which is a direct current amplification method.

本発明の目的は、前記従来技術の欠点をなくし、ラマン
散乱光の測定時に妨害となるケイ光を除去し、良好なS
lN比でラマンスペクトル會測定できるレーザラマン分
光方法と、これt−適確に実施しうるレーザラマン分光
装*1提供するにある。
An object of the present invention is to eliminate the drawbacks of the prior art, eliminate fluorescent light that is an interference during measurement of Raman scattered light, and provide good S.
The object of the present invention is to provide a laser Raman spectroscopy method capable of measuring a Raman spectrum at an lN ratio, and a laser Raman spectroscopy system*1 capable of accurately carrying out the method.

そして、本発明扛大路次のように構成している。The present invention is constructed as follows.

すなわち、ラマン散乱スペクトルにケイ光力重畳し、ケ
イ光がラマン散乱光測定の妨害となる揚台において、独
立に連続鈍振するケイ光励起用レーザと該ケイ光励起用
レーザよシ長波長のラマン散乱光励起用レーザの211
1のレーザ光を用い、光学スイッチ切換によ!り2ft
[のレーザ光11118期的かつ交互に同じ時間幅で試
料に照射する。ラマン散乱光励起用レーザの発振波長工
勤長波長稠にあるストークスラマンスペクトル領域には
、ケイ光励起用レーザで試料照射時、ケイ光スペクトル
が測定され、またラマン?乱光10 起用v−ザで試料
照射時、ラマン散乱スペクトルとケイ光スペクトルの重
量したものが測定される。この除、ケイ光励起・用レー
ザ出方を調整することに1夛、ケイ光励起用レーザで励
起されたケイ光の強度tラマン散乱光に重畳したケイ光
の強度に等しくできる。この条件が満たされた鳩舎、9
マン散乱光励起用レーザを照射時、検出器からの出方は
ラマン散乱光強度に比例した数の光電子パルス(NR)
と1畳したケイ光強度に比例した数の光電子パルス(N
F)およびノイズに比例した数の光電子パルス(NN)
ノ和(NR+ Np + NN)となル、ケイ光励起用
レーザを照射時、ケイ光強度に比例した数の光電子パル
ス(Ar、 )およびノイズに比例した数の光電子パル
ス(NN)の和CNp + NN)となる、従りて、分
光省で分散されかつ検出器で検出される出力パルスを光
学スイッチ切換に同期した加減算カラ?りで計数し、ラ
マン散乱光励起用レーザで照射時に加減算カウンタで加
算し、ケイ光励起用レーザで照射時カウンタから減算す
ることによりて(NR+NF十NN)−(NF十NN)
−NRでラマン散乱光のみ計数できる。この際、デジタ
ル的にラマン散乱光に起因する光電子パルスを積算し、
積算時間に制限が無いため、積算を重ねるに従いsyH
比を向上でき、特にラマン散乱光@度が10」4 F/#−以下の微弱光である試料についてラマン散乱光
の検出が可能となる。
In other words, on the platform where the fluorescence power is superimposed on the Raman scattering spectrum and the fluorescence interferes with the Raman scattering light measurement, the fluorescence excitation laser that oscillates continuously and independently and the long-wavelength Raman scattering from the fluorescence excitation laser are used. 211 of optical excitation laser
Using 1 laser beam and changing the optical switch! 2ft
The laser beam 11118 is irradiated onto the sample periodically and alternately with the same time width. In the Stokes Raman spectrum region located at the long wavelength of the oscillation wavelength of the Raman scattering excitation laser, the fluorescence spectrum is measured when the sample is irradiated with the fluorescence excitation laser, and the Raman? Scattered light 10 When a sample is irradiated with a laser beam detector, the weight of the Raman scattering spectrum and fluorescence spectrum is measured. In addition to this, by adjusting the emission direction of the fluorescence excitation laser, the intensity of the fluorescence excited by the fluorescence excitation laser can be made equal to the intensity of the fluorescence superimposed on the Raman scattered light. Pigeon lofts that meet this condition, 9
When irradiated with the Raman scattering light excitation laser, the number of photoelectron pulses (NR) output from the detector is proportional to the intensity of the Raman scattering light.
The number of photoelectron pulses (N
F) and a number of photoelectron pulses (NN) proportional to the noise
When the fluorescence excitation laser is irradiated, the sum of the number of photoelectron pulses (Ar, ) proportional to the fluorescence intensity and the number of photoelectron pulses (NN) proportional to the noise is CNp + NN), so that the output pulses dispersed by the spectrometer and detected by the detector are added or subtracted in synchronization with the switching of the optical switch. (NR + NF + NN) - (NF + NN)
- Only Raman scattered light can be counted with NR. At this time, photoelectron pulses caused by Raman scattered light are digitally integrated,
Since there is no limit to the integration time, syH increases as the integration is repeated.
In particular, it becomes possible to detect Raman scattered light for a sample whose Raman scattered light is a weak light of 10"4 F/#- or less.

以下、本発明を図面に基づいて11!明する。Hereinafter, the present invention will be explained based on the drawings. I will clarify.

第1図は本発明の基本的構成を示し、第2図はケイ光、
うiン散乱光を検出する検出器から出力される光電子パ
ルスと前置増幅器で増幅されたパルスと光学チ冒ツバが
ら光電子パルス加算器に人力される電圧波形含水す。
FIG. 1 shows the basic configuration of the present invention, and FIG.
The photoelectronic pulse output from the detector that detects the scattered light, the pulse amplified by the preamplifier, and the voltage waveform manually input to the photoelectronic pulse adder by the optical chip.

そのjlN1図に示されるように、本発明ではラマン散
乱前動起用Ir+レーザーとケイ光励起用+ A、  レーず2と會備えている。
As shown in the jlN1 diagram, the present invention is equipped with an Ir+ laser for Raman scattering pre-activation, +A laser for fluorescence excitation, and laser 2.

前記散乱前動起用’r  V−f I Kよル連う発振
された55へ部層のレーザ光、およびケイ光励起用A2
  レーザ2によ)連続発振されがつイン−4,5?経
た4Ba、Os+aのレーザ光は、これら2種のレーず
光の光路上に配置された光学チ璽ツバ暴によ)周期的か
つ交互にハーフ建う−7#集光レンズ−の組、または建
う−6.ハーフンラー7.集光レンズ60組を経て試料
9を照射するように構成されている。
The oscillated laser beam for the pre-scattering activation 'r V-f I K is connected to the laser beam of the sublayer 55, and the laser beam for fluorescence excitation A2
Laser 2) continuously oscillates in -4,5? The passed 4Ba, Os+a laser beams are collected by an optical chisel placed on the optical path of these two types of laser beams, or by a pair of 7# condenser lenses, which are periodically and alternately assembled. Build-6. Harnra 7. It is configured to irradiate the sample 9 through 60 sets of condensing lenses.

前記ケイ光Af  レーザ2には、ケイ光強度の出力a
mms <−示省略)が内蔵されており、販出カー11
14にりケイ党励前動A+レーザ2でmanれたケイ光
の5!R度をラマン散乱光に重畳したケイ光の強度に吟
しく[!lうるようになりている・また、試料9から発
生する光の光路上には、集光レンズ10と分光(至)1
1と検出tIF12とが配置されており、前記試料!か
ら発した光は集光レンズ10を経て分光器11に入り、
鉄分光器11で分散されかつ検出器12によ〕検出され
、咳検出器12から社ラマン散乱光励起用K レーザI
Kよる試料照射時にはケイ光とこれに1畳したケイ光と
ノイズとの強度に比例した光電子パルスが出力され、ケ
イ光励起用A レーザ2による試料照射時にはケイ光と
ノイズとの強度に比例した光電子パルスか出力されるよ
う&C構成されている。前記ケイ光励起用A レーザ2
による試料照射時に発生するケイ光とノイズの強度に比
例する光電子パルスt−&2図に符号11で示し、ラマ
ン散乱光励起用K レーザーに1る試料照射時に発生す
るラマン光とケイ光とノイズの強度に比例する光電子パ
ルスt−1ifl第2図に符号18で示す。
The fluorescence Af laser 2 has a fluorescence intensity output a
mms <- (not shown) is built-in, and sales car 11
14 Keiko's 5 which was manned by K party excitation motion A + laser 2! The intensity of the fluorescent light obtained by superimposing the R degree on the Raman scattered light is impressive [! In addition, on the optical path of the light generated from the sample 9, there is a condenser lens 10 and a spectrometer 1
1 and a detection tIF 12 are arranged, and the sample! The light emitted from the unit enters the spectroscope 11 through the condenser lens 10,
It is dispersed by the iron spectrometer 11 and detected by the detector 12, and is transmitted from the cough detector 12 to the Raman scattered light excitation laser I.
When a sample is irradiated with K, a photoelectron pulse is output that is proportional to the intensity of fluorescent light and the fluorescence and noise multiplied by 1, and when a sample is irradiated with fluorescence excitation A laser 2, a photoelectron pulse is output that is proportional to the intensity of fluorescent light and noise. &C is configured so that pulses are output. Said fluorescence excitation A laser 2
The intensity of the Raman light, fluorescence, and noise generated during sample irradiation is shown by the reference numeral 11 in the figure. The photoelectron pulse t-1ifl is shown at 18 in FIG.

前記検出器12には前置増幅器15が接続され、鋏装置
増幅器11には光学チ冒ツバ5に連結された光を子パル
ス加減算カウンタ14が接続されている。そして、前記
検出器12がら出力された光電子パルス扛、前置増幅器
1sで増幅され、その前置増幅器出力パルスは前記光学
チ璽ツバ墨および検出器系統に接続された光電子パルス
加減算カウンタ14に入力される。なお、前置増幅器1
iテ増幅されたケイ光とノイズの光電子パルスを第2図
に符号1?で示し、同前置増幅器1iで増幅されたラマ
ン光とノイズの光電子パルスt−12図に符号2oで示
す。
A preamplifier 15 is connected to the detector 12, and a counter 14 for adding and subtracting child pulses to the light coupled to the optical chip 5 is connected to the scissor device amplifier 11. The photoelectronic pulse output from the detector 12 is amplified by the preamplifier 1s, and the preamplifier output pulse is input to the photoelectronic pulse addition/subtraction counter 14 connected to the optical chip and detector system. be done. In addition, preamplifier 1
The amplified fluorescence and noise photoelectron pulses are shown in Figure 2 with the symbol 1? A photoelectronic pulse of Raman light and noise amplified by the same preamplifier 1i is shown in the diagram t-12 with reference numeral 2o.

前記光電子パルス加減算カウンタ14には、前置増幅器
出力パルスの他に、光学チwhyパ3の回転周波数参照
信号16も入力され、前置増幅器出力パルスは光学チ璽
ツバ5の回転周波数の逆数で与えられる開閉時間の間、
光電子パルス加減算カウンタで計数される。すなわち、
回転する光学チ1ツバ葛かうiン散乱光励起用K し一
ザ1の光を試料9に照射し始めた時、検出器12からの
光電子パルスは前置増幅器1sで増幅され、前置増幅器
出力パルスは光電子パルス加減算カウンタ14でラマン
散乱光励起用に+r レーザ 10光が光字チ璽ツバSて蓮断されるまでの間、計数、
加算される。続いて、ケイ光励起用A+レーザ2の光が
試料9を照射すると、前述したところと同様に光電子パ
ルスが発生し、前置増幅器11からの出力パルスは光電
子パルス加減算+ カウンタ14でケイ光励起用A、  レーザ2の元が光
学チ冒ツバ暴で遮断されるまでの間、計1され、先に加
算されていた光電子パルス加歇算カウンタ14の計数値
がら減算管行う。なお、光学チ璽ツバ暴から光電子パル
ス加減算カウンタ14に挿入される光学チ■ツバ回転周
彼数参照信号の電圧波形管、第2図に符号16で示す。
In addition to the preamplifier output pulses, a rotational frequency reference signal 16 of the optical chipper 3 is also input to the photoelectronic pulse addition/subtraction counter 14, and the preamplifier output pulse is the reciprocal of the rotational frequency of the optical chipper 5. During the given opening and closing time,
Counted by a photoelectronic pulse addition/subtraction counter. That is,
When the sample 9 starts to be irradiated with the light of the rotating optical chip 1 for excitation of scattered light, the photoelectron pulse from the detector 12 is amplified by the preamplifier 1s, and the output of the preamplifier is The pulses are counted by the photoelectronic pulse addition/subtraction counter 14 until the +r laser 10 light is cut off by the optical chisel collar S for excitation of Raman scattered light.
will be added. Subsequently, when the sample 9 is irradiated with the light from the A+laser 2 for fluorescence excitation, a photoelectron pulse is generated in the same way as described above, and the output pulse from the preamplifier 11 is converted to A for fluorescence excitation by the photoelectron pulse addition/subtraction+counter 14. , Until the source of the laser 2 is cut off by the optical chip explosion, the total is 1, and the count value of the photoelectronic pulse intermittent counter 14 that was previously added is subtracted. The voltage waveform tube of the optical chip rotation frequency reference signal, which is inserted from the optical chip into the photoelectronic pulse addition/subtraction counter 14, is indicated by reference numeral 16 in FIG.

前記光電子パルス加減算カウンタ14には、記録計15
が接続されてお)、前記光学チwyパ6の回転に従い、
前述の光電子パルス数の加減算サイクル七所定回数行い
、最終計数11[をに録針ISK挿入し、記録する。
The photoelectronic pulse addition/subtraction counter 14 includes a recorder 15.
), and according to the rotation of the optical chipper 6,
The above-mentioned addition/subtraction cycle of the number of photoelectronic pulses is performed seven predetermined times, and the final count 11 is inserted into the recording needle ISK and recorded.

このとき、ケイ光励起用A、+レーザ2の出ヵt、腋ケ
イ光励起用A レーザ2に内蔵された出力X*t=にょ
pg整し、ケイ光励起用A し一ザ2で試料9を照射時
、検出器12で検出されるケイ光の光電子パルス数tレ
ベル合わせすることにょシ、光電子パルス加減算カウン
ター4にはうiン散乱光励起用Kr+レーザーで試料9
をイズ(NN)に起因する光電子パルス数が加算されケ
イ光励起用Ar+−ザ2で試料9を照射時にはケイ光(
N )+ノイズCN、)に起因する光電子バAス数が減
算されることになル、光学チ冒ツバ5が1回転した後に
は重畳したケイ光を除去したう嘴ン散乱光のみが得られ
る。
At this time, adjust the output of A for fluorescence excitation, + the output of laser 2, A for axillary fluorescence excitation, and the output X At this time, in order to match the level of the photoelectron pulse number t of fluorescence detected by the detector 12, the photoelectron pulse addition/subtraction counter 4 is injected with a Kr+ laser for excitation of scattered light on the sample 9.
The number of photoelectron pulses caused by the noise (NN) is added, and when the sample 9 is irradiated with the fluorescent excitation Ar+-the 2, the fluorescence (NN) is added.
Since the number of photoelectronic buses A caused by N ) + noise CN, ) is subtracted, only the beak scattered light from which the superimposed fluorescent light has been removed is obtained after the optical chip 5 rotates once. It will be done.

できる。can.

さらに、前述の工’!jAkkり返し行うことによって
、光電子パルス加fjk3i!カウンター4にはラマン
散乱光N−II&積算され、ラマン散乱光のs7y比が
向上する。
Furthermore, the aforementioned engineering'! By repeating jAkk, photoelectron pulses are added fjk3i! The counter 4 integrates the Raman scattered light N-II and increases the s7y ratio of the Raman scattered light.

本発明は、以上説明した構成、作用のもので本発明方法
によれば、試料に向かってケイ光励起用レーザとラマン
散乱光励起用レーザとから2I[のレーザ光を周期的か
つ交互に同じ時間−で照射し、ケイ光励起用レーザに↓
る試料照射時のケイ光スペクトルと、ラーマン散乱光励
起用レーザによる試料照射時のラーマン散乱光スペクト
ルとケイ光スペクトルとの重畳スベ4クトルと管それぞ
れ測定し、ケイ光励起用レーザで励起されたケイ光の強
度とラマン散乱光に重畳したケイ光の強度とを尋しくな
る工うにvj4整したうえで、ラマン散乱光励起用レー
ザによる試料照射時に発生する出力信号とケイ光励起用
レーザによる試料照射時に発生する出力信号とを減算し
てうiン散乱光のみの信号を取シ出し、これ會積算する
よう−にしているので、微弱な・ラマン散乱光に重畳し
たケイ光を効率よく除去することができ同時にノイズも
減少できるため従来ケイ光の妨害に工)測定で亀なかっ
たラマン散乱スペクトルを良好なSlN比で測定しうる
効果がある。
The present invention has the above-described configuration and operation, and according to the method of the present invention, 2I laser beams are periodically and alternately emitted toward the sample for the same period of time from a fluorescence excitation laser and a Raman scattering excitation laser. ↓
The fluorescence spectrum when the sample is irradiated by the Raman scattering light excitation laser, and the Raman scattering light spectrum and the fluorescence spectrum when the sample is irradiated by the Raman scattering light excitation laser are measured. and the intensity of fluorescence superimposed on the Raman scattered light, and then calculate the output signal generated when the sample is irradiated by the Raman scattered light excitation laser and the output signal generated when the sample is irradiated by the fluorescence excitation laser. Since the output signal is subtracted to obtain the signal of only the Raman scattered light and then integrated, it is possible to efficiently remove the fluorescent light superimposed on the weak Raman scattered light. At the same time, since noise can be reduced, it is possible to measure Raman scattering spectra with a good SIN ratio, which was difficult to measure in conventional measurements due to fluorescence interference.

さらに、本発明装置によれは、ケイ光強度tiilll
l!Iシうるケイ光励起用レーザと、ラマン散乱光励起
用レーザから試料に向がりて2楕のレーザ光を連続発振
し、該2楠のレーザ光音光学スイッチに1#)試料に周
期的かつ交互に同じ時間幅で照射し、前記2@のレーザ
光を集光光学系で試料に一光し、試料がら発生される光
を他の集光光学系にニジ分光器に導入し、分光器にニジ
ケイ光、ラマン散乱光を分散し、該分散された光を検出
器で検出するとともに出方信号に変換し、該検出器から
の出方信号と前記光学チ曹ツバからの切換周波数と全加
減算パルスカウンタに挿入し、該加111c算パルスカ
ウンタにエフラマン散乱光励起用レーザの試料照射時に
発生するラマン散乱光とこれに電量したケイ光とノイズ
の強度に比例する出方信号から、ケイ光励起用レーザの
試料照射−に発生するケイ光とノイズの強度に比例する
出方信号全1jf1.算してラマン散乱光成分のみ)j
i;Lシ出し、がりこれt積算するようにしているので
、前記方法を確実にかつ適切に実施しうる効果がある。
Furthermore, according to the device of the present invention, the fluorescence intensity tiill
l! Two ellipsoidal laser beams are continuously oscillated toward the sample from a laser for excitation of fluorescent light and a laser for excitation of Raman scattering light, and the two laser beams are periodically and alternately applied to the sample to the acousto-optical switch. The 2@ laser beams are irradiated with the same time width, and the laser beam is focused on the sample using the condensing optical system. Light, Raman scattered light is dispersed, the dispersed light is detected by a detector and converted into an output signal, and the output signal from the detector and the switching frequency and total addition/subtraction pulse from the optical chisel filter are detected. The 111c pulse counter calculates the intensity of the fluorescence excitation laser from the output signal proportional to the intensity of the Raman scattering light generated when the sample is irradiated with the Ephraman scattering excitation laser, the fluorescent light charged thereto, and the noise. The total output signal 1jf1. is proportional to the intensity of fluorescence and noise generated during sample irradiation. Raman scattered light component only)j
Since i; L is calculated and t is integrated, the method described above can be carried out reliably and appropriately.

【図面の簡単な説明】[Brief explanation of the drawing]

第11杖本発明方法を実施する装置の一実施例を示すブ
ロック図、第2図は検出器から出力される出力信号であ
る光電子パルスと前置増幅器で増幅されたパルスと光学
千冒ツバ回転8@数参照信号の電圧波形を示す説明図で
ある。 1・・・ラマン散乱光励起用K レーザ、2・・・ケイ
光励起用A レーず、3・・・光学チwyバ、45.6
.7−・・ミラー、8・・・集光レンズ、!・・・試料
、10・・・集光レンズ、IL−・分光器、12・・・
検出器、1S・・・前置増幅器、14−・・光電子パル
ス加減算カウンタ、15・・・記録針、16・・・光学
チ冒ツバ回転周波数参照信号、17・・・ケイ光励起用
レーザの試料照射時に発生するケイ光とノイズの光電子
パルスi18・・・ラマン散乱光励起用レーザの試料照
射時ド発生するラマン散乱光とこれに1畳したケイ光と
ノイズの光電子パルス、19.20・・・前置増幅器で
増幅されたパルス。 代理人弁理士 薄 1)利:辛、− 第1山
11th Cane A block diagram showing an embodiment of the apparatus for carrying out the method of the present invention, FIG. 2 shows the photoelectronic pulse, which is the output signal output from the detector, the pulse amplified by the preamplifier, and the rotation of the optical chifura tube. 8 is an explanatory diagram showing the voltage waveform of the number reference signal. FIG. 1...K laser for Raman scattering light excitation, 2...A laser for fluorescence excitation, 3...Optical server, 45.6
.. 7-...Mirror, 8...Condenser lens,! ...Sample, 10...Condensing lens, IL-spectroscope, 12...
Detector, 1S... Preamplifier, 14-... Photoelectronic pulse addition/subtraction counter, 15... Recording needle, 16... Optical chip flange rotation frequency reference signal, 17... Laser sample for fluorescence excitation Photoelectronic pulse i18 of fluorescence and noise generated during irradiation...Photoelectronic pulse of Raman scattered light generated when irradiating a sample with the laser for excitation of Raman scattered light, fluorescence and noise multiplied by this, 19.20... Pulses amplified by a preamplifier. Representative Patent Attorney Bo 1) Li: Shin, - 1st Mountain

Claims (1)

【特許請求の範囲】 1 試料に向かってケイ光励起用レーザと、該ケイ光励
起用レーザより長波長のラマン散乱光励起用レーザとか
ら2種のレーザ光を周期的かつ交互に同じ時間幅で照射
し、ケイ光励起用レーザによる試料照射時のケイ光スペ
クトルと、ラマン散乱光励起用レーザによる試料照射時
のラマン散乱光スペクトルとケイ光スペクトルとの重畳
スペクトルとをそれぞれ測足し、ケイ光励起用レーザで
励起されたケイ光の強度とラマン散乱光に重畳したケイ
光の強度とを相対的に等しくなる裏うにIMM整し、ラ
マン散乱光励起用レーザによる試料照射に発生するラマ
ン散乱光とこれに1畳したケイ光とノイズとをその強度
に比例した出力信号に変換し、ケイ光励起用レーザによ
る試料照射時に発生するケイ光とノイズとをその強度に
比例した出力信号に変換するとともに、ラマン散乱光励
起用レーザによる照射時に発生する出力信号とケイ光励
起用レーザによる試料照射時に発生する出力信号とを減
算してラマン散乱光のみの信号を計数し、St算するこ
とを特徴とするケイ光を除去するレーザラマン分光方法
。 2 試料を照射することに工〕ケイ光を連続発振しかつ
ケイ光強度t−調整しうるケイ光励起用レーザと、前記
ケイ光励起用レーザよシも長波長光管連続発振するラマ
ン散乱光励起用レーザとを配置し、これらのレーザ光の
光路上に、これら2種のレーザ光を周期的かつ交互に同
じ時間幅で試料に照射させるための光学スイッチと、レ
ーザ光を試料に照射するための集光光学系とを設け、試
料から発生するケイ光、ラマン散乱光の光路上に、これ
ら2撫の光を分光器に導入するための集光光学系と、ケ
イ光、ラマン散乱光を分散するための分光器と、分散さ
れたケイ光、ラマン散〜乱光會検出する検出器とを配置
するとともに、前記検出器には該検出器がらの出力信号
と前記光学スイッチからの切換8波数信号とを人力し、
前記検出器出力信号のうちラマン散乱光励起レーザ照射
に同期して発生するラマン散乱光とこれに重畳したケイ
光とノイズの強度に比例する出力信号から、ケイ光励起
レーず照射に同期して発生するケイ光とノイズの強直に
比例する出力信号を同一加減算パルスカウンタ内で減算
してラマン散乱光成分のみt取り出しかつ榎薄する光電
子針数装置1を接続したことt特徴とするケイ光を除去
するレーザラマン分光装置。
[Claims] 1. A sample is periodically and alternately irradiated with two types of laser light from a fluorescence excitation laser and a Raman scattered light excitation laser having a longer wavelength than the fluorescence excitation laser with the same time width. , the fluorescence spectrum when the sample is irradiated by the fluorescence excitation laser and the superimposed spectrum of the Raman scattered light spectrum and the fluorescence spectrum when the sample is irradiated by the Raman scattering excitation laser are measured, and The IMM is arranged so that the intensity of the fluorescent light superimposed on the Raman scattered light is relatively equal to the intensity of the fluorescent light superimposed on the Raman scattered light, and the Raman scattered light generated when the sample is irradiated by the Raman scattered light excitation laser and the fluorescent light superimposed on the Raman scattered light are It converts light and noise into an output signal proportional to their intensity, and converts the fluorescence and noise generated when a sample is irradiated by a fluorescence excitation laser into an output signal proportional to its intensity. A laser Raman spectroscopy method for removing fluorescence characterized by subtracting an output signal generated during irradiation and an output signal generated during irradiation of a sample with a fluorescence excitation laser, counting signals of only Raman scattered light, and calculating St. . 2. A fluorescence excitation laser that continuously oscillates fluorescence and can adjust the fluorescence intensity t for irradiating the sample, and a Raman scattering excitation laser that continuously oscillates a long-wavelength light tube like the fluorescence excitation laser. and on the optical path of these laser beams, an optical switch for periodically and alternately irradiating the sample with the two types of laser beams with the same time width, and a concentrator for irradiating the sample with the laser beams. A light optical system is provided on the optical path of the fluorescent light and Raman scattered light generated from the sample, and a condensing optical system for introducing these two lights into the spectrometer, and a condensing optical system for dispersing the fluorescent light and Raman scattered light. and a detector for detecting dispersed fluorescence, Raman scattering, and scattered light. and manually,
Among the detector output signals, an output signal proportional to the intensity of Raman scattered light generated in synchronization with Raman scattered light excitation laser irradiation, fluorescence and noise superimposed thereon is generated in synchronization with fluorescence excitation laser irradiation. Fluorescence is removed by connecting a photoelectronic needle counting device 1 that subtracts an output signal proportional to the stiffness of fluorescence and noise in the same addition/subtraction pulse counter to extract and reduce only the Raman scattered light component. Laser Raman spectrometer.
JP15749181A 1981-10-05 1981-10-05 Laser raman spectroscopical method and device for elimination of fluorescence Pending JPS5858444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15749181A JPS5858444A (en) 1981-10-05 1981-10-05 Laser raman spectroscopical method and device for elimination of fluorescence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15749181A JPS5858444A (en) 1981-10-05 1981-10-05 Laser raman spectroscopical method and device for elimination of fluorescence

Publications (1)

Publication Number Publication Date
JPS5858444A true JPS5858444A (en) 1983-04-07

Family

ID=15650842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15749181A Pending JPS5858444A (en) 1981-10-05 1981-10-05 Laser raman spectroscopical method and device for elimination of fluorescence

Country Status (1)

Country Link
JP (1) JPS5858444A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04100962U (en) * 1991-02-05 1992-09-01 株式会社タカイシ carrier
JP2008544238A (en) * 2005-06-14 2008-12-04 フォーチュンベラブンド ベルリン イー ブイ Method and apparatus for generating and detecting Raman spectra
CN109752364A (en) * 2019-03-11 2019-05-14 广西科技大学 The asynchronous colour fading fluorescence elimination method of multicomponent system Raman spectrum

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5179388A (en) * 1975-01-06 1976-07-10 Hitachi Ltd RAMANBUNKOHOHOOYOBISOCHI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5179388A (en) * 1975-01-06 1976-07-10 Hitachi Ltd RAMANBUNKOHOHOOYOBISOCHI

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04100962U (en) * 1991-02-05 1992-09-01 株式会社タカイシ carrier
JP2008544238A (en) * 2005-06-14 2008-12-04 フォーチュンベラブンド ベルリン イー ブイ Method and apparatus for generating and detecting Raman spectra
CN109752364A (en) * 2019-03-11 2019-05-14 广西科技大学 The asynchronous colour fading fluorescence elimination method of multicomponent system Raman spectrum
CN109752364B (en) * 2019-03-11 2021-06-08 广西科技大学 Asynchronous fading fluorescence elimination method of multi-component system Raman spectrum

Similar Documents

Publication Publication Date Title
US4505586A (en) Laser Raman spectrophotometry system and adjustment thereof
EP0176625B1 (en) Method of laser emission spectroscopical analysis of steel and apparatus therefor
Lazzari et al. Detection of mercury in air by time-resolved laser-induced breakdown spectroscopy technique
CN108318459A (en) Pulsed Laser induces the measuring device and measuring method of photoluminescence spectrum
JPS5858444A (en) Laser raman spectroscopical method and device for elimination of fluorescence
JP2003035671A (en) Method and apparatus for laser multistage excited emission spectroscopic analysis
JP2007212145A (en) Transient absorption measuring instrument
JPS62112322A (en) Laser annealing device
Nissum et al. Polarization‐sensitive resonance CARS spectroscopy of magnesium octaethylporphine
JPS6312527B2 (en)
Näther et al. Temporal and spectral separation of singlet oxygen luminescence from near infrared emitting photosensitizers
Haushalter et al. Resonance enhanced alternating current-coupled inverse Raman spectrometry
JP2970709B2 (en) Background removal time-resolved Fourier spectroscopy
JPS63308543A (en) Scattered light measuring apparatus
JPH03245043A (en) Method and apparatus for spectrochemical analysis in plasma light emission for forming laser
JPS6251224A (en) Ultraviolet ray cleaning monitoring
JPH05288681A (en) Apparatus for coherent anti-stokes&#39; raman scattering spectroscopy
JPH04274743A (en) Laser emission analysis method
JPH0566200A (en) Method and device for measuring iodine concentration in gas
JP2994859B2 (en) Gas temperature measurement method
JPH02242140A (en) Breakdown spectral analysis method and apparatus
JPS62121322A (en) Intensity correcting method for cars spectroscopic apparatus
JPH03150448A (en) Method for measuring component concentration
JPS6161333B2 (en)
JPH01158333A (en) Atomic density measuring apparatus