JPS5856539A - Fm modulator for semiconductor laser - Google Patents

Fm modulator for semiconductor laser

Info

Publication number
JPS5856539A
JPS5856539A JP56154970A JP15497081A JPS5856539A JP S5856539 A JPS5856539 A JP S5856539A JP 56154970 A JP56154970 A JP 56154970A JP 15497081 A JP15497081 A JP 15497081A JP S5856539 A JPS5856539 A JP S5856539A
Authority
JP
Japan
Prior art keywords
output
signal
laser
optical
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56154970A
Other languages
Japanese (ja)
Other versions
JPH0117614B2 (en
Inventor
Hideo Kuwabara
秀夫 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56154970A priority Critical patent/JPS5856539A/en
Publication of JPS5856539A publication Critical patent/JPS5856539A/en
Publication of JPH0117614B2 publication Critical patent/JPH0117614B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To stabilize the optical carrier frequency, by inserting a Fabry-Pe rot etalon to a negative feedback circuit of an FM modulator using a semiconductor laser. CONSTITUTION:A bias DC is applied to a laser 4 from a terminal 5, a signal S1 and an output of a differential amplifier 6 of a negative feedback loop are inputted to a synthesis circuit 7, and the output is inputted to the laser 4 to perform FM modulation corresponding to the change in the signal S1. A part of the output of the laser 4 is collected at a lens 8 and a Fabry-Pe rot etalon FPE11 is inserted into an optical path 9. The intensity of light is changed according to the frequency fluctuation of the FM signal changed at the FPE11 and the transmitted light is detected at a photodetector 13 via a lens 12. The optical signal of an optical path 10 is detected at a photodetector 16 via a lens 15. The output of the detectors 13 and 16 is inputted to a differential amplifier 14 to input a signal S2 proportional to the difference of the optical paths and an input signal S'1 having the equal amplitude with the signal S2 to the amplifier 6, then the output of the amplifier 6 is zero. If the frequency of the laser 4 is changed due to temperature change, the amplifier 6 generates an output cancelling the frequency change to stabilize the laser frequency.

Description

【発明の詳細な説明】 本発明は、半導体レーザを用いたFM変調器に関丁。更
に説明を加えるならば、該変調回路の負帰還回路にファ
ブリーペローエダロンヲ挿入して、光搬送波周波数を安
定した半導体レーザFM変調器である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an FM modulator using a semiconductor laser. To explain further, this is a semiconductor laser FM modulator in which a Fabry-Perot Edalon is inserted into the negative feedback circuit of the modulation circuit to stabilize the optical carrier frequency.

従来、半導体レーザのPM変l1Ilは光の振動数より
数ケタ低い副搬送波(8,C)8用いて行っている。第
1図は従来例のFMle@万式のプロ、り図を示す・ 図1こ8いて、゛′入力信号1はFM変1141)2に
て副搬送波(8,C)3を変調し、被変調am号は半導
体レーザ(以下レーザと記丁)4にてjt(1号に変換
される。
Conventionally, PM variation l1Il of a semiconductor laser is performed using a subcarrier (8, C)8 whose frequency is several orders of magnitude lower than the frequency of light. Figure 1 shows a diagram of a conventional FMle@Manshiki program. The modulated am number is converted into jt (number 1) by a semiconductor laser (hereinafter referred to as laser) 4.

以上のFM変調器において、光信号より数ケタ低い副搬
送波を使用Tるため、変調帯域が広くとnない欠点や、
副搬送波を必要とするため、回路構成が複雑になる等の
難点がある。
In the above FM modulator, since a subcarrier several orders of magnitude lower than that of the optical signal is used, there are disadvantages when the modulation band is wide,
Since a subcarrier is required, there are drawbacks such as a complicated circuit configuration.

本発明は上記の難点を解決するために、ft、搬送波を
安定化し、入力信号で直接FM変調することlこより、
従来の変調方式より副搬送波を除した新規な半導体レー
ザFM変1lll器を提供する。
In order to solve the above-mentioned difficulties, the present invention stabilizes the carrier wave and performs FM modulation directly with the input signal.
A novel semiconductor laser FM converter is provided in which the subcarrier is removed from the conventional modulation method.

この目的のために、半導体レーザの光出力み−部を2分
割し、一方の光路にファプリーペローエタロンを挿入し
、両方の光路の光出力を夫々に対応した第1及びiig
Z光検波器で受光し、該纂l及び第2光検波器の夫々の
出力は、夫々に対応したIgl差動増Ili!器の正或
いは反転端子に入力し、該第1差動増幅器の出力と入力
信号を第2差動増幅器に入力し、該増幅器の出力を入力
信号と共に直流バイアス信号が与えられているレーザに
負帰還して周波数の安定化を行った牛導体し−ザFM変
銅器である。
For this purpose, the optical output section of the semiconductor laser is divided into two parts, a Fabry-Perot etalon is inserted into one optical path, and the optical output of both optical paths is divided into two optical paths.
The Z photodetector receives the light, and the respective outputs of the first photodetector and the second photodetector are outputted by the corresponding Igl differential amplifier Ili! The output of the first differential amplifier and the input signal are input to the second differential amplifier, and the output of the amplifier is inputted together with the input signal to the laser to which the DC bias signal is applied. This is the FM copper transformer, which uses a conductor that returns to stabilize the frequency.

以下、図面に基づいて本発明を説明する。lI2図はレ
ーザに直流バイアス1!c流IJE−流したときの光出
力を示すもので、バイアス電K11において、レーザは
発振状態になり%7Cなる光信号を発振する。この条件
で、バイアス点(工、)に信号fmを加えると、光信号
fcは信号fsによってFM変調がかけられる。この場
合元信号fcは温度。
The present invention will be explained below based on the drawings. In the lI2 diagram, the laser has a DC bias of 1! This shows the optical output when the current IJE-c flows.At the bias voltage K11, the laser enters the oscillation state and oscillates an optical signal of %7C. Under these conditions, when the signal fm is applied to the bias point (), the optical signal fc is subjected to FM modulation by the signal fs. In this case, the original signal fc is the temperature.

電源の変動によって変動する。FM変11Jこおいて光
消1c(=搬送波になる。)が変動するとA変tJ4p
It行うことが出来ない。
Varies due to fluctuations in power supply. When the light extinction 1c (=carrier wave) changes in FM change 11J, A change tJ4p
It can't be done.

この解決策として、レーザ発振部に負帰還回路をS成し
て、温度及び電源変動による信号の変動を抑圧下も◎ このために負珊ffi回路の元信号をファプリーペロー
エタロン(平行に仕上げられたm折率一様なガラス等の
板)全通丁ことlこよってその周波数変化を強度変化l
こ変換する。
As a solution to this problem, a negative feedback circuit is formed in the laser oscillation section to suppress signal fluctuations due to temperature and power fluctuations. ◎ For this purpose, the original signal of the negative coral ffi circuit is processed into a Fabry-Perot etalon (parallel). (a plate made of glass, etc. with a uniform refractive index) is also known as a plate of glass, etc. with a uniform refractive index.Thus, the frequency change is equal to the intensity change
Convert this.

胤3図(alは7丁ブリーベ口−エダロン11の構成を
示すもので、平面平行板番こ仕上げられたガラス板等で
作られ、屈折率n%JIlざdlのとき、波長λ(ラム
ダ)の元1M号が通過T心。ファプリーベローエタロン
llの中の位相遅れδは、δ=4+/211ndとなる
。この場合元信号fcの透過は、第3図(b)の如くな
る。
Figure 3 (al shows the configuration of the 7-piece briebe opening - Edalon 11. It is made of a glass plate etc. with a plane parallel plate plate finish, and when the refractive index is n%JIlzadl, the wavelength λ (lambda) The element number 1M passes through the T core.The phase delay δ in the Fapley Bellow etalon ll is δ=4+/211nd.In this case, the transmission of the original signal fc is as shown in FIG. 3(b).

fbJ図はλ(横軸)に対する透過光(縦軸)の強眞を
示Tもので、通過丁6元の強度はλに対して友化丁6゜
λQ1こ動作点を持つようにファプリーペローニゲロン
tnの厚さを選べば、波長λ(周波数)の変化に比例し
て光の強度が変化する。
The fbJ diagram shows the intensity of transmitted light (vertical axis) with respect to λ (horizontal axis). If the thickness of Peronigeron tn is selected, the intensity of light changes in proportion to the change in wavelength λ (frequency).

第4図は本@明の実施例を示す。図蒼こおいて、レーザ
4Ic端子5より第2図に示した如き直流バイアスDC
をかけ、この状態で信号81と東帰還rレープの第2差
動増幅器6の出力と共に合成回路7に入力し、その出力
をレーザ4に人力する0これにより、信号81の変化に
対応したFM変調が行われる。
FIG. 4 shows an embodiment of the present invention. In the blue, a direct current bias DC as shown in Fig. 2 is applied from the laser 4Ic terminal 5.
In this state, the signal 81 and the output of the second differential amplifier 6 of the east feedback loop are input to the synthesis circuit 7, and the output is input to the laser 4. Modulation is performed.

ここで、レーザ4の発振出力(光信号fC)を安定させ
るために、次の如き負帰還回路を構成する。即ちレーザ
4の出力の一部をレンズ8で集光し、$1光w19!こ
ファプリーベローエタロン11を挿入する。これにより
FM信号はファプリーベローエタロン11によって周波
数変動に従りて党の強度が変化する。この透過光はレン
ズ12を介して第1光検波器13で検波され、その検波
信号は第1差動増幅4914の反転入力端子に入力する
0一方II!21310の元信号はレンズ15を介して
第3検波器16にて検波ざnlその検波信号は謳l差動
増幅器14の非反転入力端子に入力される。
Here, in order to stabilize the oscillation output (optical signal fC) of the laser 4, the following negative feedback circuit is configured. That is, a part of the output of the laser 4 is focused by the lens 8, and $1 light w19! Insert the Faply bellows etalon 11. As a result, the intensity of the FM signal changes according to the frequency fluctuation by the Fapley Bellow etalon 11. This transmitted light is detected by the first photodetector 13 via the lens 12, and the detected signal is input to the inverting input terminal of the first differential amplifier 4914. The original signal of 21310 is detected by the third detector 16 via the lens 15, and the detected signal is input to the non-inverting input terminal of the differential amplifier 14.

第1光路9の光信号と@2光路IOの光信号の差に比例
した出力が第2差動増幅器6の非反転入力端子に入力さ
れ、該増幅器6の他のfL@入力端子5こは入力信号S
 1’が入力されている。
An output proportional to the difference between the optical signal of the first optical path 9 and the optical signal of the @2 optical path IO is input to the non-inverting input terminal of the second differential amplifier 6, and the other fL@ input terminal 5 of the amplifier 6 is Input signal S
1' is input.

ここで、温度変動、電源変動がない場合についリーベロ
ーエタロン11を通って第1党検出器13に入射するレ
ーザ光は信号S1の周波数及び振幅に従って強度が変化
している。一方案2光検出器16出力は信号Slの振幅
に従って強度が変化している、従りて第11第2光横出
器13.14の出力を第1差動増幅it!1i14に入
力すると、第1差動増幅器14からは、信号8にの周波
数成分に対応した強度変化分のみが出力される。この第
1差動増幅器14の出力S、と信号S、/の振幅を等し
くして8くと、第2差動増幅器6からは、出力が得られ
ない。
Here, when there are no temperature fluctuations or power supply fluctuations, the intensity of the laser light that passes through the Liebel etalon 11 and enters the first party detector 13 changes according to the frequency and amplitude of the signal S1. On the other hand, the intensity of the output of the second photodetector 16 changes according to the amplitude of the signal Sl. Therefore, the output of the eleventh second optical output device 13 and 14 is converted into the first differential amplification it! 1i14, only the intensity change corresponding to the frequency component of the signal 8 is output from the first differential amplifier 14. If the output S of the first differential amplifier 14 and the signal S, / are made equal in amplitude by 8, no output can be obtained from the second differential amplifier 6.

一万第3図(b)から明らかな如く、温度、電源変動等
でレーザ4の発振周波数がΔf増加するとファプリーベ
ローエタン11により、光の強度が大きくなり、@1元
検知@13からの出力が大きくはj13光路、20は第
4光路、21.22はレンズ、23は纂3光検波器、2
4は第4党検波器、25は@3差差動幅器を示す@ 11@
As is clear from FIG. 3(b), when the oscillation frequency of the laser 4 increases by Δf due to changes in temperature, power supply, etc., the intensity of light increases due to the Fabry-Bello ethane 11, and If the output is large, the j13 optical path, 20 is the fourth optical path, 21.22 is the lens, 23 is the 3rd optical detector, 2
4 indicates the 4th party detector, 25 indicates @3 differential width amplifier @ 11 @

Claims (1)

【特許請求の範囲】[Claims] 光導体レーザの光出力の一部を2分割して両方の光路に
入力し、一方の光路にファプリーベローエタロンを挿入
し、咳両方の光路の光出力は夫々に対応した第1光検波
器、第2党検波器に入力し、該111党検波器、@2光
検波器の出力は夫々に対応したNl差動増幅器の正端子
と反転端子に入力され、該11xl差動増幅器の出力は
第2差動増幅器の正1子(或いは反転端子)に入力され
、番人力信号の1mは該第2差動増幅器の反転端子(或
いは正端子)に入力され、該第2差動増幅器の出力と前
記入力信号とは合成回路に入力され、骸合成回路の出力
は該半導体レーザに入力されることを特徴とした半導体
レーザFM変調器。
Part of the optical output of the optical waveguide laser is divided into two and input into both optical paths, a Fapley bellow etalon is inserted into one optical path, and the optical output of both optical paths is divided into two and inputted into both optical paths. , the second party detector, the outputs of the 111 party detector and @2 optical detector are input to the positive terminal and inverting terminal of the corresponding Nl differential amplifier, and the output of the 11xl differential amplifier is 1m of the keeper power signal is input to the positive terminal (or positive terminal) of the second differential amplifier, and the output of the second differential amplifier is input to the positive terminal (or positive terminal) of the second differential amplifier. and the input signal are input to a synthesis circuit, and an output of the skeleton synthesis circuit is input to the semiconductor laser.
JP56154970A 1981-09-30 1981-09-30 Fm modulator for semiconductor laser Granted JPS5856539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56154970A JPS5856539A (en) 1981-09-30 1981-09-30 Fm modulator for semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56154970A JPS5856539A (en) 1981-09-30 1981-09-30 Fm modulator for semiconductor laser

Publications (2)

Publication Number Publication Date
JPS5856539A true JPS5856539A (en) 1983-04-04
JPH0117614B2 JPH0117614B2 (en) 1989-03-31

Family

ID=15595863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56154970A Granted JPS5856539A (en) 1981-09-30 1981-09-30 Fm modulator for semiconductor laser

Country Status (1)

Country Link
JP (1) JPS5856539A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4652435A (en) * 1984-12-13 1987-03-24 Nippon Zeon Co., Ltd. Stabilized ferrous compound composition
EP1133034A2 (en) * 2000-03-10 2001-09-12 Nec Corporation Wavelength stabilized laser module
EP1215777A2 (en) * 2000-12-18 2002-06-19 Nec Corporation Wavelenght stabilizing unit and wavelenght stabilized laser module
JP2004247585A (en) * 2003-02-14 2004-09-02 Nec Compound Semiconductor Devices Ltd Wavelength stabilization unit and wavelength stabilization light transmitting module

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4652435A (en) * 1984-12-13 1987-03-24 Nippon Zeon Co., Ltd. Stabilized ferrous compound composition
EP1133034A2 (en) * 2000-03-10 2001-09-12 Nec Corporation Wavelength stabilized laser module
EP1133034A3 (en) * 2000-03-10 2003-11-12 Nec Corporation Wavelength stabilized laser module
US6788717B2 (en) 2000-03-10 2004-09-07 Nec Corporation Wavelength stabilized laser module
EP1215777A2 (en) * 2000-12-18 2002-06-19 Nec Corporation Wavelenght stabilizing unit and wavelenght stabilized laser module
EP1215777A3 (en) * 2000-12-18 2003-11-26 NEC Compound Semiconductor Devices, Ltd. Wavelenght stabilizing unit and wavelenght stabilized laser module
US6711188B2 (en) 2000-12-18 2004-03-23 Nec Compound Semiconductor Devices, Ltd. Wavelength stabilizing unit and wavelength stabilized laser module
JP2004247585A (en) * 2003-02-14 2004-09-02 Nec Compound Semiconductor Devices Ltd Wavelength stabilization unit and wavelength stabilization light transmitting module

Also Published As

Publication number Publication date
JPH0117614B2 (en) 1989-03-31

Similar Documents

Publication Publication Date Title
TWI285012B (en) Apparatus and method for wavelength-locked loops for systems and applications employing electromagnetic signals
JPH0669582A (en) Short wavelength light source
US6101027A (en) All-optical wavelength converter using a semiconductor optical amplifier and a polarization interferometer
CN109802672B (en) Millimeter wave photoelectric oscillation system based on double-loop phase lock and frequency stabilization method thereof
JP2519188B2 (en) Optical local oscillation frequency mixing type receiver
Daulay et al. A tutorial on integrated microwave photonic spectral shaping
JPS5856539A (en) Fm modulator for semiconductor laser
US5410561A (en) Optical wavelength converter for obtaining wavelength conversion efficiency
JP2689184B2 (en) Optical wavelength converter
Zhang et al. Hybrid-integrated wideband tunable optoelectronic oscillator
JPS6130088A (en) Semiconductor laser device
HU180145B (en) Circuit arrangement for compensating frequency changes depending on the temperature changes of heterodyne cristall oscillator
JPH0595153A (en) Optical fsk frequency deviation stabilizer
JPS62254478A (en) Variable wavelength light source
Franzke Sum frequency generation at 365 nm by two diode lasers applied to the detection of mercury
Tang et al. All-optical microwave oscillator based on a mutual-injection coupling between DFB-LDs
JPS6057824A (en) Heterodyne optical communication system
JP2548072B2 (en) Optical interference gyro
Takahashi et al. Amplitude-stabilized frequency-modulated laser diode and its interferometric sensing applications
JPS5864083A (en) Frequency stabilized semiconductor laser
JPH05323405A (en) Wavelength conversion element and laser beam source
JPH01172934A (en) Non-linear optical element
JPH04263226A (en) Reference frequency laser
JPH03103837A (en) Optical wavelength converter
JPS63318788A (en) Semiconductor laser oscillation frequency stabilizer