JPS5858155A - Moving magnetic type crushing apparatus - Google Patents

Moving magnetic type crushing apparatus

Info

Publication number
JPS5858155A
JPS5858155A JP15839081A JP15839081A JPS5858155A JP S5858155 A JPS5858155 A JP S5858155A JP 15839081 A JP15839081 A JP 15839081A JP 15839081 A JP15839081 A JP 15839081A JP S5858155 A JPS5858155 A JP S5858155A
Authority
JP
Japan
Prior art keywords
magnetic field
moving magnetic
container
moving
field generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15839081A
Other languages
Japanese (ja)
Inventor
渡部 安雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP15839081A priority Critical patent/JPS5858155A/en
Priority to DE19823233926 priority patent/DE3233926A1/en
Publication of JPS5858155A publication Critical patent/JPS5858155A/en
Pending legal-status Critical Current

Links

Landscapes

  • Disintegrating Or Milling (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は移動磁界を用いて導電性粒子K11転運動を
与えて粉砕材料を粉砕する装置に関するe移動磁界中に
置かれた導電性粒子が1転等ランダムな運動を行ない粉
砕材料を粉砕することは特公昭51−5991号会報に
記載されており、これを第115に示す。tlX1図に
おいて1は反応容器、2は強磁性粒子、3は回転電磁界
インダクタ、4はクランク、5は連接棒である。この装
置1&Cよれば、反応容器1内には粉砕すべき粉砕材料
が挿入され、クランク4.連接棒5を介して反応容eI
&回転電磁界中を住復這勤させると、反応容器1内の強
磁性粒子2が激しく回転して粉砕材料を粉砕することが
できる。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to an apparatus for pulverizing a pulverized material by applying rolling motion to conductive particles K11 using a moving magnetic field. The method of pulverizing the pulverized material is described in the Bulletin of Japanese Patent Publication No. 51-5991, which is shown in No. 115. In the tlX1 diagram, 1 is a reaction vessel, 2 is a ferromagnetic particle, 3 is a rotating electromagnetic field inductor, 4 is a crank, and 5 is a connecting rod. According to this device 1&C, the pulverized material to be pulverized is inserted into the reaction vessel 1, and the crank 4. Reaction volume eI via connecting rod 5
& When moving through a rotating electromagnetic field, the ferromagnetic particles 2 in the reaction vessel 1 rotate violently and can pulverize the pulverized material.

ところが、反応容器l内の粉砕材料はその自重により反
応容器1の下方−に溜まり、反応容器の下方1でのみ粉
砕が行なわれる。従りて反応容器lの上方側は粉砕のた
めに役に立たず、回転電磁界インダクタのエネルギーを
有効に利用することができないという欠点を有していた
However, the pulverized material in the reaction container 1 accumulates in the lower part of the reaction container 1 due to its own weight, and pulverization is performed only in the lower part 1 of the reaction container. Therefore, the upper side of the reaction vessel 1 is useless for pulverization, and the energy of the rotating electromagnetic field inductor cannot be used effectively.

そこで本発明の目的は従来装置の欠点を除去し、粉砕の
ために投入されたエネルギーを有効に利用することがで
き、かつ粉砕すべき粉砕材料を収容した容器の全域で粉
砕することのできる装置を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an apparatus that can eliminate the drawbacks of conventional devices, can effectively utilize the energy input for crushing, and can crush the entire area of a container containing the crushed material to be crushed. Our goal is to provide the following.

次に本発明の一実施例を図面に基づいて詳細に説明する
Next, one embodiment of the present invention will be described in detail based on the drawings.

第2図は本発明の一実施例を示し、下部11に平板型の
移動磁界発生装置11、上部側に円弧状の移動磁界発生
装置間を配置し、これら移動磁界発生装置の間で上部側
に導電性粒子14を収容する容器13を配置して構成さ
れる。前方移動磁界発生装置11 、12の移動磁界の
移動方向Cσ、dをそれぞれ反対方向に定めている。こ
のように移動磁界発生装置11 、12を対向配置して
それぞれの移動磁界の移動方向を反対方向にすることに
より、各移動磁界発生装置11 、12の移動磁界の作
用を容器13内の導電性粒子14 K有効に与えること
ができる。また、移動磁界発生装置12を円弧状とした
ことkより、各移動磁界発生装置11.12に挾まれた
空間の磁界強度は各点にて異なり、例えば、移動磁界発
生装置11.12の中心部附近X−X断面部分と端部附
近のY−Y断面部分とでは移動磁界発生装置間の距離に
差があるように磁界強度にも差が生じる。そして、前記
X−X断面部分とY−Y断面部分とKおける磁界Y(v
−y)の関係にある。従ってそれぞれの磁界中にある導
電性粒子14 Kは磁界強度に比例した電磁力が作用し
て、粉砕力に差を生じ、Y−Y断面部分ではX−XFr
面部分よりも電界強電が強いので導電性粒子の運動も活
発もより強力な粉砕が行なわれる。このよ5に電界強度
を異ならせることにより、例えば容器13内に点線で示
すような仕切りを設け、容器の両端側で硬質の粉砕材料
を粉砕し、中央部で軟質の粉砕材料を粉砕することがで
きる。
FIG. 2 shows an embodiment of the present invention, in which a flat plate type moving magnetic field generating device 11 is arranged at the lower part 11, and an arc-shaped moving magnetic field generating device is arranged at the upper side, and between these moving magnetic field generating devices, the upper side A container 13 containing conductive particles 14 is arranged in the container 13 . The moving directions Cσ and d of the moving magnetic fields of the forward moving magnetic field generators 11 and 12 are set to be opposite directions, respectively. By arranging the moving magnetic field generators 11 and 12 so as to face each other and making the moving directions of their respective moving magnetic fields in opposite directions, the effect of the moving magnetic fields of the moving magnetic field generators 11 and 12 can be reduced to the electrical conductivity inside the container 13. Particles of 14 K can be effectively applied. Furthermore, since the moving magnetic field generators 12 are shaped like an arc, the magnetic field strength in the space between the moving magnetic field generators 11.12 differs at each point, for example, the center of the moving magnetic field generators 11.12. Just as there is a difference in the distance between the moving magnetic field generators, there is also a difference in magnetic field strength between the X-X section near the section and the Y-Y section near the end. Then, the magnetic field Y(v
-y). Therefore, the electromagnetic force proportional to the magnetic field strength acts on the conductive particles 14 K in each magnetic field, causing a difference in crushing force, and in the Y-Y cross section, X-XFr
Since the electric field is stronger than in the surface area, the movement and activity of the conductive particles is more powerful and the pulverization is carried out. By varying the electric field strength in this way, for example, by providing partitions as shown by dotted lines inside the container 13, hard pulverized material can be pulverized at both ends of the container, and soft pulverized material can be pulverized in the center. I can do it.

第3因は本発明の他の実施例を示すもので、第2図と異
なる点は下部便の移動磁界発生装置16を上に凸の円弧
状にし、上部9の移動磁界発生装置17は下部側の移動
磁界発生装置16よりも鉄心の内側円弧径を小さくして
いて構成される。容器18はそれぞれの移動磁界発生装
置の弧に合せて製作される。この結果、X、−X1断面
部分とY□−Yl  断面部分には磁界強度に差が生じ
、YI  Y0断面部分の方が、磁界強度は大きくなる
。又、容器の底面はYl−Y、断面の方がXl−X1断
面よりも低位側にあり、よって比重の大きな粉砕材料や
、重量の重い粉砕材料はY、−Y、断面側に移拗する。
The third factor shows another embodiment of the present invention, and the difference from FIG. The inner arc diameter of the iron core is smaller than that of the moving magnetic field generator 16 on the side. The container 18 is manufactured to match the arc of each moving magnetic field generator. As a result, there is a difference in magnetic field strength between the X, -X1 cross section and the Y□-Yl cross section, and the magnetic field strength is greater at the YI Y0 cross section. In addition, the bottom of the container is Yl-Y, and the cross-section is on the lower side than the Xl-X1 cross-section, so pulverized material with a large specific gravity or heavy pulverized material will migrate to the Y, -Y, cross-section side. .

これにより比重の大きな粉砕材料や重量の重い粉砕材料
を磁界強度が大きく粉砕力も大きいYl−Y□断面近脅
にてより強力に粉砕することができるとい5利点を有す
るO なお、前述では粉砕材料の粉砕についてのみ説明したが
、本発明の装置は液体、粉体の混合VC%利用できるも
のである。
This has the advantage that pulverized materials with large specific gravity or heavy pulverized materials can be more powerfully pulverized near the Yl-Y□ cross section, where the magnetic field strength is large and the pulverizing force is large. Although only pulverization has been described, the apparatus of the present invention can utilize a mixed VC% of liquid and powder.

以上に説明したように本発明によれば、対向配置した移
動磁界発生装置間の間隔が一様でないように、例えば移
動磁界発生装置の一方または両方な円弧状とし、磁界強
度の分布に強弱を持たせるように構成したこと(でより
、移動磁界発生装置のエネルギーを有効に利用でき、こ
れにより容器内で隅な(粉砕することができ、かつ磁界
強度の強弱を持たせたことにより、均一の電界強度のも
のに対して導電性粒子の運動は一段と複雑となるので粉
砕効率の向上をはかることができる利点を有する。
As explained above, according to the present invention, one or both of the moving magnetic field generators are shaped like an arc so that the distance between the opposing moving magnetic field generators is not uniform, and the distribution of magnetic field strength is varied. The energy of the moving magnetic field generator can be used effectively, and the magnetic field can be crushed evenly within the container. Since the motion of the conductive particles is more complicated than that of electric field strength of , it has the advantage that the pulverization efficiency can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

iI1図は従来装置の概略図、第2図は本発明の一実施
例の要部概略図、第3図は本発明の他の実施例の要部断
面図である。 11.12,16.17 : II動磁界発生装置、1
3 、18 :容器、14:導電性粒子。 第1口 第2旧 第3霞
Fig. iI1 is a schematic diagram of a conventional device, Fig. 2 is a schematic diagram of a main part of an embodiment of the present invention, and Fig. 3 is a sectional view of a main part of another embodiment of the invention. 11.12, 16.17: II dynamic magnetic field generator, 1
3, 18: Container, 14: Conductive particles. 1st exit 2nd old 3rd Kasumi

Claims (1)

【特許請求の範囲】 l)導電性粒子を収納した容器およびこの容器を挾んで
対向配置し移動磁界の寥勤方向を反対1陶とした移動磁
界発生装置を有し、この対向する移動磁界発生装置間の
対向距離を不均一とじたことを特徴とする移動磁界式粉
砕装置。 2、特許請求の範囲第1]J[k記載の装置において、
対向する移動磁界発生装置の一方が平板状で、他方が円
弧状であることを**とする移動磁界式粉砕装置。 3)特許請求の範囲第1]J[K95蛾の鋏會において
、対向する移動磁界発生装置の両方が円弧状であること
を特徴とする移動磁界発生装置。
[Scope of Claims] l) A container containing conductive particles and a moving magnetic field generating device disposed facing each other with the container sandwiched therebetween, the moving magnetic field being generated in the opposite direction, the opposing moving magnetic field generating device A moving magnetic field crushing device characterized by uneven facing distances between the devices. 2. Claim 1] In the apparatus according to J[k,
A moving magnetic field crusher in which one of the opposing moving magnetic field generators is flat and the other is arc shaped. 3) Claim 1] J[K95 A moving magnetic field generating device characterized in that both opposing moving magnetic field generating devices have an arc shape in a moth pincer meeting.
JP15839081A 1981-09-14 1981-10-05 Moving magnetic type crushing apparatus Pending JPS5858155A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP15839081A JPS5858155A (en) 1981-10-05 1981-10-05 Moving magnetic type crushing apparatus
DE19823233926 DE3233926A1 (en) 1981-09-14 1982-09-13 Comminuting, mixing or stirring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15839081A JPS5858155A (en) 1981-10-05 1981-10-05 Moving magnetic type crushing apparatus

Publications (1)

Publication Number Publication Date
JPS5858155A true JPS5858155A (en) 1983-04-06

Family

ID=15670676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15839081A Pending JPS5858155A (en) 1981-09-14 1981-10-05 Moving magnetic type crushing apparatus

Country Status (1)

Country Link
JP (1) JPS5858155A (en)

Similar Documents

Publication Publication Date Title
Basset et al. Designing a high energy ball-mill for synthesis of nanophase materials in large quantities
Puente et al. Dipole excitation of Na clusters with a non-local energy density functional
Shakery et al. Electrical discharge powder compaction
Kandemir et al. Polaron effects on an anisotropic quantum dot in a magnetic field
Gounaris et al. On Z0→ e+ e− γ decays
JPS5858155A (en) Moving magnetic type crushing apparatus
Yerkovic et al. Exploring the ultrasonic comminution of copper ores
Matar et al. Local density functional calculations of the electronic structures of the intermetallic systems U2Fe2Sn and UFe2Ge2
JPS63303001A (en) Production of flaky iron powder
JPS58210838A (en) Electromagnetic processing device for grinding, mixing, agitating etc.
Nettel Flux quantization with a high-T c model
Kato et al. Surface bipolaron formation in the two-electron-plus-ripplon system
GB2014065A (en) Production of fine metal powders
Koyama Contact of Different Plasmas in a Magnetic Mirror Field
Otrok X-ray Diffraction Analysis of the Compaction of Powder Mixtures During Rolling
Rudin Absence of binding of three fermions on a two-dimensional lattice
Bodnarchuk et al. Bending Moments in Oxides on the Surface of Particles of Dispersed Iron
JPS5851946A (en) Powder sorting apparatus
Munitz et al. Cold compaction of ball-milled nanograin iron alloys
Malykhin et al. Helical motion of electron beams: Formulation of the problem-Basic equations
COLLINS Theoretical elementary particle studies(Final Report, Sep. 1983- Jul. 1985)
JONES On the quantum kinetic theory of high energy plasmas[Ph. D. Thesis]
Jernot et al. Electrical Conductivity of Sintered Materials
BARASHENKOV Quarks, protons, and the universe((Russian book))(Kvarki, protony, vselennaia)
Kumar et al. A universal pressure-densification plot based on single particle compression and compaction models and its application to HIPing of dispersed powders