JPS5857114A - Converting element to visible wave length for infrared ray - Google Patents

Converting element to visible wave length for infrared ray

Info

Publication number
JPS5857114A
JPS5857114A JP56155724A JP15572481A JPS5857114A JP S5857114 A JPS5857114 A JP S5857114A JP 56155724 A JP56155724 A JP 56155724A JP 15572481 A JP15572481 A JP 15572481A JP S5857114 A JPS5857114 A JP S5857114A
Authority
JP
Japan
Prior art keywords
infrared
visible
light
wave length
infrared light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56155724A
Other languages
Japanese (ja)
Inventor
Akira Mita
三田 陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56155724A priority Critical patent/JPS5857114A/en
Publication of JPS5857114A publication Critical patent/JPS5857114A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • G02F2/02Frequency-changing of light, e.g. by quantum counters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To make an incoherence visible light emit light by excitation of infrared light having about 0.82mum wave length, by using a substance having a fluoride as a base body and allowing trivalent Er ion of specific atomic percent of total cation to contain, as a wave length conversion material. CONSTITUTION:Primary array of semiconductive laser 3 is formed with a semiconductive laser 1 as an infrared light source having an oscillation wave length to 0.82mum consisting of a GaAlAs three-way system together with the same semiconductive laser 2 etc. An infrared light 4 of oscillation output of the semiconductive laser 1 is converged to a small crystal piece 7 of an infrared visible wave-length converting element housed in a vessel 6 through a ''SELFOC '' lens 5. This small piece 7 has YF3, BaY2F8, NaYF4 or LaF3 being a fluoride as a base body and is a wave length conversion material allowing trivalent Er ion of 5-20 atomic percent of total cation to contain and has the composition as BaY1.4Er0.6F3 and is excited by excitation of the infrared light 4 having around 0.82mum wave length to generate red, green or yellow intensive visible light in accordance with the condition.

Description

【発明の詳細な説明】 本発明は新規な構造を有する赤外可視波長変換素子およ
び同装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an infrared-visible wavelength conversion element having a novel structure and an apparatus thereof.

m−v族化合物半導体を素材とする半導体レーザは、直
接変調が可能で発振出力も比較的大きく、最近でに可視
部付近の短い発振波長をもちさらにアレー状に構成する
ことも可能になっているため、従来使用されていた光通
信など高級志向の用途だけでなく、レーザ・プリンタ等
の画像応用など一部のいわゆる低級志向の応用に利用さ
れる気運が昂まりつつある。
Semiconductor lasers made from m-v group compound semiconductors can be directly modulated and have a relatively large oscillation output, and have recently become possible to have short oscillation wavelengths near the visible region and to be configured in an array. As a result, they are increasingly being used not only for high-end applications such as optical communications, which have been used in the past, but also for some so-called low-end applications, such as image applications such as laser printers.

しかし現在使用されているGaAtAs 3元素混晶を
用いた半導体レーザは、印画紙等の感度の高い可視域に
おいて発振させることは事実上不可能であり、またいわ
ゆる可視域に接近した領域たとえば750mμより短波
長で発振させて肉眼により視認せしめ得る如くした場合
に、高いklの混合比を用いる必要がある関係布ら発振
閾値は上昇し、湿度に対する感受性の関係などの理由で
寿命と信頼性が急激に低下する欠点があった。これらの
理由から、可視域にいたる半導体レーザアレーを用いて
レーザプリンタ等を構成する試みはなお現実のものとな
っていない。
However, it is virtually impossible for semiconductor lasers currently in use using GaAtAs ternary mixed crystals to oscillate in the visible range, where photographic paper has high sensitivity, and in areas close to the so-called visible range, for example, from 750 mμ. When oscillating at short wavelengths and making them visible to the naked eye, the oscillation threshold increases due to the need to use a high kl mixture ratio, and the lifetime and reliability decrease rapidly due to reasons such as sensitivity to humidity. There was a drawback that it deteriorated. For these reasons, attempts to construct a laser printer or the like using a semiconductor laser array that extends into the visible range have not yet become a reality.

本発明は、短波長光を必要とする半導体レーザのこのよ
うな現状にかんがみ、簡単な赤外可視変換素子および装
置を与えこれによって半導体レーザの赤外領域における
発振光を有効に可視光特に緑色光に変換し得る波長変換
素子およ゛び装置を与えることを目的とする。
In view of the current situation of semiconductor lasers that require short wavelength light, the present invention provides a simple infrared-visible conversion element and device, thereby effectively converting the oscillation light of the semiconductor laser in the infrared region into visible light, especially green light. The object of the present invention is to provide a wavelength conversion element and device capable of converting light into light.

本発明によれば、フッ化物であるYF3  BaY2F
、3NaYF4あるいu LaF3 f基体とし、全カ
チオンの5ないし20原子チの3価のErイオンを含有
せしめた物質を波長変換材料とし、 0.82μm付近
の波長を有する赤外光の励起によって非干渉性の可視光
を発光する赤外可視波長変換素子およびこの素子を用い
た赤外可視波長変換装置が得られる。
According to the invention, the fluoride YF3 BaY2F
, 3NaYF4 or uLaF3f as a substrate and containing trivalent Er ions of 5 to 20 atoms of all cations as a wavelength conversion material. An infrared-visible wavelength conversion element that emits coherent visible light and an infrared-visible wavelength conversion device using this element are obtained.

次に本発明につき図面を参照して詳細に説明する。Next, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の一実施例の模式図である。FIG. 1 is a schematic diagram of an embodiment of the present invention.

半導体レーザ1はGaAtAs 3元系より成り082
μmに発振波長を有する赤外光光源であり、同じような
半導体レーザ2などと共に半導体レーザ1次アレ31r
、形成している。半導体レーザ1の発振出力赤外光4は
セルフォックレンズ5を介して容器乙に収容された赤外
可視波長変換素子の結晶小片7Vc集光される。この結
晶小片はBaYl 4Ero6F5の組成・を有し、赤
外光4により励起されて条件により赤色、緑色または黄
色の強い可視光を発生する。
The semiconductor laser 1 is made of a GaAtAs ternary system082
It is an infrared light source with an oscillation wavelength in μm, and is used as a semiconductor laser primary array 31r along with similar semiconductor lasers 2 and the like.
, is forming. The oscillation output infrared light 4 of the semiconductor laser 1 is focused through the SELFOC lens 5 onto a small crystal piece 7Vc of an infrared-visible wavelength conversion element housed in a container B. This crystal piece has a composition of BaYl 4Ero6F5 and is excited by infrared light 4 to generate strong visible light of red, green or yellow color depending on the conditions.

容器6VCは、励起赤外光の入射する方向に1の入射を
可能どする小孔8が形成されておシ。
The container 6VC is formed with a small hole 8 that allows the excitation infrared light to enter in the direction of incidence.

その反対の可視光を取り出そうとする方向に可視光に対
し透過性であると共に励起光である082μmおよび可
能ならば1.0μm付近の赤外光に対し反射性である2
色性フィルタから成る窓9が設けられている。そしてこ
の容器の壁の内面は反射性になっている。したがってこ
の窓9の側からみると、励起赤外光が入射すると窓の全
体が例えば緑色に光ってみえる。
On the other hand, it is transparent to visible light in the direction in which visible light is extracted, and reflective to infrared light of 082 μm, which is the excitation light, and if possible, around 1.0 μm2.
A window 9 consisting of a chromatic filter is provided. The inner surface of the container wall is reflective. Therefore, when viewed from the side of the window 9, the entire window appears to glow green, for example, when the excitation infrared light is incident.

イ 半導体レーザアレイ1を構成するすべての半導体レーザ
2などに同様の変換装置を賦付すれば(図には示してな
い)、可視発光アレイを得ることかできる。
A visible light emitting array can be obtained by equipping all the semiconductor lasers 2 and the like constituting the semiconductor laser array 1 with a similar conversion device (not shown in the figure).

このように0.82μm付近の赤外光の励起による可視
光の発生は、3価のエルギウム(Er)のイオンを含有
する材料であれば程度の差はあれ観察されるが、しかし
効率的な発光は、基体として励起状態寿命を長く保ち得
るフッ化物材料。
In this way, the generation of visible light due to the excitation of infrared light around 0.82 μm can be observed to varying degrees in materials containing trivalent ergium (Er) ions, but it is not efficient. The light emitting material is a fluoride material that can maintain a long excited state lifetime as a substrate.

すなわちYF3  BaY2 FB NaYF4あるい
はLaF5f:用い、エルピラ工(Er)イオンを全カ
チオンの約5〜20原子チ含有させることによって得ら
れた。
That is, it was obtained by using YF3 BaY2 FB NaYF4 or LaF5f and containing about 5 to 20 atoms of Erpira (Er) ions out of all the cations.

後者の含有量については、特に10原子チ゛近辺で−好
ましい結果が得られた。また可視発光の発生は内面反射
性の容器に結晶小片を格納する構造でなくとも、たとえ
ば平板上に螢光体を塗布した構造によっても可能である
が、その可視発光強度は通常小さくて実用の面からは好
ましくない。そこで単一の結晶小片を使用し、いわゆる
光閉じ込め構造を採用することによって。
Regarding the latter content, favorable results were obtained, particularly in the vicinity of 10 atoms. In addition, it is possible to generate visible light emission by using a structure in which a phosphor is coated on a flat plate instead of a structure in which small crystal pieces are stored in an internally reflective container, but the visible light emission intensity is usually too small to be practical. I don't like it from a certain point of view. Therefore, by using a single crystal piece and adopting a so-called optical confinement structure.

波長変換効率は格段に改善される。1例では15%にお
よぶエネルギー変換効率を実現することができる。
Wavelength conversion efficiency is significantly improved. In one example, energy conversion efficiencies of up to 15% can be achieved.

次に本発明の特長をより一層明らかにするため9本発明
の原理について説明する。 1第2図は3価のエルビウ
ムイオンのエネルギー準位図であり、縦軸は波数の単位
で目盛をつけたものである。082μmの赤外光が入射
すればaで示す遷移が起り、bの励起準位に達する。
Next, nine principles of the present invention will be explained in order to further clarify the features of the present invention. 1. Figure 2 is an energy level diagram of a trivalent erbium ion, and the vertical axis is graduated in wavenumber units. When infrared light of 082 μm is incident, a transition shown by a occurs, and the excited level b is reached.

もしエルビウムイオンの濃度が高ければ励起エネルギー
は隣接のエルビウムイーオン17i:伝達され。
If the concentration of erbium ions is high, the excitation energy will be transferred to the neighboring erbium ions 17i.

このようにして結晶中を励起エネルギーが移動する。し
かも隣接のエルビウムイオンがともにbに示す励起状態
にある々き、双方のイオン間でエネルギーの授受がおこ
り、たまたまc(!−dで示すエネルギー準位間の間隔
がほとんど等しいところから、一部のエルビウムイオン
が緑色発光準位であるeの準位に上げられ、かくして強
い緑色の発光が観察される。赤色発光はこれよりやや複
雑な機構によって引起されるものと考えられる。
In this way, excitation energy is transferred through the crystal. Moreover, when both adjacent erbium ions are in the excited state shown in b, energy is exchanged between them, and by chance c(!-d), some of the energy levels are almost equal in distance. The erbium ions are raised to the e level, which is the green emission level, and strong green emission is thus observed.The red emission is thought to be caused by a slightly more complicated mechanism.

かかる波長変換装置の用途としては、たとえば半導体レ
ーザの制御性と短波長発光の利点を活かしてレーザ・プ
リンタがまず第1に考えら一/ れるが、その他ディスプレイや情報処理関係の多くの分
野に用途を有している。ただし時間応答が10m5ec
あるいはそれ以上と長いために。
The first application of such a wavelength conversion device is, for example, laser printers that take advantage of the controllability and short wavelength light emission of semiconductor lasers, but it can also be used in many other fields related to displays and information processing. It has a purpose. However, the time response is 10m5ec
Or even longer.

高速を要する目的たとえばフライング・スポット・スキ
ャナ等VC(l−tあまり適合しない。
It is not well suited for applications requiring high speed, such as flying spot scanners.

このような赤外可視波長変換装置を使用することによっ
て、従来考えられていた短波長発振半導体レーザを使用
した場合よりはるかに寿命と体軸性が向上し、しかも短
波長の発光が得らたる。もとよりこのようにして得られ
る発光は。
By using such an infrared-visible wavelength conversion device, the lifespan and body axis properties are much improved compared to the conventionally thought short wavelength oscillation semiconductor laser, and it is also possible to emit light at a short wavelength. . Of course, the luminescence obtained in this way.

輝度の点において発光ダイオードによっては到底実現し
得ないものである。
In terms of brightness, this cannot be achieved with light emitting diodes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の模式図、第2図は本発明の
赤外可視波長変換素子に用いられる6価のエルビウムイ
オンのエネルギー準位を波数1 の尺度であられした図
である。 記号の説明:1と2は半導体レーザ、3は半導体レーザ
アレイ、4は出力光、5はセルフオツクレ/ズ、6は容
器、7はBaY j 4 Er06 F5の結晶小片、
8は励起光入射用小孔、9ば2色性フィルタ、aは0.
82μm光による励起に対する遷移、bはaに対応する
励起状態、4、Cとdfl可能な遷移、eは緑色発光準
位をそれぞれあられしている。
FIG. 1 is a schematic diagram of an embodiment of the present invention, and FIG. 2 is a diagram showing the energy level of a hexavalent erbium ion used in the infrared-visible wavelength conversion element of the present invention on a wave number scale of 1. . Explanation of symbols: 1 and 2 are semiconductor lasers, 3 is a semiconductor laser array, 4 is an output light, 5 is a self-occurring laser, 6 is a container, 7 is a BaY j 4 Er06 F5 crystal piece,
8 is a small hole for excitation light incidence, 9 is a dichroic filter, and a is 0.
The transition due to excitation by 82 μm light, b indicates the excited state corresponding to a, 4, C and dfl possible transitions, and e indicates the green emission level, respectively.

Claims (1)

【特許請求の範囲】 1.7フ化物であるYF3  BaY2 FB  Na
YF4あるいh LaF3 t−基体とし、全カチオン
の5ないし20原子チの3価のErイオンを含有せしめ
たお質を波長変換材料とし、 0.82μm付近の波長
を有する赤外光の励起によって非干渉性の可視光を発光
する赤外可視波長変換素子。 2、0.82μm付近の赤外光の発光源がGaAtAs
を素材とする半導体レーザであるような特許請求の範囲
°1゛の赤外可視波長変換素子。 3.7フ化物であるYF3.BaY2F8.NaYF4
あるいIdLaF5を基体とし、全カチオンの5ないし
20原子チの3価のErイオンを含有せしめた物質を波
長変換材料とし、 0.82μm付近の波長を有する赤
外光の励起によって非干渉性の可視光を発光する赤外可
視波長変換素子を、内面に反射性を持たせた壁の2個所
に前記赤外光を入射させる窓および少なくとも前記赤外
光に対しては反射性であるが前記可視光に対しては透過
性である2色性フィルタ窓を設けた容器内に、前8己2
色性フィルタ窓の側から前記発光した可視光が見えるよ
うに収容して成る赤外可視波長変換装置。
[Claims] 1.7 fluoride YF3 BaY2 FB Na
YF4 or hLaF3 t-base material containing 5 to 20 trivalent Er ions of all cations is used as a wavelength conversion material, and by excitation with infrared light having a wavelength of around 0.82 μm. An infrared-visible wavelength conversion element that emits incoherent visible light. 2. The source of infrared light around 0.82 μm is GaAtAs.
An infrared-visible wavelength conversion element having a claimed range of 1°, which is a semiconductor laser made of a material. 3.7 fluoride YF3. BaY2F8. NaYF4
Alternatively, a substance made of IdLaF5 as a base and containing trivalent Er ions of 5 to 20 atoms of all cations is used as a wavelength conversion material, and incoherent conversion is performed by excitation of infrared light having a wavelength of around 0.82 μm. An infrared-visible wavelength conversion element that emits visible light is installed at two locations on a wall whose inner surface is reflective, and a window that allows the infrared light to enter the wall, and a window that is reflective at least for the infrared light, but the In a container equipped with a dichroic filter window that is transparent to visible light,
An infrared-visible wavelength conversion device that accommodates the emitted visible light so that it can be seen from the side of a chromatic filter window.
JP56155724A 1981-09-30 1981-09-30 Converting element to visible wave length for infrared ray Pending JPS5857114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56155724A JPS5857114A (en) 1981-09-30 1981-09-30 Converting element to visible wave length for infrared ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56155724A JPS5857114A (en) 1981-09-30 1981-09-30 Converting element to visible wave length for infrared ray

Publications (1)

Publication Number Publication Date
JPS5857114A true JPS5857114A (en) 1983-04-05

Family

ID=15612076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56155724A Pending JPS5857114A (en) 1981-09-30 1981-09-30 Converting element to visible wave length for infrared ray

Country Status (1)

Country Link
JP (1) JPS5857114A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61100707A (en) * 1984-10-22 1986-05-19 ポラロイド コーポレーシヨン Light source
EP0667556A1 (en) * 1994-01-25 1995-08-16 Eastman Kodak Company Highly oriented metal fluoride thin film waveguide articles on a substrate
WO2017080272A1 (en) * 2015-11-13 2017-05-18 深圳通感微电子有限公司 Self-focusing lens thermopile sensor and assembly process thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61100707A (en) * 1984-10-22 1986-05-19 ポラロイド コーポレーシヨン Light source
EP0667556A1 (en) * 1994-01-25 1995-08-16 Eastman Kodak Company Highly oriented metal fluoride thin film waveguide articles on a substrate
WO2017080272A1 (en) * 2015-11-13 2017-05-18 深圳通感微电子有限公司 Self-focusing lens thermopile sensor and assembly process thereof

Similar Documents

Publication Publication Date Title
US3652956A (en) Color visual display
US3932881A (en) Electroluminescent device including dichroic and infrared reflecting components
US7277618B2 (en) White light-emitting device using fluorescent fiber
CN1327579C (en) Luminous device
US6501088B1 (en) Method and apparatus for reading a radiation image that has been stored in a photostimulable screen
US4368384A (en) Gain setting device for radiation image read out system
CN105954932A (en) Backlight module and liquid crystal display device
JP2019096635A (en) Fluorescent light source device
US4314910A (en) Luminiscent materials
US3715611A (en) Cathode-ray tube containing cerium activated yttrium silicate phosphor
KR20070056918A (en) Multiple wavelength laser light source using fluorescent fiber
US6560264B1 (en) Stripe type semiconductor light emitting element having InGaN active layer, combined with optical resonator including wavelength selection element
US7109496B2 (en) Storage layer, conversion layer and a device for reading x-ray information, in addition to an x-ray cassette
JPS5857114A (en) Converting element to visible wave length for infrared ray
US3397316A (en) Optical frequency-changing devices and materials for use therein
US3716747A (en) Television camera tube utilizing light beam scanning
JP4445745B2 (en) Endoscope device
JPH061688B2 (en) White pulse light generator
JPS6280948A (en) Light detector device
Shrader et al. Cathodoluminescence emission spectra of zinc-oxide phosphors
JPH0689075A (en) Production of display device and fluorescent screen used therein
EP0587145A2 (en) Display apparatus and method of manufacturing the same
US4035691A (en) Pulsed laser excitation source
JPS5857764A (en) Evaluation of semiconductor crystal
CN212460299U (en) Quantum dot projection system