JPS5857285A - Method of producing sectional different shape heater - Google Patents

Method of producing sectional different shape heater

Info

Publication number
JPS5857285A
JPS5857285A JP15660581A JP15660581A JPS5857285A JP S5857285 A JPS5857285 A JP S5857285A JP 15660581 A JP15660581 A JP 15660581A JP 15660581 A JP15660581 A JP 15660581A JP S5857285 A JPS5857285 A JP S5857285A
Authority
JP
Japan
Prior art keywords
conductive layer
section
fibers
conductive
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15660581A
Other languages
Japanese (ja)
Inventor
金森 耕造
和夫 下村
舞田 仁司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP15660581A priority Critical patent/JPS5857285A/en
Publication of JPS5857285A publication Critical patent/JPS5857285A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は断面異型面状発熱体の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing a planar heating element with an irregular cross section.

平坦な面状発熱体は、導電性繊維を分散させた熱硬化性
樹脂組成物を絶縁性縁#JkMllの間に含浸して導*
Mを得、金型によりこの導電層の両面に熱硬化性樹脂を
熱間加圧成形することにより得られる。しかし、異型断
面の面状発熱体をこの方法により製造する場合、その形
状か複雑になればなる程、型内の樹脂流れを複雑にする
必要があり、この樹脂流れに伴って導電製の相ni+ 
JP導電性絽維もまた不均一な流れを生じることとなる
。この結果、導電層&:おける導電性繊維の配向や紡維
相互の接触状態が乱れ、導電層が不均一化、不連続化し
、導電−は均一な発熱分布を有さなくなる。
A flat planar heating element is made by impregnating a thermosetting resin composition in which conductive fibers are dispersed between the insulating edges #JkMll.
M is obtained, and a thermosetting resin is hot-press-molded on both sides of this conductive layer using a mold. However, when manufacturing a planar heating element with an irregular cross section using this method, the more complex the shape, the more complicated the flow of resin within the mold becomes. ni+
JP conductive fibers will also result in non-uniform flow. As a result, the orientation of the conductive fibers in the conductive layer &: and the contact state between the fibers are disturbed, the conductive layer becomes uneven and discontinuous, and the conductive layer no longer has a uniform heat generation distribution.

本発明は1紀に鑑みてなされたものであって、均一な発
熱分布を有するWlr向異型面状発熱体の製造方法を提
供することを目的とする。
The present invention was made in view of the first century, and an object of the present invention is to provide a method for manufacturing a WLR-oriented irregular-shaped planar heating element having a uniform heat distribution.

本発明の断面異型面状発熱体の製造方法は、導電性繊維
を分散させた熱硬化性樹脂組成物を2枚の絶縁性繊維層
の間でこれらに含浸させて導電層を得、この導電層を&
ll原流か生じないように所要の異型断面に保持して加
熱硬化させた後、この異型断面の4%!L層の両面に熱
硬化性樹脂を熱間加圧成形することを特徴とするもので
ある。
The method for producing a planar heating element with an irregular cross section according to the present invention involves impregnating a thermosetting resin composition in which conductive fibers are dispersed between two insulating fiber layers to obtain a conductive layer. layers &
After holding the required irregular cross-section and heating and curing it so that no flow occurs, 4% of this irregular cross-section! It is characterized in that a thermosetting resin is hot-press-molded on both sides of the L layer.

本発明において用いる導電性繊維は電気抵抗が10””
 n −c+a以下であることが好ましく、例えばスチ
ール繊維、ステンレス繊維、炭素繊維等が用いられるが
、好ましくは炭素繊維が用いられる。炭素繊維は長い程
繊維相互か接触しやすく、導電層の電気抵抗が小さ−く
なり、また、絶縁性繊維層に樹脂組成物を含浸させたと
きに繊維層表面に残りやすいが、一方において余りに長
すぎるときは熱硬化性樹脂中に分散させる場合に繊維か
相互に絡み合って、分散が不均一となる。従って、通常
0.3〜25閣、好ましくは3〜10Mである。また、
導電性繊維は細い程好ましく、V#通、50μ以下であ
る。
The conductive fiber used in the present invention has an electrical resistance of 10""
It is preferable that n −c+a or less, and for example, steel fibers, stainless steel fibers, carbon fibers, etc. are used, and carbon fibers are preferably used. The longer the carbon fibers are, the more easily they come into contact with each other, which reduces the electrical resistance of the conductive layer.Also, when the insulating fiber layer is impregnated with a resin composition, it tends to remain on the surface of the fiber layer. If the length is too long, the fibers will become entangled with each other when dispersed in a thermosetting resin, resulting in uneven dispersion. Therefore, it is usually 0.3 to 25M, preferably 3 to 10M. Also,
The thinner the conductive fiber is, the more preferable it is, and the conductive fiber is V# thread and 50μ or less.

この導電性絽維を分散させるための熱硬化性樹脂は特に
制限されないが、通常、不飽和ポリエステル樹脂、エポ
キシ樹脂等が用いられ、樹脂組成物には必要に応じて触
媒、硬化剤、充填剤、増粘剤等が配合される。樹脂組成
物は通常、樹脂100重量部当り導電性賜維0.4〜3
0重量部、充填剤50〜100重量部含有し、充填剤と
しては炭酸カルシウム、アルミナ、′クレー、タルク、
マイカ等の樹脂よりも熱伝導性のよいものが好ましく用
いられる。
The thermosetting resin for dispersing the conductive fibers is not particularly limited, but unsaturated polyester resins, epoxy resins, etc. are usually used, and the resin composition may contain catalysts, curing agents, fillers, etc. as necessary. , a thickener, etc. are added. The resin composition usually contains 0.4 to 3 conductive fibers per 100 parts by weight of resin.
0 parts by weight, 50 to 100 parts by weight of fillers, including calcium carbonate, alumina, clay, talc,
A material having better thermal conductivity than resin such as mica is preferably used.

導!!履はL記のような導電性繊維を含有する熱硬化性
樹脂組成物を2枚の絶縁性繊維層間に含浸させることに
より得られる。通′材、第1図Gこ示すように、絶縁性
繊維mlに樹脂組成物2をドクターブレード3等により
適宜厚さに塗布し、この上に史に絶縁性繊維層4を重ね
、購付きロール等適丁1の含浸ロール5で押圧し、横1
1if本(1成物を2枚の絶縁性繊維層の曲に含浸させ
、導tllrj6を巻取る。
Guide! ! The shoe is obtained by impregnating two insulating fiber layers with a thermosetting resin composition containing conductive fibers as shown in L. As shown in FIG. Press with an impregnating roll 5 of 1 roll, etc., and roll 1 horizontally.
1if (1) The composition is impregnated into the curve of two insulating fiber layers, and the lead tllrj6 is wound up.

樹脂組成物の含浸に当って(才、第2図に示すように、
樹脂組成物2が絶縁性繊維層1,4表面にまでが透しな
いように、樹脂組成物の粘IIJ′、塗布Iすさ、絶縁
性繊維層のN付堵、厚さ等を選ぶのか望ましい。Tなわ
ち、4嵐−6の表面には絶縁性繊維1−が樹脂含浸され
ずに、露出していることか望ましい。このようにi44
層表面に初析ず含浸性にTぐれた繊維層を露出させるこ
とにより、後述するように熱硬化性樹脂を熱間加圧成形
して絶縁層を形成する場合に、導電層と絶縁層が強固(
こ一体昏こ接層されるからである。
During impregnation with the resin composition (as shown in Figure 2),
It is desirable to select the viscosity IIJ' of the resin composition, the speed of coating, the N attachment, the thickness, etc. of the insulating fiber layer so that the resin composition 2 does not penetrate to the surfaces of the insulating fiber layers 1 and 4. In other words, it is desirable that the insulating fibers 1- are not impregnated with resin on the surface of the 4-strand 6 and are exposed. i44 like this
By exposing a fiber layer with no pro-eutectic precipitation and poor impregnability on the layer surface, when forming an insulating layer by hot-pressing a thermosetting resin as described later, the conductive layer and the insulating layer can be easily separated. Strong (
This is because they are all in close contact with each other.

給縁性畢赫維胎としては、熱硬化性樹脂の含N牲にすぐ
れるものが好ましく、ポリプロピレン、ポリビニルアル
コール、ポリエステル、ポリアミド、羊毛、綿、スフ、
ガラス繊維等からなる繊布、不織布等が用いられるが、
熱硬化性樹脂との親和性等からガラス繊維からなるチョ
ツプドストランドマット、コンティニュアスストランド
マット、ガラスクロス等が好ましく用いられる。
The edge-supplying fibers are preferably thermosetting resins with excellent N-containing properties, such as polypropylene, polyvinyl alcohol, polyester, polyamide, wool, cotton, fabric,
Woven fabrics, non-woven fabrics, etc. made of glass fiber etc. are used, but
Chopped strand mats, continuous strand mats, glass cloth, etc. made of glass fibers are preferably used because of their affinity with thermosetting resins.

本発明においては、このようにして得られる導電7層を
樹脂流れか生じないように所要の異型断面に保持し、実
質的に加圧することなく、加熱硬化させる。この予備加
熱の温度は用いる熱硬化性樹脂にもよるが、不飽和ポリ
エステル樹脂の場合、130〜160℃程度であり、加
熱時間は1〜10分程度である。尚、予備加熱に際して
、導電層を所要の異型断面に保持する程度のために小さ
い面圧を導電層に加えるのは差支えはないが、面圧が大
きくなると、加熱時に樹脂が流動し、これに伴って導電
性繊維の配向や接触状態が乱されるばかりでな(、樹脂
が絶縁性繊維層の表面にまで浸透し、導電層表面の露出
線維か樹脂中に埋没するので好ましくない。
In the present invention, the conductive seven layers obtained in this way are held in a required irregular cross section so that only resin flows, and are heated and cured without substantially applying pressure. The temperature of this preheating depends on the thermosetting resin used, but in the case of unsaturated polyester resin, it is about 130 to 160°C, and the heating time is about 1 to 10 minutes. It should be noted that during preheating, there is no problem in applying a small surface pressure to the conductive layer in order to maintain the conductive layer in the required irregular cross-section, but if the surface pressure increases, the resin will flow during heating and this will cause the resin to flow. This not only disturbs the orientation and contact state of the conductive fibers, but also causes the resin to penetrate into the surface of the insulating fiber layer, which is undesirable because the exposed fibers on the surface of the conductive layer are buried in the resin.

次に、第3図に示すように、このようにして得られる異
型断面の導電層6の両側に熱硬化性樹脂組成物7をM層
し、金型を用いて熱間加圧成形丁れば、異型断面の血吠
発熱停を得る。熱硬化性樹脂組成物は前記と同様に不飽
和ポリエステル樹脂、エポキシ樹脂等に必要に応じて触
媒、硬化剤、充填剤、増粘剤等を配合してm製され、補
強剤としてガラス線維ほか前記したような絶縁性繊維を
含有していてもよい。従って、カラス組紐の8MOを好
ましい積層材料として用いることかできる。
Next, as shown in FIG. 3, M layers of a thermosetting resin composition 7 are applied on both sides of the conductive layer 6 having an irregular cross section obtained in this way, and a mold is formed by hot pressing using a mold. For example, an atypical cross-section of hemorrhagic fever may be obtained. The thermosetting resin composition is prepared by blending unsaturated polyester resin, epoxy resin, etc. with catalysts, curing agents, fillers, thickeners, etc. as necessary in the same manner as described above, and glass fiber etc. as reinforcing agents. It may contain insulating fibers as described above. Therefore, 8MO of crow braid can be used as a preferred laminating material.

熱間加圧成形における加熱温度及び圧力は用いる熱もす
化性樹脂にもよるが、不飽和ポリエステル樹脂の場合、
130〜160″C程度であり、圧力は5〜80 Kf
/C−程度である。
The heating temperature and pressure in hot pressure molding depend on the heat-curing resin used, but in the case of unsaturated polyester resin,
The temperature is about 130-160″C, and the pressure is 5-80 Kf.
/C- level.

本発明は以上のように、導電性繊維を分散させた熱硬化
性1rM脂を2枚の絶縁性繊維層間に含浸して# W、
 IIIとし、この導電層を所要の貰型断面に保持し、
実質的に加圧することなく加熱硬化させるので、樹脂流
れが起こらず、従って、導電性&1維の配向や接触状態
か維持される。次いで熱硬化件樹脂を積層し、熱間加圧
して絶縁層を形成するので、導電層の均一な発熱分布を
保持したまま、複雑な異型断面の面状発熱体を得ること
かできる。
As described above, the present invention impregnates a thermosetting 1rM resin in which conductive fibers are dispersed between two insulating fiber layers to create #W,
III, hold this conductive layer in the required cross section,
Since heat curing is performed without applying substantial pressure, resin flow does not occur, and therefore the orientation and contact state of the conductive &1 fibers are maintained. Thermosetting resins are then laminated and hot pressed to form an insulating layer, making it possible to obtain a planar heating element with a complex irregular cross section while maintaining the uniform heat generation distribution of the conductive layer.

更に、導電層の製作に際して、その表面に絶縁性繊維層
を露出させておくことにより、導電層と絶縁層は強固に
接着されるので、導電層に通電、加熱時にもR間剥離等
が起こらず、しかも、絶縁層を熱間加圧成形するので、
得られる面状発熱体は表面が平滑美麗であると共に、ピ
ンホール等の表面欠陥もないので耐水性等の耐久性にも
すぐれる。
Furthermore, by exposing the insulating fiber layer on the surface of the conductive layer when manufacturing the conductive layer, the conductive layer and the insulating layer are firmly bonded, so R peeling does not occur even when the conductive layer is energized or heated. Moreover, since the insulating layer is hot-pressed,
The surface of the obtained sheet heating element is smooth and beautiful, and there are no surface defects such as pinholes, so it has excellent durability such as water resistance.

以下に実施例を挙げる。なお、部は重般部を意味する。Examples are given below. In addition, the part means the heavy general part.

実施例 不飽和ポリエステル樹脂100部、触媒1部、重合禁止
剤0.03部、増粘剤0.5部及び内部離型剤4.0部
を混合攪拌し、次に炭酸カルシウム1301sを加え、
攪拌した後、直径12.5μ、長さ6μmの炭素繊維1
部を加え、攪拌して、熱硬化性樹脂組成物を調製した。
Example 100 parts of unsaturated polyester resin, 1 part of catalyst, 0.03 parts of polymerization inhibitor, 0.5 parts of thickener and 4.0 parts of internal mold release agent were mixed and stirred, then 1301s of calcium carbonate was added.
After stirring, carbon fiber 1 with a diameter of 12.5 μm and a length of 6 μm
1 part and stirred to prepare a thermosetting resin composition.

IN1図に示す装置を用い、速度1 m 7分で走行す
るガラス不繊布l上に上記樹H打組成物2を厚さ約0.
7Mに塗布した後、目付蓋600 f/ln’のガラス
繊維チョツプドストランドマット4を積層し、樹脂組成
物かガラスマットの表面に浸透しないように含浸させ、
ロールに巻取った。これを40”Cで1週間養生増粘さ
せて導電層を得た。
Using the apparatus shown in Figure IN1, the above-mentioned wood-stripping composition 2 is applied to a thickness of about 0.0 mm on a glass nonwoven fabric running at a speed of 1 m for 7 minutes.
After coating 7M, a glass fiber chopped strand mat 4 with a weight of 600 f/ln' was laminated, and the resin composition was impregnated so as not to penetrate into the surface of the glass mat.
Wound into a roll. This was cured at 40''C for one week to thicken it to obtain a conductive layer.

この導電層を異型断面に折重げた状態で140’Cで5
分間加熱し、硬化させて断面異型樽*層を得た。この導
電層を第3図に示すように同様の形状の2枚+7) 8
MC! G:挾み、金型中テ150”C130Kl//
Cdの条件で5分間熱間加圧成形して、本発明の断面異
型面状発熱体を得た。
This conductive layer was folded into an irregular cross section at 140'C.
It was heated for a minute to harden to obtain a barrel* layer with an irregular cross section. As shown in Figure 3, this conductive layer is made up of two sheets of similar shape +7) 8
MC! G: Sandwich, mold center te 150”C130Kl//
Hot pressure molding was carried out for 5 minutes under the conditions of Cd to obtain a planar heating element with an irregular cross section according to the present invention.

比較例1 ガラス不縁布の代わりにクラフト離型紙を用い、炭素繊
維含有槌Hit組成物を厚さi、o saに塗布した後
、目付1130011/−のガラス繊維チョツプドスト
ランドマットを積層した以外は実施例1と同様にして導
電層を得、実施例と同様に断面異型にして予備加熱後、
絶縁層を熱間加圧成形した。
Comparative Example 1 Using kraft release paper instead of glass non-woven cloth, a carbon fiber-containing mallet Hit composition was applied to a thickness of i and osa, and then a glass fiber chopped strand mat with a basis weight of 1130011/- was laminated. Other than that, a conductive layer was obtained in the same manner as in Example 1, and the cross-section was made into an irregular shape in the same manner as in Example, and after preheating,
The insulating layer was hot pressed.

比較例2 比較例1で得た導電層を異型断面に折曲け、予備加熱す
ることなく、両側に8MOを重ねて、実施例と同じ条件
で熱間加圧成形した。
Comparative Example 2 The conductive layer obtained in Comparative Example 1 was bent into an irregular cross section, 8MO was layered on both sides without preheating, and hot-press molded under the same conditions as in the example.

以上のようにして得た各面状発熱体の歯部強度、発熱温
度分布及び絶縁性試験結果を表に示す。
The tooth strength, heat generation temperature distribution, and insulation test results of each planar heating element obtained as described above are shown in the table.

なお、各試験は次のようにして行なった。In addition, each test was conducted as follows.

(!fT撃強度・・・・・1〜なす型重鍾を所定高さよ
り曲状発熱体中央に落下させ、表面状態を観察した。
(! fT impact strength...1 ~ An eggplant-shaped heavy hammer was dropped from a predetermined height onto the center of the curved heating element, and the surface condition was observed.

発熱温度分布・・・・・・電極間に交流電圧を印加し、
最高温度か90°Cに達したときに通電を止嶋、発熱体
表面の温度を測定した。
Heat generation temperature distribution: Apply AC voltage between electrodes,
When the maximum temperature reached 90°C, the electricity was turned off and the temperature on the surface of the heating element was measured.

絶縁性試験・・・ 電極に絶、緑液W電線を接続し、接
続箇所をシールし、水中に60分間沈めた後、500 
KVメガテスターにて絶縁抵抗を測定した。
Insulation test... Connect the green liquid W electric wire to the electrode, seal the connection point, and submerge it in water for 60 minutes.
Insulation resistance was measured using a KV mega tester.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法において1J4vL廟を製造する
ための製鑵の一例を示し、第2図は導°蝦層の断面図、
第3図は本発明の方法によって得られる断W1嚢型血杖
発熟体の一例を示す断面図である。 ] ・絶縁性縁維層、2・・・熱硬化性樹脂朝成物、4
 ・絶り++縁緩胸、7・・熱硬化性樹脂。 特許81人   積水化学工業株式会社代表者 願 沼
 基 利
FIG. 1 shows an example of iron making for manufacturing 1J4vL mausoleum in the method of the present invention, and FIG. 2 is a cross-sectional view of the guiding layer;
FIG. 3 is a sectional view showing an example of a cut W1-shaped blood cane mature body obtained by the method of the present invention. ] - Insulating edge fiber layer, 2... thermosetting resin composite, 4
・End ++ Edge loose chest, 7... Thermosetting resin. 81 patentees Mototoshi Numa, Representative of Sekisui Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)  導電性繊維を分散させた熱硬化性樹脂結成物
を2枚の絶縁性繊維層の間でこれらに含浸させて導電層
を得、仁の導電層を樹脂流れが生じないように所要の異
型断面に保持して加熱硬化させた後、この異型断面の導
電層の両面に熱硬化性樹脂を熱間加圧成形することを特
徴とする断面異型面状発熱体の製造方法。
(1) A conductive layer is obtained by impregnating a thermosetting resin composition in which conductive fibers are dispersed between two insulating fiber layers, and the conductive layer is heated as required to prevent resin flow. 1. A method for manufacturing a planar heating element with an irregular cross section, which comprises holding the conductive layer in an irregular cross section and curing it by heating, and then hot-pressing a thermosetting resin on both sides of the conductive layer of the irregular cross section.
JP15660581A 1981-09-30 1981-09-30 Method of producing sectional different shape heater Pending JPS5857285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15660581A JPS5857285A (en) 1981-09-30 1981-09-30 Method of producing sectional different shape heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15660581A JPS5857285A (en) 1981-09-30 1981-09-30 Method of producing sectional different shape heater

Publications (1)

Publication Number Publication Date
JPS5857285A true JPS5857285A (en) 1983-04-05

Family

ID=15631386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15660581A Pending JPS5857285A (en) 1981-09-30 1981-09-30 Method of producing sectional different shape heater

Country Status (1)

Country Link
JP (1) JPS5857285A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260583A (en) * 1985-05-15 1986-11-18 松下電器産業株式会社 Manufacture of heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260583A (en) * 1985-05-15 1986-11-18 松下電器産業株式会社 Manufacture of heater

Similar Documents

Publication Publication Date Title
TWI314599B (en) Carbon electrode base material using carbon paper for fuel cell made
US2542064A (en) Apparatus for making means to attach friction material to brake shoes and the like
US4434023A (en) Method for producing plate heater
JPS5857285A (en) Method of producing sectional different shape heater
US2417746A (en) Slot insulation
US3586557A (en) Micaceous insulation and electrical apparatus insulated therewith
US3695984A (en) Novel micaceous insulation
JPS62115033A (en) Fiber-reinforced composite material
JPS6314825B2 (en)
US3062697A (en) Method of making reinforced plastics
US3039913A (en) Reinforced resin sheet
JP2988216B2 (en) Smooth glass fiber reinforced unsaturated polyester sheet and manufacturing method
JP2003096698A (en) Heat-resistant insulating paper sheet and method for producing the same
JPS585989A (en) Method of producing panel heater
JPS59192795A (en) Heat resistant cushion material for molding press
JPH0148123B2 (en)
CN1069537A (en) High-strength polytetrafluoroethyl-ne welding Compound Fabric, manufacturing, application
JPS587785A (en) Method of producing panel heater
JPH045314Y2 (en)
JPS58209086A (en) Method of producing panel heater
TWI250240B (en) Heat-resistant fiber paper sheet, method for making same, and prepreg and laminate made by same
JPH09283266A (en) Manufacture of surface heater
JPS587784A (en) Method of producing panel heater
SU729652A1 (en) Method of manufacturing electroinsulation laminated material
RU2041507C1 (en) Process of manufacture of multilayer composite conductive material