JPS585756A - Method and device for separation of transfer paper - Google Patents

Method and device for separation of transfer paper

Info

Publication number
JPS585756A
JPS585756A JP10418581A JP10418581A JPS585756A JP S585756 A JPS585756 A JP S585756A JP 10418581 A JP10418581 A JP 10418581A JP 10418581 A JP10418581 A JP 10418581A JP S585756 A JPS585756 A JP S585756A
Authority
JP
Japan
Prior art keywords
transfer paper
transfer
separation
corona discharger
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10418581A
Other languages
Japanese (ja)
Inventor
Yasushi Furuichi
泰 古市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP10418581A priority Critical patent/JPS585756A/en
Publication of JPS585756A publication Critical patent/JPS585756A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/14Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
    • G03G15/16Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer
    • G03G15/163Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using the force produced by an electrostatic transfer field formed between the second base and the electrographic recording member, e.g. transfer through an air gap
    • G03G15/1635Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using the force produced by an electrostatic transfer field formed between the second base and the electrographic recording member, e.g. transfer through an air gap the field being produced by laying down an electrostatic charge behind the base or the recording member, e.g. by a corona device
    • G03G15/1645Arrangements for controlling the amount of charge

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PURPOSE:To make separability of transfer paper stable by measuring the volume resistance of transfer paper with the relation rho=K/Id(K is a constant) from the electric current I flowing in the thickness direction of the transfer paper and the thickness (d) of the transfer paper and controlling electric dischargers with the signal obtained in this way. CONSTITUTION:A strain gage 15 measures the extent at which the shaft 9a of a roller 9 is moved by the entry of transfer paper 16 between rollers 8 and 9, thereby measuring the thickness of the transfer paper. A resistor 13 detects the electric current I flowing in the transfer paper between the rollers 8 and 9 in its thickness direction as voltage. A volume resistivity converter 14 determines the resistance rho of the transfer paper by the relation rho=K/(A,B) from the output B proportional to the thickness (d) of the transfer paper from the gage 15 and the current detection output A by the resistor 13. A corona discharger 1 for transfer and a corona discharger 2 for sepn. are controlled by the output signal of the converter 14. With such arrangement, the sepn. point of the transfer paper is constant and the separability of the transfer paper is stable.

Description

【発明の詳細な説明】 本発明は複写機、記録装置などの画像形成装置における
転写紙分離方法及びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for separating transfer sheets in image forming apparatuses such as copying machines and recording apparatuses.

複写機などにおいては第1図に示すように転写用コロナ
放電器1及び分離用コロナ放電器2を用いて画像転写及
び転写紙分離を行う方式がある。
In copying machines and the like, as shown in FIG. 1, there is a system in which image transfer and transfer paper separation are performed using a transfer corona discharge device 1 and a separation corona discharge device 2.

この方式では転写紙は案内板5で案内されて転写用コロ
ナ放電器1により感光体等の画像保持体4より画像が転
写され、分離用コロナ放電器2により画像保持体4から
分離されて搬送装置5により搬送される。ここで転写紙
の表面抵抗のみを測定し、この測定信号をコロナ放電器
1.2駆動用パワーパツク(高圧発生器)のフィードバ
ック端子に入力して転写紙分離を安定化する方法がある
。しかしこの方法では特定の転写紙しか使用できない。
In this method, the transfer paper is guided by a guide plate 5, an image is transferred from an image carrier 4 such as a photoreceptor by a transfer corona discharger 1, and is separated from the image carrier 4 by a separation corona discharger 2 and conveyed. It is transported by the device 5. Here, there is a method of measuring only the surface resistance of the transfer paper and inputting this measurement signal to the feedback terminal of the power pack (high voltage generator) for driving the corona discharger 1.2 to stabilize the separation of the transfer paper. However, this method only allows the use of specific transfer paper.

その理由は転写紙の転写用コロナ放電器1による帯電量
が転写紙の種類によって違う為、分離用コロナ放電器2
で転写紙を分離可能な量まで除電できない場合が生ずる
からである。
The reason for this is that the amount of charge on the transfer paper by the transfer corona discharger 1 differs depending on the type of transfer paper, so the separation corona discharger 2
This is because there may be cases where the charge cannot be removed to the extent that the transfer paper can be separated.

第2図は種類の異なる転写紙A、Bの電位変化を示す。FIG. 2 shows potential changes of different types of transfer papers A and B.

転写紙Bは分離用コロナ放電器2によシ実驚酌なゼロま
で除電されるが、転写紙Aは分離用コロナ放電器2で実
質的なゼロまでは除電されない。従って同一条件では転
写紙Bは画像保持体4より分離されるが、転写紙Aは画
像保持体4より分離されない。転写紙の種類の違いによ
る分離性の違いは機械のスピードにより分離点がずれる
ことによっても生じ、又画像保持体4の径1種類によっ
て若干の違いはあるがスピードアップ、高感度、高画質
の機械はど顕著に現われる現象である。
The charge on the transfer paper B is removed by the separation corona discharger 2 to a surprisingly low level of zero, but the charge on the transfer paper A is not removed to substantially zero by the separation corona discharger 2. Therefore, under the same conditions, transfer paper B is separated from image carrier 4, but transfer paper A is not separated from image carrier 4. Differences in separation properties due to different types of transfer paper are also caused by shifts in the separation point due to the speed of the machine, and although there are slight differences depending on the diameter of the image carrier 4, it is possible to increase speed, high sensitivity, and high image quality. Machinery is a phenomenon that is becoming increasingly apparent.

この原因は転写紙の体積抵抗によって転写紙の転写工程
で帯電される量が異なる為、除電工程で除電される転写
紙と除電されない転写紙が生ずることにある。もちろん
これは使用環境によっても異なる為、条件設定が難しく
て設定幅も狭くなり、従って安定性のない低品質の機械
となる。
The reason for this is that the amount of charge on the transfer paper during the transfer process differs depending on the volume resistance of the transfer paper, so that some transfer papers are charge-freed during the charge removal process, while others are not. Of course, this varies depending on the usage environment, so setting the conditions is difficult and the setting range is narrow, resulting in an unstable and low-quality machine.

そこで転写紙の表面抵抗を測定する代りに転写紙の体積
抵抗を測定する方法が提案されている。
Therefore, instead of measuring the surface resistance of the transfer paper, a method of measuring the volume resistance of the transfer paper has been proposed.

しかしこの方法は転写紙の両端間に流れる電流を検知す
るのみで、ある程度紙厚の効果も含まれているが精度の
高いものではない。すなわち転写紙の印加電圧1v、印
加電流を工9紙厚をd0面積をS9体積抵抗をρとする
と、−−IXdなる関係があるが、実際にはI、 V、
 Sの関係からPを代用してV、 S、 dを定数とし
工の変化を検知しているから工でdの効果が加味されて
いるものの精度の高い方法ではない。従って転写紙の分
離性が安定せず、使用可能な転写紙の種類が制限される
However, this method only detects the current flowing between both ends of the transfer paper, and although the effect of paper thickness is included to some extent, it is not highly accurate. That is, if the applied voltage of the transfer paper is 1 V, the applied current is 9, the paper thickness is d0, the area is S9, the volume resistance is ρ, there is a relationship of -IXd, but in reality I, V,
From the relationship of S, P is substituted and V, S, and d are constants to detect changes in machining, so although the effect of d is taken into account in machining, it is not a highly accurate method. Therefore, the separability of the transfer paper is unstable, and the types of transfer paper that can be used are limited.

本発明は上記のような不具合を改善し、転写紙の体積抵
抗を高い精度で測定できて転写紙の分離性が安定な転写
紙分離方法及びその装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to improve the above-mentioned problems and to provide a method and apparatus for separating a transfer paper in which the volume resistance of the transfer paper can be measured with high accuracy and the separability of the transfer paper is stable.

以下図面を参照しながら本発明について実施例をあげて
説明する。
The present invention will be described below by way of examples with reference to the drawings.

第5図は本発明の例を説明するための図である。FIG. 5 is a diagram for explaining an example of the present invention.

前述の方式において転写紙が転写工程に入る前にその体
積抵抗を体積抵抗測定手段で測定して駆動回路6.7の
フィードパンク端子F’Bに入力する。
In the above method, before the transfer paper enters the transfer process, its volume resistance is measured by a volume resistance measuring means and input to the feed puncture terminal F'B of the drive circuit 6.7.

この駆動回路6,7は転写用コロナ放電器1及び分離用
コロナ放電器2を駆動するパワーバックであり、パワー
バック6は転写紙の体積抵抗が高くなると出力が下がる
。パワーバック7は転写紙の体積抵抗が高くなると出方
が上がって除電用コロナ放電器2による除電量が上がる
。転写紙の体積抵抗を測定する時間と転写工程及び分離
工程とではそれぞれ時間差があるからその補正を行う手
段をパワーバック6.7のフィードバック入力側に設け
る。体積抵抗測定手段は転写紙が給紙装置を出てから転
写工程に入るまでの間に転写紙の体積抵抗を測定するが
、第6図の実施例で後述する如く1対のローラ8,9、
直流定電圧電源10.抵抗11〜13等が用いられる。
The drive circuits 6 and 7 are power backs that drive the transfer corona discharger 1 and the separation corona discharger 2, and the output of the power back 6 decreases as the volume resistance of the transfer paper increases. As the volume resistance of the transfer paper becomes higher, the power back 7 will come out more and the amount of charge removed by the charge removal corona discharger 2 will increase. Since there is a time difference between the time for measuring the volume resistance of the transfer paper and the transfer and separation steps, a means for correcting this is provided on the feedback input side of the power back 6.7. The volume resistance measuring means measures the volume resistance of the transfer paper from when the transfer paper leaves the paper feeder until it enters the transfer process, and as will be described later in the embodiment shown in FIG. ,
DC constant voltage power supply 10. Resistors 11 to 13, etc. are used.

転写紙の体積抵抗ρと転写用コロナ放電器1による帯電
量とは例えば第4図に示すようにほぼ直線的な関係■と
なり、体積抵抗ρ1の転写紙が転写工程でV、に帯電す
る場合、体積抵抗ρ2の転写紙は転写工程でv2に帯電
してしまう。ここで転写紙の転写工程での帯電量を一定
とする場合その帯電量とパワーバック6の出力とは第4
図のような関係■になシ、体積抵抗ρ1の転写紙を基準
にとると体積抵抗ρ2の転写紙に対してはパワーバック
6の出力を&まで下げてやればよいことになる。以上の
ことにより転写紙の電荷の動きをみると、第5図のよう
になる。基準となる体積抵抗ρ1の転写紙は第5図実線
のようにt2時点でV3なる電位に除電されて分離する
。体積抵抗ρ2の転写紙の場合体積抵抗測定手段からの
体積抵抗測定信号に応じてパワーバック6の出力を変え
るならば転写工程での帯電量が体積抵抗ρ1の転写紙と
同じV+になる。また体積抵抗測定信号に応じてパワー
バック7の出力を変えるならば第5図点線のようにt2
時点でv3になる。実際の機械においてはパワーバック
6の出力を下げすぎると体積抵抗の高い転写紙でも転写
不良が発生する場合があり、又分離用コロナ放電器2に
よる除電量を上げすぎると分離用コロナ放電器2のリー
クが発生するので、パワーパック6゜上 70両方の出ガを体積抵抗測定信号により制御する方が
良い。
The volume resistance ρ of the transfer paper and the amount of charge by the transfer corona discharger 1 have a nearly linear relationship, for example, as shown in FIG. , a transfer paper having a volume resistance ρ2 is charged to v2 during the transfer process. Here, if the amount of charge of the transfer paper in the transfer process is constant, the amount of charge and the output of the power back 6 are the fourth
If the relationship ■ shown in the figure is not satisfied, and if we take the transfer paper with the volume resistance ρ1 as a reference, then for the transfer paper with the volume resistance ρ2, it is sufficient to lower the output of the power back 6 to &. As a result of the above, the movement of the charge on the transfer paper is as shown in Fig. 5. The transfer paper having the volume resistance ρ1 serving as a reference is neutralized to a potential of V3 at time t2 and separated as shown by the solid line in FIG. In the case of a transfer paper having a volume resistance ρ2, if the output of the power back 6 is changed in accordance with the volume resistance measurement signal from the volume resistance measuring means, the amount of charge in the transfer process becomes V+, which is the same as that of the transfer paper having a volume resistance ρ1. Also, if the output of the power back 7 is changed according to the volume resistance measurement signal, it will be t2 as shown by the dotted line in Figure 5.
It will be v3 at this point. In an actual machine, if the output of the power back 6 is reduced too much, transfer defects may occur even on transfer paper with high volume resistance, and if the amount of charge removed by the separation corona discharger 2 is increased too much, the separation corona discharger 2 Therefore, it is better to control the output of both the upper and lower parts of the power pack 6° and 70 using the volume resistance measurement signal.

以上のようにすれば種々の転写紙は分離点が一定になる
から同じ様に分離でき、従来転写紙の種類や環境で変化
していた分離幅(1,〜t2に相当)も一定で広くでき
、転写紙の特性が変わっても転写。
By doing the above, various transfer papers can be separated in the same way because the separation point is constant, and the separation width (corresponding to 1, ~t2), which conventionally varied depending on the type of transfer paper and environment, is constant and wide. It can be transferred even if the characteristics of the transfer paper change.

分離時にその補正をするから転写紙の自由使用が可能と
なる。
Since the correction is made at the time of separation, the transfer paper can be used freely.

第6図は本発明の一実施例を示し、オフ図はその一部を
示す。ローラ8,9は+400vの定電圧電源10に抵
抗11〜13を直列に介して接続される。電源を定電圧
電源としたのは体積抵抗変換器14の変換定数を簡素化
する為である。ローラ8,9は導電性の金属ローラが用
いられ、その一方9が他方8より離する方向へ移動可能
に設けられていて図示しないばねでローラ8,9が圧接
する習性が与えられている。ローラ9を移動可能にした
のは転写紙の厚さが変わって転写紙とローラ8,9との
接触面積を一定にすることも含まれている。ひずみゲー
ジ15はローラ9の軸9aにより駆動される様に配置さ
れ、転写紙16がローラ8.9間に搬入したことによる
ローラ9の軸9aの移動量を測定することによって転写
紙の厚さを測定する。抵抗16社ローラ8.9間の転写
紙にその厚さ方向へ流れる電流工を電圧として検出し、
体積抵抗変換器14はひずみゲージ15からの転写紙の
厚さdに比例した出力■と抵抗13による電流検出出力
のとより転写紙の抵抗ρをρ=にτ6(x:定数)なる
関係式で求める。パワーパック6は体積抵抗変換器14
の出力信号がフィードバック端子FBに入力され、抵抗
13に流れる電流が小さく転写紙の厚さが薄ければ出力
が下がる様に制御される。
FIG. 6 shows an embodiment of the present invention, and an off-line diagram shows a part thereof. The rollers 8 and 9 are connected to a constant voltage power supply 10 of +400V via resistors 11 to 13 in series. The reason why the power source is a constant voltage power source is to simplify the conversion constant of the volume resistance converter 14. The rollers 8 and 9 are conductive metal rollers, one of which 9 is movable in a direction away from the other 8, and a spring (not shown) provides a tendency for the rollers 8 and 9 to come into pressure contact with each other. The reason why roller 9 is made movable is that the thickness of the transfer paper changes so that the contact area between the transfer paper and rollers 8 and 9 remains constant. The strain gauge 15 is arranged to be driven by the shaft 9a of the roller 9, and measures the amount of movement of the shaft 9a of the roller 9 when the transfer paper 16 is carried between the rollers 8 and 9, thereby determining the thickness of the transfer paper. Measure. The electric current flowing in the thickness direction of the transfer paper between the 16 resistor rollers 8 and 9 is detected as a voltage.
The volume resistance converter 14 uses the output ■ proportional to the thickness d of the transfer paper from the strain gauge 15 and the current detection output from the resistor 13 to convert the resistance ρ of the transfer paper to ρ=τ6 (x: constant) using a relational expression. Find it with The power pack 6 is a volume resistance converter 14
The output signal is input to the feedback terminal FB, and the output is controlled to decrease if the current flowing through the resistor 13 is small and the thickness of the transfer paper is thin.

今転写紙がロー28.9間に搬入されると、定電圧電源
10がオンされ、転写紙に流れる電流が抵抗15で電圧
に変換されて信号のが現われる。又ローラ9が転写紙の
厚さ分移動してその移動量がひずみゲージ15で検知さ
れ信号■が現われる。この信号源は転写紙がローラ8,
9間を通過している時のみ動作する様になっている。体
積抵抗変換器14の出力信号は転写紙が転写用コロナ放
電器1に及ぶまで図示しない遅延回路で遅延され転写紙
の長さ分だけパワーバック乙のフィードバック端子FB
に入力され続ける。
When the transfer paper is now carried between the rows 28 and 9, the constant voltage power supply 10 is turned on, and the current flowing through the transfer paper is converted into voltage by the resistor 15, and a signal appears. Further, the roller 9 moves by the thickness of the transfer paper, and the amount of movement is detected by the strain gauge 15, and a signal - appears. This signal source means that the transfer paper is connected to the roller 8,
It is designed to operate only when passing between 9 and 9. The output signal of the volume resistance converter 14 is delayed by a delay circuit (not shown) until the transfer paper reaches the transfer corona discharger 1, and is then applied to the feedback terminal FB of the power back B by the length of the transfer paper.
continues to be input.

この実施例によれば従来転写紙の種類が変わった時ン環
境が変わった時転写紙分離性が不安定になった(Dに対
し、トレーシングペーパーの様な紙厚の薄いもの、高温
高湿下でも転写紙分離の不良は全く々くなった。しかし
若干転写不良の発生する転写紙があった。そこで本発明
の他の実施例では体積抵抗測定信号を体積抵抗の低い転
写紙についてはパワーパック6のフィードバック端子に
入力し、体積抵抗の高い転写紙についてはパワーパック
6.7の両方のフィードバック端子に入力して転写不良
による画像濃度の低下を防止した。
According to this example, the separability of the transfer paper became unstable when the type of transfer paper changed or the environment changed (in contrast to D, thin paper such as tracing paper, high temperature and high temperature Even under humid conditions, the number of transfer paper separation defects was completely reduced.However, there were some transfer papers that caused some transfer defects.Therefore, in another embodiment of the present invention, the volume resistance measurement signal was used for transfer papers with low volume resistance. The signal was input to the feedback terminal of the power pack 6, and for transfer paper with high volume resistance, the signal was input to both feedback terminals of the power pack 6 and 7 to prevent a decrease in image density due to transfer failure.

以上のように本発明によれば転写紙の厚さ方向に流れる
電流■と転写紙の厚さdより転写紙の体積抵抗ρをρ=
KI a (x ’定数)なる関係で測定するようにし
だので、転写紙の体積抵抗を高い精度で測定することが
できる。従ってこの測定信号で転写用コロナ放電器及び
又は分離用コロナ放電器を制御することにより転写紙分
離性を転写紙の種類や環境が変わっても安定にすること
ができる。
As described above, according to the present invention, the volume resistance ρ of the transfer paper can be calculated from the current ■ flowing in the thickness direction of the transfer paper and the thickness d of the transfer paper.
Since the measurement is performed using the relationship KI a (x' constant), the volume resistance of the transfer paper can be measured with high accuracy. Therefore, by controlling the transfer corona discharger and/or the separation corona discharger using this measurement signal, the separability of the transfer paper can be made stable even if the type of transfer paper or the environment changes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来方法を説明するだめの図、第3
図〜第5図は本発明の例を説明するだめの図、牙6図は
本発明の一実施例の構成説明図、オフ図は牙6図の一部
拡大図である。 1・・・転写用コロナ発生器、2・・・分離用コロナ発
生器、6.7・・・パワーパック、8,9・・・ローラ
、10・・・定電圧電源、11〜13・・・抵抗、14
・・・体積抵抗変換器、15・・・ひずみゲージ・。
Figures 1 and 2 are diagrams for explaining the conventional method;
Figures 5 to 5 are schematic diagrams for explaining examples of the present invention, Figure 6 is an explanatory diagram of the configuration of an embodiment of the present invention, and the off-line diagram is a partially enlarged view of Figure 6. DESCRIPTION OF SYMBOLS 1... Corona generator for transfer, 2... Corona generator for separation, 6.7... Power pack, 8, 9... Roller, 10... Constant voltage power supply, 11-13...・Resistance, 14
...Volume resistance converter, 15...Strain gauge.

Claims (1)

【特許請求の範囲】 1、画像保持体上の画像が転写用コロナ放電器により転
写された転写紙を画像保持体より分離用コロナ放電器に
より分離させる転写紙分離方法において、転写紙の厚さ
方向に流れる電流Tと転写紙の厚さdより転写紙の体積
抵抗ρをρ−に、(X:定数)なる関係で測定し、この
測定信号により転写用コロナ放電器及び又は分離用コロ
ナ放電器を制御することを特徴とする転写紙分離方法。 2、画像保持体上の画像が転写用コロナ放電器によシ転
写された転写紙を画像保持体より分離用コロナ放電器に
より分離させる転写紙分離装置において、転写紙が転写
位置へ搬送される通路に配置された1対のローラと、こ
の1対のローラに搬入された転写紙の厚さdを測定する
厚さ測定手段と、前記ローラに接続される定電圧電源と
、前記ローラ間の転写紙に流れる電流工を一定する手段
と、この手段及び前記厚さ測定手段からの信号により転
写紙の抵抗RをR=Kxa(K:定数)なる関係で測定
しこの測定信号により、転写用コロナ放電器を駆動する
駆動回路及び又は1分離用コロナ放電器を駆動する駆動
回路を制御して転写紙分離性を安定化する手段とを備え
たことを特徴とする転写紙分離装置。
[Claims] 1. In a transfer paper separation method in which a transfer paper on which an image on an image carrier is transferred by a transfer corona discharger is separated from the image carrier by a separation corona discharger, the thickness of the transfer paper is From the current T flowing in the direction and the thickness d of the transfer paper, the volume resistance ρ of the transfer paper is measured as ρ−, where (X: constant), and this measurement signal is used to activate the transfer corona discharger and/or the separation corona discharger. A transfer paper separation method characterized by controlling an electric device. 2. In a transfer paper separation device that separates the transfer paper on which the image on the image carrier has been transferred by the transfer corona discharger from the image carrier by the separation corona discharger, the transfer paper is conveyed to the transfer position. A pair of rollers arranged in a passage, a thickness measuring means for measuring the thickness d of the transfer paper carried into the pair of rollers, a constant voltage power supply connected to the rollers, and a The resistance R of the transfer paper is measured by the relationship R=Kxa (K: constant) using a means for keeping the electric current flowing through the transfer paper constant, and a signal from this means and the thickness measuring means. A transfer paper separation device comprising: a drive circuit for driving a corona discharger; and/or means for controlling a drive circuit for driving a one-separation corona discharger to stabilize transfer paper separation.
JP10418581A 1981-07-03 1981-07-03 Method and device for separation of transfer paper Pending JPS585756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10418581A JPS585756A (en) 1981-07-03 1981-07-03 Method and device for separation of transfer paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10418581A JPS585756A (en) 1981-07-03 1981-07-03 Method and device for separation of transfer paper

Publications (1)

Publication Number Publication Date
JPS585756A true JPS585756A (en) 1983-01-13

Family

ID=14373931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10418581A Pending JPS585756A (en) 1981-07-03 1981-07-03 Method and device for separation of transfer paper

Country Status (1)

Country Link
JP (1) JPS585756A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5655176A (en) * 1993-12-17 1997-08-05 Canon Kabushiki Kaisha Image forming apparatus having discharger which is controlled according to sheet rigidity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5655176A (en) * 1993-12-17 1997-08-05 Canon Kabushiki Kaisha Image forming apparatus having discharger which is controlled according to sheet rigidity

Similar Documents

Publication Publication Date Title
US4134147A (en) Transfer humidity control device
US3950680A (en) Electrostatographic diagnostics system
US20060153604A1 (en) Image forming apparatus
US4077709A (en) Transfer charge control system
US20120049623A1 (en) Image forming apparatus and method of controlling the same
CN101963769A (en) Sheet length measuring and image processing system
US5608506A (en) Image forming apparatus equipped with a device to measure a resistance of a transfer sheet
DE60216452T2 (en) PICTURE GENERATOR WITH MONITORING THE CAPACITY AND RESISTANCE OF A COPY MEDIUM
JPS6114670A (en) Electrophotographic device
JPS6253779B2 (en)
US6493012B2 (en) Method and apparatus for setting register on a multicolor printing machine by time independent allocation of positions of image productions to printing substrates
CN101937180B (en) Image forming apparatus and control method of image forming apparatus
JPS585756A (en) Method and device for separation of transfer paper
US7941067B2 (en) Apparatus for print assembly blade deflection detection
JPH05313517A (en) Image forming device
US20120308251A1 (en) Image forming apparatus
US5621504A (en) Toner transferring device
US6587653B2 (en) Applying and measuring toner in a print on a substrate by a printing machine
US6853948B2 (en) Using conductive nipped rollers to measure media length
JP2017015660A (en) Conveyance device, image formation apparatus and conveyance program
JPH0619334A (en) Image forming device
JPH04204149A (en) Resistance-value measuring device for recording paper in image forming apparatus
JPS6225207A (en) Paper thickness measuring method for recording paper
EP0081000A1 (en) Corona detection apparatus
JPS6225208A (en) Paper thickness measuring method for recording paper