JPS5858230A - Soaking pit - Google Patents

Soaking pit

Info

Publication number
JPS5858230A
JPS5858230A JP15694881A JP15694881A JPS5858230A JP S5858230 A JPS5858230 A JP S5858230A JP 15694881 A JP15694881 A JP 15694881A JP 15694881 A JP15694881 A JP 15694881A JP S5858230 A JPS5858230 A JP S5858230A
Authority
JP
Japan
Prior art keywords
furnace
burner
exhaust gas
temperature
soaking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15694881A
Other languages
Japanese (ja)
Inventor
Yoshihiro Umegatsuji
梅ケ辻 好博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15694881A priority Critical patent/JPS5858230A/en
Publication of JPS5858230A publication Critical patent/JPS5858230A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/70Furnaces for ingots, i.e. soaking pits

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

PURPOSE:To make the temp. in a soaking pit of one-way firing in an upper part uniform and to reduce the unit of fuel in said furnace by providing plural pieces of suction ports for waste gases in a hearth part. CONSTITUTION:The combustion gases discharged from a main burner 22 in the upper part of the side wall of a soaking pit 21 are turned over from the position about half the furnace length in said furnace, and are sucked through plural pieces of the 1st suction ports 23 for waste gases provided in the hearth into a flue 25. Therefore, the combustion gases retain sufficient heat even when these gases flow into the ports 23 and can heat the parts around these parts substantially. An auxiliary burne 26 is provided below the burner 22. The burner 26 is installed in the 2nd suction port 27 for waste gases on the side wall of the furnace, and brick masonry parts 28 for partition are provided near the inlet of the port 27. Thus part of the combustion gases in the furnace 21 are conducted through the port 27 into the flue 25.

Description

【発明の詳細な説明】 本発明は均熱炉、特に炉内温度の均一化を図った一方向
焚均熱炉に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a soaking furnace, and particularly to a unidirectional firing soaking furnace in which the temperature inside the furnace is made uniform.

均熱炉は分塊圧延あるいは熱間圧延に先立つて鋼塊ある
いはブルーム、ビレット、スラブ4の鋼材を所定温度に
均一に加熱するための炉であシ、その加熱形式にはいく
つかあるが、最も一般的には炉側壁上部に設けたバーナ
を燃焼させて加熱するいわゆる上部一方向焚の形式のも
のである。
A soaking furnace is a furnace that uniformly heats a steel ingot, bloom, billet, or slab 4 to a predetermined temperature prior to blooming or hot rolling.There are several types of heating methods. The most common type is the so-called top one-way firing type, which heats by burning a burner installed on the upper part of the furnace side wall.

ところで、このような上部一方向焚均熱炉の炉内でのガ
ス流れは独特のU字形流れとなるために、反バーナ側の
上部が一番温度が高く、バーナ側の下部が一番温度が低
くなる。すなわち、上部一方向焚メ均熱炉であるために
、炉内でのガス流れは、バーナ吐出口よシ反バーナ壁に
そって流れ、反転して反バーナ側下部を通シ、バーナ側
下部の排ガ込 ス吸λ口よシ煙道を通り、大気へ排出される。従って、
バーナ側下部の温度は既に反バーナ側等で熱が放出され
たガスが流れてくるために、炉内温度としては一番低く
なるのである。
By the way, the gas flow inside the furnace of such an upper unidirectional firing soaking furnace has a unique U-shaped flow, so the upper part on the side opposite to the burner has the highest temperature, and the lower part on the burner side has the highest temperature. becomes lower. In other words, since it is an upper unidirectional firing soaking furnace, the gas flow in the furnace is from the burner outlet, along the opposite burner wall, reverses, and flows through the lower part on the opposite side to the burner. The exhaust gas passes through the exhaust gas inlet and into the flue, and is exhausted to the atmosphere. Therefore,
The temperature in the lower part of the burner side is the lowest in the furnace because the gas that has already released heat on the side opposite to the burner flows.

ところで、従来、均熱炉では、主に鋼塊を加熱していた
が、連続鋳造化が進み、それにつれて既設の均熱炉を有
効に活用して、連続鋳造後のブルームまたはスラブを均
熱炉で加熱することが広く行なわれるようになった。従
りて、現在の均熱炉としては、被加熱材として鋼塊よシ
、ブルームまたはスラブを多段積みして炉に装入し加熱
するという形にかわシ、特に均熱炉内での温度差が大き
くなるため、前述のような一方向焚均熱炉の場合、その
構造上の%黴に起因する炉内温度差の発生と相俟って、
本来の機能としての装入被加熱材の均一加熱が困難にな
ってきている。
By the way, in the past, soaking furnaces mainly heated steel ingots, but as continuous casting progresses, existing soaking furnaces can be effectively used to soak blooms or slabs after continuous casting. Heating in a furnace became widely used. Therefore, in current soaking furnaces, steel ingots, blooms, or slabs are stacked in multiple stages as the material to be heated, and are charged into the furnace and heated. As a result, in the case of a one-way soaking furnace like the one mentioned above, together with the occurrence of a temperature difference inside the furnace due to mold in its structure,
It is becoming difficult to uniformly heat the charged material to be heated, which is the original function.

その対策としては、従来、ブルームまたはスラブの装入
形態を種々に変えて炉内熱ガスのa週の込 円滑化を図りたシ、あるいは排ガス吸人口付近に補助バ
ーナを設置する等の対策を行なっているが抜本的な方策
でない。例えば、特にバーナ側下部付近の温度が低い設
備については既設の排ガス吸込口に補助バーナを設置し
、低温部分を強制的に解消する方法がある(%開昭56
−41816号)。
Conventional countermeasures have been to variously change the charging format of blooms or slabs in order to smoothen the flow of hot gas into the furnace for a week, or to install auxiliary burners near the exhaust gas suction port. We are doing this, but it is not a drastic measure. For example, for equipment where the temperature is particularly low near the lower part of the burner side, there is a method of installing an auxiliary burner at the existing exhaust gas inlet to forcibly eliminate the low temperature part (%
-41816).

しかし、補助バーナを設置している位置が排ガス吸込口
付近であるため、補助バーナのフレームのあたっている
ところのみしか加熱されず、したがって加熱効率が悪く
、バーナ側下部の温度上昇を効率的に行なうことはでき
ない。
However, because the auxiliary burner is installed near the exhaust gas inlet, only the area that is in contact with the auxiliary burner frame is heated, and therefore the heating efficiency is poor. It cannot be done.

その他、均熱炉の炉内温度差を減少させる方法としては
バーナ側の温度と反バーナ側の温度とを検出し、その温
度差でもって、バーナよシ噴出させるフレーム長さをか
えて行なう方法(第678454号特許参照)がある。
Another method for reducing the temperature difference inside the soaking furnace is to detect the temperature on the burner side and the temperature on the side opposite to the burner, and change the length of the flame from which the burner ejects based on the temperature difference. (See patent No. 678454).

さらに、バーナ付近で強制的に燃焼排ガスを循+7 座させ、バーナ側下部温度の焼Z不足を解消する作がい
たずらに複雑になるだけであって実用的価値は低いと思
われる。
Furthermore, the process of forcibly circulating the combustion exhaust gas near the burner and resolving the insufficient temperature at the lower part of the burner side becomes unnecessarily complicated, and is considered to have little practical value.

従って、バーナ側の下部の温度をあげるためにこれまで
は、炉内設定温度を高くするかあるいは、加熱時間を長
くしていたため、燃料原単位が冒くしかも炉内温度を高
くするために炉体の寿命低下がみられた。
Therefore, in order to raise the temperature at the bottom of the burner side, conventionally the set temperature inside the furnace was increased or the heating time was lengthened, which resulted in a decrease in fuel consumption. A decrease in the lifespan of the body was observed.

かくして、本発明の目的は、炉内での燃焼排ガスの流れ
を大巾に改善して、バーナ側下部の温度を上げるために
、従来のように、炉内設定温度を高くする必要がなく、
しかも、加熱時間も短縮することが出来、それによシ大
巾に燃料原単位低減を可能とした一方向焚均熱炉を提供
することである。
Thus, an object of the present invention is to significantly improve the flow of combustion exhaust gas in the furnace and to raise the temperature at the lower part of the burner side without increasing the set temperature in the furnace as in the conventional method.
Moreover, it is an object of the present invention to provide a unidirectional firing soaking furnace which can shorten the heating time and thereby greatly reduce the fuel consumption rate.

ここに、本発明は炉側壁上部に主バーナ装置を、炉11
壁下部に、補助バーナ装置を設けた上部一方向焚均熱炉
において、炉床部に少なくとも1以上の排ガス吸込口を
設けたことを特徴とする、上部一方向焚均熱炉である。
Here, the present invention provides a main burner device on the upper part of the furnace side wall, and a main burner device on the furnace side wall.
This is an upper one-way firing soaking furnace that is equipped with an auxiliary burner device at the lower part of the wall, and has at least one exhaust gas suction port in the hearth.

上記補助バーナ装置は、従来装置にみられるよ込 うに、炉側壁下部に設けた排ガス吸入口に設置してもよ
い。また、本発明による排ガス吸込口は炉床に設けるだ
けで十分であるが、従来装置のように炉@壁にも設ける
場合には、炉側壁の排ガス吸込口には、ダンパ装置を備
えるかあるいは仕切シ用のレンガ積み部を備えるかし一
〇、バーナからの燃焼ガスの流れを調整できるようにす
るのが好ましいO かくして、本発明によれば炉内での燃焼ガスの流れはバ
ーナ吐出口よシ直進しはy炉長の50%程度のところで
反転し、炉床に設置した排ガス吸込口より排出される。
The auxiliary burner device may be installed at the exhaust gas inlet provided at the lower part of the furnace side wall, as is the case with conventional devices. In addition, it is sufficient to provide the exhaust gas suction port according to the present invention on the hearth, but if it is also provided on the furnace @ wall like in the conventional device, the exhaust gas suction port on the furnace side wall should be equipped with a damper device or Preferably, the furnace is provided with brick masonry for the partition, allowing the flow of combustion gases from the burner to be adjusted.Thus, according to the invention, the flow of combustion gases in the furnace is controlled by the burner outlet. If it travels straight, it reverses at about 50% of the y furnace length and is discharged from the exhaust gas suction port installed in the hearth.

また、補助バーナからの燃焼ガスは、従来のように炉側
壁ド部に排ガス吸込口を設けた場合でも、この排ガス吸
込口よシすぐに91出されず、炉内を循環してから大部
分が炉床に設けた排ガス吸込口より排出される。したが
って、被加熱材の下部全体が平均「づに加熱され、その
ため均熱炉での加熱時間が鎧層され、さらに炉内設定温
度を低くすることができるため、燃料原単位の低減がO
T能となる。
In addition, even when an exhaust gas suction port is provided in the furnace side wall as in the conventional case, the combustion gas from the auxiliary burner is not immediately discharged through the exhaust gas suction port, but most of the combustion gas is circulated inside the furnace. is discharged from the exhaust gas inlet installed in the hearth. Therefore, the entire lower part of the material to be heated is heated at an average rate of 100%, which means that the heating time in the soaking furnace is shortened, and the set temperature inside the furnace can be lowered, resulting in a reduction in fuel consumption.
Becomes T-noh.

ところで、既設の均熱炉は、修理後のレンガ等の排出口
、つ塘りシンダホールが炉床にすでに設けられているこ
とから、そのような既設の均熱炉に本発明を実施すると
きKは、そのようなシンダホールを燃焼排ガスの吸込口
とし既設の煙道へ接続すると同時に、バーナ側下方に設
けられた従来の排ガス吸込口に補助バーナ装置を設け、
必要によシさらにこれにダンパ装置を取シ付けるかする
だけでよい。炉床に設ける排ガス吸込口の数および位置
は炉の寸法、容量、設定加熱温度に応じて適宜決定され
る。好ましくは、例えば、150 T/CHの炉寸法が
巾4100■、深さ4550m、長さ7700mの均熱
炉で炉内設定温度1250℃の場合、炉床上に(15t
r?のものを2個バーナ側より2mのところに設置すれ
ばよい。
By the way, in existing soaking furnaces, an outlet for bricks, etc. after repair and a cinder hole are already provided in the hearth, so when implementing the present invention in such existing soaking furnaces, K. At the same time, such a cinder hole is used as a suction port for combustion exhaust gas and connected to the existing flue, and at the same time, an auxiliary burner device is installed at the conventional exhaust gas suction port provided below the burner side.
If necessary, it is only necessary to attach a damper device to this. The number and position of exhaust gas suction ports provided in the hearth are appropriately determined depending on the dimensions, capacity, and set heating temperature of the furnace. Preferably, for example, when a soaking furnace of 150 T/CH has a width of 4100 mm, a depth of 4550 m, and a length of 7700 m, and the set temperature inside the furnace is 1250 °C, a
r? It is sufficient to install two of them 2 m from the burner side.

次に、添付図面に関連させて本発明をさらに説明する。The invention will now be further described in connection with the accompanying drawings.

第1図は、従来の均熱炉lの断面図であり、図中、均熱
炉1には主バーナ装置2と補助バーナ装瀘3とが一方向
焚の関係に配噛されている。被加熱材でおるブルーム4
はこれらのバーナ装置の燃焼ガスで加熱されている。炉
11111 m下部に設けた排カス吸込口5から排出さ
れた排カスはダウンテーク部6↓シ水平煙道7を経て煙
突8から大気中に排出される。炉内での燃焼ガスの流れ
は図中矢印で示すように、U字型流れとなる。したがっ
て、ブルーム4の下部では加熱不足が起こる。このよう
な加熱不足を解消するために補助バーナ装置8を設けて
いるのであるが、排ガス吸込口近傍に設置しているため
、補助バーナの・燃焼フレームの当っている箇所しか加
熱されず、犬、5暁ガスも大部分直ちに排ガス吸込口5
から排出ざノしてしまう。
FIG. 1 is a sectional view of a conventional soaking furnace 1, in which a main burner device 2 and an auxiliary burner casing 3 are arranged in a unidirectional firing relationship. Bloom 4 with heated material
are heated by the combustion gases of these burner devices. Waste waste discharged from the waste waste suction port 5 provided at the lower part of the furnace 11111m is discharged into the atmosphere from the chimney 8 through the downtake section 6↓ and the horizontal flue 7. The flow of combustion gas within the furnace becomes a U-shaped flow, as shown by the arrow in the figure. Therefore, insufficient heating occurs in the lower part of the bloom 4. The auxiliary burner device 8 is installed to solve this problem of insufficient heating, but because it is installed near the exhaust gas inlet, only the part of the auxiliary burner that is in contact with the combustion flame is heated. , 5 Akatsuki gas is also mostly immediately discharged from the exhaust gas inlet 5
It will be ejected from the tank.

第2図は本発明に係る均熱P21の略式断面図であり、
図示例では炉側壁上部の王バーナ装置22から吐出され
た燃焼ガスは凹甲、矢印で示したように炉内を流れ炉長
のはy牛分位の位電から反転して炉床に設けた複数の第
−排ガス吸込口23に吸引され排ガス導路24を糧て煙
道25に主る。
FIG. 2 is a schematic cross-sectional view of the soaking P21 according to the present invention,
In the illustrated example, the combustion gas discharged from the main burner device 22 at the upper part of the furnace side wall flows through the furnace as shown by the arrow in the concave shell, and the furnace length is reversed from the electric potential of y cows and installed in the hearth. The exhaust gas is sucked into the plurality of exhaust gas suction ports 23 and flows through the exhaust gas guide path 24 to the flue 25 .

ガスは反バーナ壁から反転して戻るものではなく、炉長
のはN50%程度のところから反転してくるため例えば
上記の第−排ガス吸込口28に至るときにも十分な熱を
保持しており、従ってこの近傍を十分加熱することがで
きる。
The gas does not turn around and return from the wall opposite to the burner, but at the furnace head it turns around from about 50% N, so it retains sufficient heat even when it reaches the above-mentioned exhaust gas suction port 28, for example. Therefore, the area around this area can be sufficiently heated.

次に、主バーナ11t22の下方には補助バーナ装置2
6が設けられている。図示例にあっては、この補助バー
ナ装[26は炉側壁の第二排ガス吸込口27内に設置さ
れているため、第二排ガス吸込口27の入口近傍に仕切
υ用のレンガ積み部28が設けられている。この第二排
ガス吸込口には仕切υ用のレンガ積み部に代えて適宜ダ
ンノく装置を設けて炉内の燃焼ガスの流れを調節するよ
うにしてもよい。その場合、燃焼ガスの一部はダンパ装
置の開閉の程度に応じ、この第二排ガス吸込口27から
煙道25を経て排出される。
Next, an auxiliary burner device 2 is provided below the main burner 11t22.
6 is provided. In the illustrated example, since this auxiliary burner device [26 is installed in the second exhaust gas suction port 27 on the furnace side wall, there is a brick masonry portion 28 for the partition υ near the entrance of the second flue gas suction port 27. It is provided. Instead of the brickwork for the partition υ, an appropriate damping device may be provided at the second exhaust gas inlet to adjust the flow of combustion gas in the furnace. In that case, a portion of the combustion gas is discharged from the second exhaust gas inlet 27 through the flue 25 depending on the degree of opening and closing of the damper device.

すなわち、このダンパ装置の開度調節により、炉内での
燃焼排ガスの流れが調節可能となる。よって、バーナ側
温度と反バーナ側温度を検出し、この温度差でもってダ
ンパー開度を調節すること株 により、ガス流lを変え、これによって均熱炉内の温度
差を皆無とすることもできる。なお、前述のように、既
設の炉に本発明を適用することは競合:の股肉を利用で
きることから右同であるが、その揚げには、均熱炉内で
の修理時・リレンガあるいは、炉床材又はスケールの排
出口(7ンダホール)として、均熱炉床に既に設置され
て伝るシンダホールの一部を利用して、この場所より排
ガスを抜き出し、さらにこれを従来のダウ/テーク部に
める覗窓(サイトホール)に接続して燃焼排ガス導路と
してもよい。更に、従来のバーナ側下部におる排ガス赦
込口に補助バーナおよびダンパ装置を設け、上記シンダ
ホールよシ排出される燃焼排ガスの流れをこのダンパ装
置で調節出来るものとするのである。
That is, by adjusting the opening degree of this damper device, the flow of combustion exhaust gas within the furnace can be adjusted. Therefore, by detecting the burner side temperature and the opposite side temperature and adjusting the damper opening degree based on this temperature difference, it is possible to change the gas flow and thereby eliminate the temperature difference in the soaking furnace. can. As mentioned above, applying the present invention to an existing furnace is the same because it is possible to use the crotch meat of a competitor. A part of the cinder hole that has already been installed in the soaking hearth is used as a discharge port for the hearth material or scale (7-dah hole), and exhaust gas is extracted from this location and then transferred to the conventional dow/take section. It may also be connected to a viewing window (sight hole) to serve as a combustion exhaust gas conduit. Furthermore, an auxiliary burner and a damper device are provided at the conventional exhaust gas allowance port in the lower part of the burner side, and the flow of the combustion exhaust gas discharged through the cinder hole can be adjusted by this damper device.

次に、既設の炉に本発明を適用した場合の具体例を説明
する。
Next, a specific example of applying the present invention to an existing furnace will be described.

均熱炉21の炉床に設置されているシ/ダホールを渠−
排ガス吸込口28として活用するとともに、このシンダ
ホールと煙道26とを排ガス導路24で連絡して、燃焼
排ガスの通路とし、さらに、既設の排ガス吸込口27付
近に補助バーナ26とす切シ用しンガ積み部28とを設
けて成る、容量160t/CM の一方向焚均熱炉にお
いて、ブルームを約160を装入後点火した。
Drain the cider hole installed in the hearth of the soaking furnace 21.
In addition to being utilized as the exhaust gas suction port 28, this cinder hole and the flue 26 are connected through the flue gas conduit 24 to serve as a passage for combustion exhaust gas.Furthermore, an auxiliary burner 26 and an auxiliary burner 26 are installed near the existing exhaust gas suction port 27. Approximately 160 pieces of bloom were charged into a one-way soaking furnace with a capacity of 160 t/CM and equipped with a shingle stacking section 28, and then ignited.

炉内昇熱温度は一定に設定したにもかかわらず、ブルー
ム下部@度の上昇は本発明によれば著しがった。すなわ
ち、炉内設定温度をいずれも1250℃としたにもかか
わらず、本発明によれば加熱8時間後にブルーム下部温
度1j1280’cまで上昇したが、一方、第1図に示
した従来装置による場合、10時間後でもプルーム下部
温度(表面温度)は1000℃であった。そのときの、
ブルーム上部の温度との差は、本発明例では60℃、従
来例では80℃であった。このように、本発明によれば
、加熱時間が8Hrと従来よ゛す2Hr短縮出来、燃料
原単位は174 X 10” Kcal/lと約17%
低減出来た。
Even though the heating temperature in the furnace was set constant, the rise in the temperature at the bottom of the bloom was remarkable according to the present invention. That is, even though the temperature inside the furnace was set to 1250°C in both cases, according to the present invention, the bloom lower temperature rose to 1j1280'c after 8 hours of heating, whereas in the case of the conventional apparatus shown in FIG. Even after 10 hours, the temperature at the bottom of the plume (surface temperature) was 1000°C. At that time,
The difference from the temperature at the top of the bloom was 60°C in the example of the present invention and 80°C in the conventional example. As described above, according to the present invention, the heating time can be reduced to 8 hours, which is 2 hours shorter than the conventional method, and the fuel consumption rate is 174 x 10" Kcal/l, which is about 17%.
I was able to reduce it.

本例の結果を次表Kまとめて示す。The results of this example are summarized in Table K below.

燃料;高炉ガス+コークス炉ガス 2700 Ka4/
NJブルー^下部温度(調定地点は図中↓で示す。
Fuel: Blast furnace gas + coke oven gas 2700 Ka4/
NJ Blue^ Lower temperature (Adjustment point is indicated by ↓ in the figure.

ブルーム上部温度:    II    O#  @な
お、バーナ匈の温度と反バーナ側との温度を検出し、こ
の温度でもって排ガス叡込口27に設けた排ガス切換用
のダンパ装置(1示せず)を制(財)し、炉内でのガス
流れを自動的にかえて炉内での温度外布を改善すること
もできる。更に、本例ではひとつのシンダホールより排
ガスを吸引したが、数個便用するかまたは、シンダホー
ルとは別置り のところに排ガスI&劇口を設置してもよい。
Bloom upper temperature: II O# @In addition, the temperature of the burner and the temperature of the side opposite to the burner are detected, and this temperature is used to control the damper device (1 not shown) for exhaust gas switching provided at the exhaust gas inlet 27. It is also possible to automatically change the gas flow within the furnace to improve temperature distribution within the furnace. Further, in this example, exhaust gas is sucked through one cinder hole, but several cinder holes may be used, or the exhaust gas I & exhaust port may be installed separately from the cinder hole.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の均熱炉の略式藺面図、および第2図は
、本発明に係る均熱炉の略式断面図で:均熱炉  25
:煙 道 出願人代理人  弁理士 広瀬章−
FIG. 1 is a schematic diagram of a conventional soaking furnace, and FIG. 2 is a schematic cross-sectional view of a soaking furnace according to the present invention: Soaking Furnace 25
: Akira Hirose, Patent Attorney, Patent Attorney for the applicant

Claims (1)

【特許請求の範囲】[Claims] 炉側壁上部に主バーナ装置を、炉W壁下部に、補助バー
ナ装置を設けた上部一方向焚均熱炉において、炉床部に
少なくとも1以上の排ガス吸込口を設けたことを特徴と
する、上部一方向焚均熱炉。
An upper one-way firing soaking furnace in which a main burner device is provided in the upper part of the furnace side wall and an auxiliary burner device is provided in the lower part of the furnace W wall, characterized in that at least one or more exhaust gas suction ports are provided in the hearth part, Upper one-way firing soaking furnace.
JP15694881A 1981-10-03 1981-10-03 Soaking pit Pending JPS5858230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15694881A JPS5858230A (en) 1981-10-03 1981-10-03 Soaking pit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15694881A JPS5858230A (en) 1981-10-03 1981-10-03 Soaking pit

Publications (1)

Publication Number Publication Date
JPS5858230A true JPS5858230A (en) 1983-04-06

Family

ID=15638833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15694881A Pending JPS5858230A (en) 1981-10-03 1981-10-03 Soaking pit

Country Status (1)

Country Link
JP (1) JPS5858230A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019078500A (en) * 2017-10-26 2019-05-23 三菱日立パワーシステムズ株式会社 Boiler, steam temperature adjustment method and refractory material for boiler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019078500A (en) * 2017-10-26 2019-05-23 三菱日立パワーシステムズ株式会社 Boiler, steam temperature adjustment method and refractory material for boiler

Similar Documents

Publication Publication Date Title
CN109055713A (en) A kind of double-regenerative heating furnace board briquette and method for controlling furnace temperature
ES8305482A1 (en) Method and system for controlling multi-zone reheating furnaces.
NO834076L (en) Oven with open chamber for burning of carbonaceous blocks
JP3937729B2 (en) Heating furnace atmosphere control method and heating furnace
US4069008A (en) Method and apparatus for heating a workpiece
US2776827A (en) Method of alternate low and high fuel firing of a soaking pit furnace
JPS5858230A (en) Soaking pit
KR20030035460A (en) Outside air interception apparatus of discharge door for furnace
JP7115995B2 (en) Furnace pressure control method for continuous heating furnace, furnace pressure control device, and continuous heating furnace
US2780453A (en) Continuous furnace for heating slabs or the like
CN209458945U (en) Low-nitrogen discharged regenerative gas heating furnace
CN107790702A (en) Closed baking device and method for tundish soaking water inlet
RU2045725C1 (en) Method and device for roasting ceramic articles
JPS5858238A (en) Soaking pit
US3690636A (en) Recuperative furnaces
JPS63501975A (en) Melting furnace and reheating furnace
SU840159A1 (en) Method of nonoxidative heating of metal
SU679163A3 (en) Tunnel-type furnace for roasting ceramic articles
JPS56149513A (en) Combustion controlling method for heat equipment
US2689119A (en) Continuous heating furnace
JP3341542B2 (en) Heating furnace, regenerative combustion device and combustion method
US2220585A (en) Continuous heating furnace
RU2091688C1 (en) Tunnel furnace
JPH09209032A (en) Method for controlling optimum furnace pressure in heating furnace
SU1470793A1 (en) Method of controlling the heating duty of multiple-zone once-through furnace with chamber-heating mode