JPH03150448A - Method for measuring component concentration - Google Patents

Method for measuring component concentration

Info

Publication number
JPH03150448A
JPH03150448A JP28861489A JP28861489A JPH03150448A JP H03150448 A JPH03150448 A JP H03150448A JP 28861489 A JP28861489 A JP 28861489A JP 28861489 A JP28861489 A JP 28861489A JP H03150448 A JPH03150448 A JP H03150448A
Authority
JP
Japan
Prior art keywords
light
stokes
wave number
dye laser
ase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28861489A
Other languages
Japanese (ja)
Inventor
Shohei Noda
野田 松平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28861489A priority Critical patent/JPH03150448A/en
Publication of JPH03150448A publication Critical patent/JPH03150448A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently generate ASE light and to allow the simultaneous execution of laser oscillation by using the ASE light as 2nd Stokes light and simultaneously measuring two kinds of gaseous molecules. CONSTITUTION:The fresh Coherent Anti-Stokes Raman Scattering light (CARS light) generated from the gaseous molecules existing in the part where two dye laser beams are condensed is spectrally analyzed and the concn. of gas is measured from a difference in the spectral intensity of the CARS of the gas. The Amplified Spontaneous Emission (ASE) of the one dye laser is positively generated and is applied as the 2nd Stokes light to the other gaseous molecules. The concns. of two kinds of the gaseous components are thus measured simultaneously. An example of the constitution of this Stokes dye laser is shown in fig. Even if there is the contamination of a measuring window in the course of the measurement, the relative intensity ratio of these two components is not affected.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、各種の燃焼ガスや、カリーナサイクル等多成
分ガス利用熱交換器等の成分濃度測定に適用されるCA
R3法による成分濃度計測法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention is a CA that is applied to measurement of component concentration of various combustion gases and heat exchangers using multi-component gases such as Kalina cycle.
This article relates to a component concentration measurement method using the R3 method.

[従来技術] 第3図は、従来の成分濃度計測法を説明するための図で
、エキシマレーザ01から発振したレーザ光02は、ハ
ーフミラ−03で2本のビームに分割され、それぞれの
レーザ光は色素レーザ04゜05を励起し、2つの異な
る波数に、、に5のレーザ光を発振する。
[Prior Art] Fig. 3 is a diagram for explaining a conventional component concentration measurement method, in which a laser beam 02 oscillated from an excimer laser 01 is split into two beams by a half mirror 03, and each laser beam is divided into two beams. excites the dye laser 04°05 and oscillates laser light at two different wave numbers, .

ここで波数KPのレーザ光をポンピング光06、波数に
5のレーザ光をストークス光07と呼ぶ。
Here, the laser light with a wave number KP is called pumping light 06, and the laser light with a wave number 5 is called Stokes light 07.

ストークス光の波数Ksは、K、−に5がチッ素の振動
エネルギ準位の基底準位と第1励起準位のエネルギ差に
等しくなるように調整しである。ポンピング光とストー
クス光はダイクロイックミラー08により、−木のビー
ムに合成され、レンズ09を通して=1測点10に集光
される。ここで11はラストセクション。そうすると、
レーザ光が集光された部分(計測点)から、そこに存在
するチッ素分子によって新しい第3の光、すなわちN2
CAR9光が発生される。この新しく発生したN2CA
R9光は、他の2つの透過したレーザ光に、、に5と共
に、レンズ12によって平行ビームにされ、ダイクロイ
ックミラー13によって、透過したレーザ光KP、KS
とN2CARS(WA )に分離される。
The wave number Ks of the Stokes light is adjusted so that K, -5 is equal to the energy difference between the ground level and the first excited level of the vibrational energy level of nitrogen. The pumping light and the Stokes light are combined into a -tree beam by a dichroic mirror 08, and the light is focused at =1 measurement point 10 through a lens 09. Here 11 is the last section. Then,
From the part where the laser light is focused (measurement point), a new third light, namely N2, is generated by the nitrogen molecules present there.
CAR9 light is generated. This newly generated N2CA
The R9 light is converted into a parallel beam by the lens 12 together with the other two transmitted laser beams KP and KS, and by the dichroic mirror 13, the transmitted laser beams KP and KS
and N2CARS (WA).

分離されたN2CAR9光14は、ミラー15、レンズ
〕6を通して分光器17に導かれる。
The separated N2CAR9 light 14 is guided to a spectrometer 17 through a mirror 15 and a lens]6.

分光器で分光されたN、、CARS光は、光電交換器1
8て電圧に変換され、信号処理器19に導かれ、N、C
ARS光のスペクトルが得られる。
The N, CARS light separated by the spectrometer is transferred to the photoelectric exchanger 1
8 is converted into a voltage and guided to a signal processor 19, N, C
A spectrum of ARS light is obtained.

このスペクトル強度からN2の濃度が求められる。KP
−KSを他の分子、例えば、N20またはNH3等の振
動エネルギ準位差(第1励起基準基底準位)に一致させ
るように波数に5を変化させると、N20またはNH3
のCARSスペクトルか同様にして得られ、それらのス
ペクトル強度から成分濃度を求める事が出来る。
The concentration of N2 is determined from this spectral intensity. K.P.
- When the wave number is changed by 5 to match the vibrational energy level difference (first excitation reference base level) of other molecules, such as N20 or NH3, N20 or NH3
The CARS spectra of the above are obtained in the same manner, and the component concentrations can be determined from their spectral intensities.

[発明が解決しようとする課題] 従来の方法では、同時には、1種類の分子濃度しか4測
できない。
[Problems to be Solved by the Invention] In the conventional method, only one type of molecule concentration can be measured four times at the same time.

従って、従来は、同時に2種類の分子濃度を=1測する
ためには、さらに、もう1台レーザを追加し、2番目の
分子に対応したストークス光(波数に、2)を発振させ
る必要があるので、装置がさらに大きくなり、又、コス
トも著しく高くなるという問題点があった。
Therefore, conventionally, in order to measure the concentration of two types of molecules at the same time = 1, it was necessary to add another laser and oscillate Stokes light (wave number 2) corresponding to the second molecule. Therefore, there are problems in that the device becomes larger and the cost becomes significantly higher.

本発明の課題は、上記従来の問題点を解消することがで
きる成分濃度計測法を提供することである。
An object of the present invention is to provide a component concentration measurement method that can solve the above-mentioned conventional problems.

[課題を解決するための手段〕 本発明による成分濃度計測法は、波数KPの色素レーザ
光と、波数に、10色素レーザ光とをそれぞれ計測点に
集光し、Kl’  KSIを1つの気体分子の振動エネ
ルギ準位差に合せることにより、上記2つの色素レーザ
光の集光された部分に存在する上記気体分子から発生ず
る新しいCARS光をスペクトル解析し、上記気体CA
RSのスペクトル強度の違いからガス濃度を計測する濃
度計測法において、波数Ks+の色素レーザのASEを
積極的に発生させ、第2のストークス光(波数K S2
)として他の気体分子に適用し、2g!類の気体成分濃
度を同時に計測することを特徴とする。即ち、本発明に
おいては、2種の分子を同時に計測するため、ストーク
ス光(波数に、1)を出している色素レーザが固Hに持
つASE光を積極的に利用し、このASE光を第2のス
トークス光(波数に、2)として使用することにより、
2種の気体分子を同時1こ:Li1FIすることができ
るよう1こなされている。
[Means for Solving the Problems] The component concentration measurement method according to the present invention focuses a dye laser beam with a wave number KP and a dye laser beam with a wave number of 10 on measurement points, and converts Kl' KSI into one gas. By matching the vibrational energy level difference of the molecules, the spectrum of the new CARS light generated from the gas molecules existing in the focused part of the two dye laser beams is analyzed, and the CARS light of the gas CA
In the concentration measurement method, which measures gas concentration from the difference in the spectral intensity of RS, ASE of a dye laser with a wave number Ks+ is actively generated, and the second Stokes light (wave number K S2
) to other gas molecules, 2g! It is characterized by simultaneously measuring the concentration of gaseous components of the following types. That is, in the present invention, in order to simultaneously measure two types of molecules, the ASE light possessed by the dye laser that emits Stokes light (wave number: 1) is actively utilized, and this ASE light is By using it as a Stokes light of 2 (wave number is 2),
It is designed to be able to perform Li1FI on two types of gas molecules at the same time.

[作用コ ASE光を通常とは逆に効率よく発生するには、ストー
クス光用の色素レーザを通常どおりレーザ発振に最適な
調整を行ない、その後、色素レーザのオシレータ部の励
起光を半分程度に弱めることにより、ASEを効率よく
発生させ、しかも、レーザ発振を同時に行なうことが出
きる。レーザ光一つ 振売とASEの強度比は、励起光の減衰度合で変えるこ
とが出来る。上記の方法でASEか効率よく発生する理
由は、以下のためと思われる。
[In order to generate ASE light more efficiently than usual, the dye laser for Stokes light is optimally adjusted for laser oscillation as usual, and then the excitation light in the oscillator section of the dye laser is reduced to about half. By weakening it, ASE can be generated efficiently and laser oscillation can be performed at the same time. The intensity ratio of single laser beam and ASE can be changed by changing the degree of attenuation of the excitation light. The reason why ASE occurs efficiently in the above method is considered to be as follows.

CARS用のストークス色素レーザは、通常2段増幅が
行なわれ、オシレータ、プリアンプ、メインアンプから
成り立つ。これらの各々には、色素セルが組み込まれて
おり、色素セルは、外部から励起光で励起される。この
時、各色素セルの濃度及び各セルに対する励起光強度の
比率は、レーザ発振に最適なように調整されており、A
SEはほとんど発生しない。しかし、この時、オシレー
タ部の励起光だけを半分程度に弱めると、オシレータか
らのレーザ光は、やはり半分程度に弱まる。
A Stokes dye laser for CARS usually undergoes two-stage amplification and consists of an oscillator, a preamplifier, and a main amplifier. Each of these incorporates a dye cell, which is excited with excitation light from the outside. At this time, the concentration of each dye cell and the ratio of excitation light intensity to each cell are adjusted to be optimal for laser oscillation.
SE hardly occurs. However, at this time, if only the excitation light from the oscillator section is weakened by about half, the laser light from the oscillator is also weakened by about half.

弱いレーザ光ではプリアンプ及びメインアンプに貯えら
れたエネルギを全部引出すことが出来ない(各アンプで
の利得は入射しレーザ光の強度に依存する)ため、各ア
ンプには余分なエネルギが貯えられていることになる。
With weak laser light, it is not possible to draw out all the energy stored in the preamplifier and main amplifier (the gain at each amplifier depends on the intensity of the incident laser light), so excess energy is stored in each amplifier. There will be.

この余分なエネルギが、ASE光として、まず、プリア
ンプで発生し、メインアンプで増幅され、CARSにで
も使用できOA− る程度の強度を持ったASE光として出力される。
This extra energy is first generated as ASE light in a preamplifier, amplified in a main amplifier, and output as ASE light with an intensity that is high enough to be used in CARS.

[実施例] 本発明方法を実施するための装置は、その基本的構成は
第3図に示すものと同しであるので省略するが、これと
異なるのは、第3図に示したストクス色素レーザ05の
内部である。第1図にこのストークス色素レーザの構成
の一例を示す。
[Example] The basic configuration of the apparatus for carrying out the method of the present invention is the same as that shown in FIG. 3, so the description thereof will be omitted. This is the inside of laser 05. FIG. 1 shows an example of the configuration of this Stokes dye laser.

第1図において、50がオシレータ部、51がプリアン
プ部、52がメインアンプであり、オシレータ部50で
は、プリズム53の背面54と、アウトプットカプラ5
5とで共振器を構成し、出力としてのレーザ光56を波
長選択は、プリズム53を回転して行なう。57はレー
ザの空間モードを規定するだめの絞りで、58,59.
60がそれぞれオシレータ、プリアンプ、メインアンプ
用の色素セル、61,62.63がそれぞれ各色素セル
励起用の励起光で、通常はエキシマレーザ光が用いられ
る。64はオシレータ励起光61の一部を遮ぎるための
遮蔽板である。
In FIG. 1, 50 is an oscillator section, 51 is a preamplifier section, and 52 is a main amplifier.
The prism 53 constitutes a resonator, and the wavelength of the laser beam 56 as an output is selected by rotating the prism 53. 57 is a stop that defines the spatial mode of the laser; 58, 59 .
60 are dye cells for the oscillator, preamplifier, and main amplifier, respectively; 61, 62, and 63 are excitation lights for exciting each dye cell, and excimer laser light is usually used. 64 is a shielding plate for blocking a part of the oscillator excitation light 61.

2成分同時Al11定時の波長選定は、次のようにして
行なわれる。H,OとNH,の濃度測定を例にとると、
まず、ASEを効率よく発生する色素ローダミン6Gを
選定する。ローダミン6GのASEの波長λASEは固
有の値で次の値となる。
Wavelength selection for simultaneous two-component Al 11 fixing is performed as follows. Taking the concentration measurement of H, O and NH as an example,
First, rhodamine 6G, a dye that efficiently generates ASE, is selected. The wavelength λASE of ASE of Rhodamine 6G is a unique value and has the following value.

たたし、KAsEはASEの波数である。Here, KAsE is the wave number of ASE.

この値を第2ストークス光として用いるので、λ52−
1 / K 52−571 n m      ・・−
(2)となる。たたし、KS2は第2ストークス光の波
数である。ASEの特性上第2ストークス光は、2つの
分子種のうちラマンシフトの小さい方に選定されなけれ
ばならない。N20とNH3のラマンシフトは、それぞ
れ3654cm−’、3334cmであるので、第2ス
トークス光に対応する分子はNH3となる。従って、ポ
ンピング レーザの波長λPは、 ここてKPはポンピングレーザの波数、K、2は第2ス
トークス光の波数、Δに□3はNH,のラマンシフトで
3334cm−’である。Ks2は(2)式からKS2
−17513cm−’であるので、λp −479nm
となる。
Since this value is used as the second Stokes beam, λ52−
1/K 52-571 nm...-
(2) becomes. However, KS2 is the wave number of the second Stokes light. Due to the characteristics of ASE, the second Stokes beam must be selected from the one with the smaller Raman shift of the two molecular species. Since the Raman shifts of N20 and NH3 are 3654 cm-' and 3334 cm, respectively, the molecule corresponding to the second Stokes light is NH3. Therefore, the wavelength λP of the pumping laser is 3334 cm-', where KP is the wave number of the pumping laser, K, 2 is the wave number of the second Stokes beam, Δ and □3 are the Raman shifts of NH, and 3334 cm-'. Ks2 is KS2 from equation (2)
-17513cm-', so λp -479nm
becomes.

第1ストークス光の波長λ、Iは λs+−1/Ks+−1/ (KP−△KH20)・・
・(4) ここで、ΔK +1□0はN20のラマンシフトで36
54cm−’である。
The wavelength λ of the first Stokes light, I is λs+-1/Ks+-1/ (KP-△KH20)...
・(4) Here, ΔK +1□0 is 36 with the Raman shift of N20.
It is 54 cm-'.

従って λs+−582nmとなる°。Therefore, λs+-582 nm.

第2図は、NH,及びN20の光強度を示す1例であっ
て、これによってそれぞれの濃度が判る。
FIG. 2 shows an example of the light intensity of NH and N20, which allows the concentration of each to be determined.

光強度と濃度の対比は、あらかじめ較正しておく。The contrast between light intensity and concentration is calibrated in advance.

他の気体、例えばCO等−にも利用できる。Other gases such as CO can also be used.

[発明の効果] (1)2成分が同時に計測できるので、計測途中に計測
窓汚れがあっても、それらの2成分の相対強度比は影響
を受けない。
[Effects of the Invention] (1) Since two components can be measured simultaneously, even if the measurement window becomes dirty during measurement, the relative intensity ratio of those two components is not affected.

(2)空気中のN2等被測定系でその濃度が分つている
分子を一方の測定分子に選定すれば、被1fll+足糸
が色々な外乱を受けても、他の成分を外乱の影響なしに
測定できる。
(2) If a molecule whose concentration is known in the measured system, such as N2 in the air, is selected as one of the molecules to be measured, even if the measured 1fl + byssus is subjected to various disturbances, other components will not be affected by the disturbance. can be measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法を実施するのに用いられる成分濃
度計測装置におけるストークス色素レーザの一例の構成
を示す図、第2図は、本発明方法によって得られるスペ
クトルの一例を示す図、第3図は、従来例の成分濃度計
測装置の構成図である。 50・・・オシレータ部、51・・・プリアンプ部、5
2・・・メインアンプ部、58〜60・・・色素セル、
61〜63・・・励起光、64・・・遮蔽板。
FIG. 1 is a diagram showing an example of the configuration of a Stokes dye laser in a component concentration measuring device used to carry out the method of the present invention, and FIG. 2 is a diagram showing an example of a spectrum obtained by the method of the present invention. FIG. 3 is a configuration diagram of a conventional component concentration measuring device. 50... Oscillator section, 51... Preamplifier section, 5
2... Main amplifier section, 58-60... Dye cell,
61-63... Excitation light, 64... Shielding plate.

Claims (1)

【特許請求の範囲】 波数K_Pの色素レーザ光と、波数K_S_1の色素レ
ーザ光とをそれぞれ計測点に集光し、K_P−K_S_
1を1つの気体分子の振動エネルギ準位差(基底準位と
第1振動励起準位との差)に合せることにより、上記2
つの色素レーザ光の集光された部分に存在する上記気体
分子から発生する新しいCARS光(Coherent
Anti−StokesRamanScatterin
g光)をスペクトル解析し、上記、気体CARSのスペ
クトル強度の違いからガス濃度を計測する濃度計測法に
おいて、 上記波数K_S_1の色素レーザのASE (AplifiedSpontaneousEmiss
ion)を積極的に発生させ、第2のストークス光(波
数にK_S_2)として他の気体分子に適用し、2種類
の気体成分濃度を同時に計測することを特徴とする成分
濃度計測法。
[Claims] A dye laser beam with a wave number K_P and a dye laser beam with a wave number K_S_1 are respectively focused on a measurement point, and the dye laser beam with a wave number K_P - K_S_
By matching 1 to the vibrational energy level difference (difference between the ground level and the first vibrational excitation level) of one gas molecule, the above 2 can be obtained.
New CARS light (Coherent
Anti-StokesRamanScatterin
In the concentration measurement method, in which the gas concentration is measured from the difference in the spectral intensity of the gaseous CARS, ASE (Amplified SpontaneousEmiss) of the dye laser with the wave number K_S_1 is analyzed.
ion) is actively generated and applied to other gas molecules as second Stokes light (wave number K_S_2) to simultaneously measure the concentrations of two types of gas components.
JP28861489A 1989-11-08 1989-11-08 Method for measuring component concentration Pending JPH03150448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28861489A JPH03150448A (en) 1989-11-08 1989-11-08 Method for measuring component concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28861489A JPH03150448A (en) 1989-11-08 1989-11-08 Method for measuring component concentration

Publications (1)

Publication Number Publication Date
JPH03150448A true JPH03150448A (en) 1991-06-26

Family

ID=17732489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28861489A Pending JPH03150448A (en) 1989-11-08 1989-11-08 Method for measuring component concentration

Country Status (1)

Country Link
JP (1) JPH03150448A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133800A (en) * 2008-12-03 2010-06-17 Mitsubishi Heavy Ind Ltd Gas component measuring device
US7998067B2 (en) 2005-12-20 2011-08-16 Olympus Medical Systems Corp. In-vivo image capturing apparatus
CN111999293A (en) * 2020-07-03 2020-11-27 中国农业大学 Fruit and vegetable freshness detection and evaluation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7998067B2 (en) 2005-12-20 2011-08-16 Olympus Medical Systems Corp. In-vivo image capturing apparatus
JP2010133800A (en) * 2008-12-03 2010-06-17 Mitsubishi Heavy Ind Ltd Gas component measuring device
CN111999293A (en) * 2020-07-03 2020-11-27 中国农业大学 Fruit and vegetable freshness detection and evaluation method

Similar Documents

Publication Publication Date Title
Druet et al. CARS spectroscopy
US4512660A (en) Picosecond broadband cars probe using the picosecond continuum
Xu et al. Methanol and the optically pumped far-infrared laser
JPH1030983A (en) Remote gas detector having micro-laser
US4269509A (en) Photoacoustic Raman spectroscopy
McDowell et al. Quasi‐cw inverse Raman spectroscopy of the ν1 fundamental of 13CH4
US4270864A (en) Photoacoustic rotational raman spectroscopy
JPH03150448A (en) Method for measuring component concentration
Minguzzi et al. Optoacoustic laser Stark spectroscopy in the ν2 band of 14NH3
US4197009A (en) Photoacoustic Raman spectroscopy
Rinnenthal et al. Direct high-resolution determination of the singlet–triplet splitting in NH using stimulated emission pumping
Kincaid et al. Raman cross‐section determination by direct stimulated Raman gain measurements
JP2002329911A (en) Laser device, amplifier and ultraviolet laser device
JP2021181909A (en) Difference detection conjugate compensation cars measurement apparatus
JP2003005233A (en) Uv laser device
Wu et al. Two-photon spectroscopy of helium 2 3 S 1–8 3 D 1, 2, 3 transitions at 544 nm with a 1.2 W compact laser system
JP2994859B2 (en) Gas temperature measurement method
JP2003195372A (en) Ultraviolet ray laser device
JPH05288681A (en) Apparatus for coherent anti-stokes' raman scattering spectroscopy
Bruchhausen et al. Resonant coherent anti-Stokes Raman scattering applied to vapor phase InI
JPH10206330A (en) Laser emission spectral analysis method and device therefor
JP2503164Y2 (en) Gas temperature measuring device
JPH075400Y2 (en) Multi-channel curse measuring device
US6982426B1 (en) Nitric oxide sensor and method
JPS60131428A (en) Cars spectroscopic apparatus