JPS5857702B2 - Mercury measurement method in SO↓2 containing gas - Google Patents

Mercury measurement method in SO↓2 containing gas

Info

Publication number
JPS5857702B2
JPS5857702B2 JP8782779A JP8782779A JPS5857702B2 JP S5857702 B2 JPS5857702 B2 JP S5857702B2 JP 8782779 A JP8782779 A JP 8782779A JP 8782779 A JP8782779 A JP 8782779A JP S5857702 B2 JPS5857702 B2 JP S5857702B2
Authority
JP
Japan
Prior art keywords
mercury
gas
absorption
solution
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8782779A
Other languages
Japanese (ja)
Other versions
JPS5612548A (en
Inventor
茂 西山
峰夫 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP8782779A priority Critical patent/JPS5857702B2/en
Publication of JPS5612548A publication Critical patent/JPS5612548A/en
Publication of JPS5857702B2 publication Critical patent/JPS5857702B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は簡単な操作でSO2含有ガス中の水銀を正確に
測定できる方法lこ関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for accurately measuring mercury in SO2-containing gas with simple operations.

ガス中の水銀測定法は通常直接強酸化性液たとえば王水
あるいは硫酸酸性KMnO4溶液lこ水銀を吸収させ、
これを原子吸光にて分析測定するのであるが、非鉄金属
製錬ガス等においてはガス中にSO2ガスが共存し、こ
のSO□含有ガス内部は還元性雰囲気であるためlこ、
上記方法で水銀測定を行なう場合、上記強酸化性液lこ
水銀が全量吸収されず、実際の濃度の杉以下程度の測定
値が得られるのlこすぎない。
The method for measuring mercury in gases usually involves directly absorbing the mercury in a strongly oxidizing liquid such as aqua regia or sulfuric acid KMnO4 solution.
This is analyzed and measured using atomic absorption, but SO2 gas coexists in non-ferrous metal smelting gas, and the inside of this SO□-containing gas is a reducing atmosphere.
When measuring mercury using the above method, the strongly oxidizing liquid does not absorb all the mercury, and the measured value is only a little below the actual concentration.

なお、上記ガス中の水銀は大部分が金属水銀蒸気の状態
であるが、そのほかに若干量のHg5e03等も含まれ
ている。
Although most of the mercury in the gas is in the form of metallic mercury vapor, it also contains a small amount of Hg5e03 and the like.

本発明者らはすてにSO2含有ガス中の水銀吸収剤とし
てH2O2と王水との組合せを用いる方法を匪案したが
、この方法は王水の残席食性のため、王水吸収ビン以降
の機器が損傷を受けやすく、かつ王水の強刺激臭のため
に取扱いが困難で、しかも測定者の個人差のあられれる
場合があるなどの欠点があった。
The present inventors have already proposed a method using a combination of H2O2 and aqua regia as a mercury absorbent in SO2-containing gas, but this method is difficult to use since aqua regia is edible. The disadvantages include that the equipment is easily damaged, the strong odor of aqua regia makes it difficult to handle, and there may be differences between individuals.

本発明は上記の従来法の欠点を解決し、SO2含有ガス
中の水銀を、該S 021こ妨害されることなく、簡単
な操作で正確8こ測定できる方法を陽案するもので、そ
の要旨とするところは、SO2ガスと水銀とを含有する
ガス中の水銀を測定する方法において、該SO2ガスと
水銀とを含有するガスをKOH2に2CO3,NaOH
およびNa2CO3よりなる群の中から選ばれた一種の
化合物を含むアルカリ性溶液で吸収処理し、次いで該ア
ルカリ性溶液で吸収処理したガスを硫酸酸性KMn04
溶液で吸収処理し、該吸収処理後の該アルカリ性溶液と
該硫酸酸性KMnO4溶液との二種の吸収液fこ該二種
の吸収処理容器と該二種の吸収処理浴器間の導管をそれ
ぞれ濃硫酸と水、または王水と水で順次洗浄した洗浄液
を加えた溶液の水銀を原子吸光法にて測定することを特
徴とするSO2ガス含有ガス中の水銀測定法lこある。
The present invention solves the above-mentioned drawbacks of the conventional methods and proposes a method that can accurately measure mercury in SO2-containing gas with simple operations and without interference with the SO2 gas. In the method for measuring mercury in a gas containing SO2 gas and mercury, the gas containing SO2 gas and mercury is mixed with KOH2, 2CO3, NaOH
and Na2CO3, and then absorb the gas with the alkaline solution into sulfuric acid acid KMn04.
After absorption treatment with a solution, two types of absorption liquids, the alkaline solution and the sulfuric acid acidic KMnO4 solution, are connected to the conduits between the two types of absorption treatment vessels and the two types of absorption treatment bath vessels, respectively. There is a method for measuring mercury in a gas containing SO2 gas, which is characterized by measuring mercury in a solution containing a washing solution sequentially washed with concentrated sulfuric acid and water, or aqua regia and water, by atomic absorption spectrometry.

次に、本発明を図面によって説明する。Next, the present invention will be explained with reference to the drawings.

第1図は本発明の実施に使用される複数の吸収ビンより
なる水銀吸収装置、第2図は第1図の吸収ビンの番号と
累積捕集水銀量との関係を示すグラフ図である。
FIG. 1 is a mercury absorption device comprising a plurality of absorption bottles used in the practice of the present invention, and FIG. 2 is a graph showing the relationship between the number of absorption bottles in FIG. 1 and the cumulative amount of mercury collected.

ここに、累積捕集水銀量とは各吸収ビンまでlこ捕集さ
れた水銀の合計量を吸引したガスI N’m3当りlこ
換算した値である。
Here, the cumulative amount of mercury collected is a value obtained by converting the total amount of mercury collected in each absorption bottle into 1 mercury per N'm3 of gas sucked.

また第1図ρこおいて、硫酸酸性KMnO4溶液の吸収
ビンを2個直列に連結しているが、これは2段吸収を意
味するものではなく、該吸収ビンは1個でもよい。
Furthermore, in FIG. 1 ρ, two absorption bottles for the sulfuric acid acidic KMnO4 solution are connected in series, but this does not mean two-stage absorption, and the number of the absorption bottles may be one.

第1晩において、水銀吸収装置は吸収ビン1にKOHm
液LOOmlを入れ、吸収ビン2および3に硫酸酸性K
MnO4溶液を各々1OOrrll入れ、これに吸引エ
アポンプ4と湿式ガスメータ5を接続したものである。
On the first night, the mercury absorber was filled with KOHm in absorption bottle 1.
Add LOOml of solution and add sulfuric acid acid K to absorption bottles 2 and 3.
1OOrrll of MnO4 solution was put into each tank, and a suction air pump 4 and a wet gas meter 5 were connected thereto.

吸収ビン1のKOHの濃度は300gyl、吸収ビン2
,3の硫酸酸性KMnO4溶液の濃度はKMnO410
”/lおよび硫酸溶液100勢である。
The concentration of KOH in absorption bottle 1 is 300 gyl, and the concentration of KOH in absorption bottle 2 is 300 gyl.
The concentration of the sulfuric acid acidic KMnO4 solution of ,3 is KMnO410
”/l and 100 volumes of sulfuric acid solution.

この吸収装置を用いて、濃度既知の測定ガス(1,4−
1m9/Nm’ )を吸引エアポンプ4で1〜21/f
nmの割合で601吸引した。
Using this absorption device, a measurement gas of known concentration (1,4-
1m9/Nm') by suction air pump 4 from 1 to 21/f
601 nm was aspirated.

この吸収操作において、吸収ビン1のK O:E(溶液
により、上記測定ガス中のSO2ガスは全量吸収され、
吸収ビン2および3の硫酸酸性KMnO4溶液で該ガス
中の水銀は全量吸収される。
In this absorption operation, the entire amount of SO2 gas in the measurement gas is absorbed by the K O:E (solution) in absorption bottle 1,
The sulfuric acid acidic KMnO4 solution in absorption bottles 2 and 3 absorbs all the mercury in the gas.

水銀測定は吸収後の上記KOH溶液と硫酸酸性KMnO
4溶液の2種の吸収液および吸収ビン1.2,3と導管
をそれぞれ王水と水で順次洗浄した洗浄液、または濃硫
酸と水で順次洗浄した洗浄液を集め、これを常法の原子
吸光にかけて分析測定を行なった。
Mercury measurement was performed using the above KOH solution after absorption and sulfuric acid acid KMnO.
Collect the two absorption solutions of the 4 solutions and the cleaning solution obtained by washing the absorption bottles 1.2 and 3 and the conduit with aqua regia and water, respectively, or the washing solution obtained by sequentially washing them with concentrated sulfuric acid and water, and perform atomic absorption using a conventional method. Analytical measurements were carried out over the period.

この分析測定結果は第2図において吸収ビンの番号と累
積捕集水銀量との関係において示されるが、その分析測
定値は実陳に用いた測定ガスの濃度値とよく合致してい
て、本発明方法がきわめて信頼性の高い測定法であるこ
とが確認された。
This analytical measurement result is shown in Figure 2 as a relationship between the absorption bottle number and the cumulative amount of mercury collected, and the analytical measurement value is in good agreement with the concentration value of the measured gas used in the actual demonstration. It was confirmed that the invented method is an extremely reliable measurement method.

さらに、本発明方法は機器の損傷がないため、経済的で
ある。
Furthermore, the method of the present invention is economical as there is no damage to equipment.

以上において、アルカリ性溶液としてKOHを使用した
場合について述べたが、K2CO3,NaOH2Na2
CO3のいずれを用いても同様な効果が得られることは
もちろんである。
In the above, the case where KOH was used as the alkaline solution was described, but K2CO3, NaOH2Na2
Of course, the same effect can be obtained using any of CO3.

本発明は以上のごとく、SO2含有ガス中の水銀を、該
SO2に妨害されることなく、′簡単な操作で正確に測
定できる方法を際供するもので、その工業的価値は太き
い。
As described above, the present invention provides a method for accurately measuring mercury in SO2-containing gas without being interfered with by the SO2, and has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に使用される吸収ビンよりなる水
銀吸収装置、第2図は第1図の吸収ビンの番号と累積捕
集水銀量との関係を示すグラフ図である。 第1図において、1・・・・・・吸収ビン(KOH溶液
)2.3・・・・・・吸収ビン(硫酸酸性KMnO4溶
液)4・・・・・・吸引エアポンプ。
FIG. 1 is a mercury absorption device comprising absorption bottles used in the practice of the present invention, and FIG. 2 is a graph showing the relationship between the number of absorption bottles in FIG. 1 and the cumulative amount of mercury collected. In FIG. 1, 1...absorption bottle (KOH solution) 2.3...absorption bottle (sulfuric acid acidic KMnO4 solution) 4...suction air pump.

Claims (1)

【特許請求の範囲】[Claims] 1 SO2ガスと水銀とを含有するガス中の水銀を測定
する方法において、該SO2ガスと水銀とを含有するガ
スをKOH2に2CO3,NaOHおよびNaCO3よ
りなる群の中から選ばれた一種の化合物を含むアルカリ
性溶液で吸収処理し、次いで該アルカリ性溶液で吸収処
理したガスを硫酸酸性KMnO4溶液で吸収処理し、該
吸収処理後の該アルカリ性溶液と該硫酸酸性KMnO4
溶液との二種の吸収液に該二種の吸収処理容器と該二種
の吸収処理容器間の導管をそれぞれ濃硫酸と水または王
水と水で順次洗浄した洗浄液を加えた溶液の水銀を原子
吸光法にて測定することを特徴とするSO2ガス含有ガ
ス中の水銀測定法。
1. In a method for measuring mercury in a gas containing SO2 gas and mercury, the gas containing SO2 gas and mercury is added to KOH2 with a type of compound selected from the group consisting of 2CO3, NaOH and NaCO3. The gas absorbed with the alkaline solution is then absorbed with a sulfuric acid acidic KMnO4 solution, and the alkaline solution after the absorption treatment and the sulfuric acid acidic KMnO4
The mercury in the solution is added to the two types of absorption liquid with the two types of absorption treatment vessels and the cleaning liquid that is obtained by sequentially cleaning the conduit between the two types of absorption treatment vessels with concentrated sulfuric acid and water or aqua regia and water. A method for measuring mercury in a gas containing SO2 gas, which is characterized by measuring by atomic absorption method.
JP8782779A 1979-07-11 1979-07-11 Mercury measurement method in SO↓2 containing gas Expired JPS5857702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8782779A JPS5857702B2 (en) 1979-07-11 1979-07-11 Mercury measurement method in SO↓2 containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8782779A JPS5857702B2 (en) 1979-07-11 1979-07-11 Mercury measurement method in SO↓2 containing gas

Publications (2)

Publication Number Publication Date
JPS5612548A JPS5612548A (en) 1981-02-06
JPS5857702B2 true JPS5857702B2 (en) 1983-12-21

Family

ID=13925777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8782779A Expired JPS5857702B2 (en) 1979-07-11 1979-07-11 Mercury measurement method in SO↓2 containing gas

Country Status (1)

Country Link
JP (1) JPS5857702B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3540995B2 (en) * 2000-09-08 2004-07-07 財団法人電力中央研究所 Method and apparatus for continuous separation analysis of metallic mercury and water-soluble mercury in gas

Also Published As

Publication number Publication date
JPS5612548A (en) 1981-02-06

Similar Documents

Publication Publication Date Title
Sanemasa The solubility of elemental mercury vapor in water
JP2001021548A (en) Analytical method and device for free fluorine in solution containing hydrofluoric acid
JPS5857702B2 (en) Mercury measurement method in SO↓2 containing gas
JP3892319B2 (en) Method and apparatus for measuring mercury concentration in exhaust gas
CN108489971A (en) A kind of rapid detection method of nitrogen oxides
Kirsten Recent developments in quantitative organic microanalysis
Baldeck et al. Determination of elemental mercury in an emission source having a high sulfur dioxide concentration by amalgamation with gold and ultraviolet spectrophotometry
Brescia Fundamentals of Chemistry Laboratory Studies
JP2004526967A (en) Pickling liquid acid analyzer
Benton The adsorption of gases by oxide catalysts
Jacobs et al. Colorimetric microdetermination of arsenic
Cotton et al. 167. Infrared spectra of manganese carbonyl hydride and deuteride
TWI636006B (en) Capturing and concentration measuring methods of chlorine dioxide gas and chlorine dioxide gas scavenger
Peterson et al. Evaluation of Inert Gas Fusion Method for Rapid Determination of Oxygen in Steel
Shoemaker Polarographic determination of traces of fluoride and iron
Milligan et al. Analytical procedures of the industrial hygiene group
Stonestreet et al. MICROCHEMICAL TECHNIQUE: IV. THE MICRODETERMINATION OF MERCURY AND HALOGEN IN ORGANOMERCURIC HALIDES
CN111088501B (en) Recovery and reuse method of element analyzer reduction tube
Rhodes The Detection and Determination of Cyanogen and Hydrogen Cyanide.
JPS6117955A (en) Analysis of gaseous ammonia
Praplan et al. Emissions from a boreal wetland: a perspective from total ozone reactivity measurements
Kapur et al. Estimation of Bromides in Presence of Other Halides
CN206505061U (en) A kind of air pollution index test tubes
JPS6361057B2 (en)
Phillips et al. A micro method for the determination of unsaturation