JPS5856453A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPS5856453A
JPS5856453A JP56155515A JP15551581A JPS5856453A JP S5856453 A JPS5856453 A JP S5856453A JP 56155515 A JP56155515 A JP 56155515A JP 15551581 A JP15551581 A JP 15551581A JP S5856453 A JPS5856453 A JP S5856453A
Authority
JP
Japan
Prior art keywords
region
impurity
high voltage
wiring
conductive wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56155515A
Other languages
Japanese (ja)
Inventor
Yoshihiko Higa
比嘉 良彦
Akira Takei
武井 朗
Takashi Mitsuida
高 三井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56155515A priority Critical patent/JPS5856453A/en
Publication of JPS5856453A publication Critical patent/JPS5856453A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor

Abstract

PURPOSE:To enable to manufacture a semiconductor memory with an ordinary process by simplifying the structure of the memory having memory cells of the type for detecting the presence or absence of a stored charge as the variation in the gate voltage of a transistor. CONSTITUTION:(1) When the fourth conductive wiring 22 as writing time wiring bit line is at high voltage and the first conductive wiring 15 as writing word line is at high voltage, the electrons at the first impurity injection region 16 as n<+> type information storage region become positive high voltage state. (2) When the wiring 15 is reduced to low voltage in the state that the holding time-impurity region 16 and the second conductive wire 17 become high voltage, the state can be maintained. (3) When the conductive wiring 22 as X-direction read- out line is at high voltage while the reading-out time-conductive wiring 15 is maintained at low voltage and the third conductive wiring 20 as Y-direction read-out line is reduced to low voltage, a current flows between the second impurity region 18 and the third impurity region 19. The presence and absence of the current may be corresponded to ''1'',''0''.

Description

【発明の詳細な説明】 本発明は、MISダイナミックRAM (Random
 AccyzMa*ory )と呼ばれている半導体記
憶装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides MIS dynamic RAM (Random
This invention relates to an improvement of a semiconductor memory device called AccyzMa*ory.

従来、この種の半導体記憶装置の代表的なものとして、
所謂、1トランジスタ・1キヤパシタのメモリ・セルを
有するものが知られている。
Conventionally, typical semiconductor memory devices of this type include:
A so-called memory cell having one transistor and one capacitor is known.

一般に、半導体装置は益々高密化の傾向に在り、前記記
憶装置も例外ではない。この種記憶装置を高密化する一
手段として、メモリ・セルを小型にすることが考えられ
、その結果、メモリ・キャパシタも次第に小型化されて
きた。
In general, semiconductor devices are becoming more and more densely packed, and the storage devices are no exception. One way to increase the density of this type of storage device is to make memory cells smaller, and as a result, memory capacitors have also become smaller.

しかしながら、メモリ・キャパシタを小型にすると、当
然、蓄積情報電荷量は少なくなる。従って、ビット線の
寄生容量の影響を受け、情報の正確な読み出しが困難C
:なる。そこで、センス増幅器の高感度化、雑音対策な
どが問題C二なっているが、これc依る対応C:は限界
がある。また、メモリ・キャパシタを小さくすることは
、ここ数年来問題にさ°れてきたα線貫通に依る電子・
正孔対の発生C二基図する蓄積情報の破壊に対して耐性
を失なわせる結果になる。
However, if the memory capacitor is made smaller, the amount of stored information charge will naturally decrease. Therefore, it is difficult to read information accurately due to the influence of parasitic capacitance of the bit line.
:Become. Therefore, increasing the sensitivity of the sense amplifier, countermeasures against noise, etc. become problem C2, but there are limits to countermeasure C2 that depends on this. In addition, making memory capacitors smaller is also important because electrons and
This results in a loss of resistance to the destruction of stored information due to the generation of hole pairs.

このような記憶装置の欠点を解消する他の形式のものの
開発も盛ん(二行なわれ、その−例として第1図及び第
2図に見られるものが知られている。
Other types of storage devices that overcome these shortcomings have been actively developed, examples of which are shown in FIGS. 1 and 2.

尚、第2図は第1図を側面から見た断面図である。Note that FIG. 2 is a sectional view of FIG. 1 viewed from the side.

図に於いて、1はP型シリコン半導体基板、2はフィー
ルド用二酸化シリコン絶゛縁膜、3はル型りエル、4は
P型低濃度チャネル層、5はゲート絶縁膜、6は多結晶
シリコン・ゲート電極、7は1型ソース領域、8は♂型
ドレイン領域をそれぞれ示す。
In the figure, 1 is a P-type silicon semiconductor substrate, 2 is a silicon dioxide insulating film for a field, 3 is a rectangular layer, 4 is a P-type low concentration channel layer, 5 is a gate insulating film, and 6 is a polycrystalline film. A silicon gate electrode, 7 a 1-type source region, and 8 a ♂-type drain region, respectively.

この装置では、ゲー・−計電極6に種々のレベルの電圧
が印加されるようになっていて、例えば零ボルトで中性
状態であるが、これを負電圧C二すると、チャネル層4
に於ける正孔は第2図に矢印で示されているように絶縁
膜2のテーパ(:沿いながら基板1とウェル3とで形成
さnるPa %接合の〕橿リヤを越えて流出するので、
チャネル層4は正孔が少ない状態となる。従って、前記
中性状態と前記正孔が少ない状態とではトランジスタの
閾値電圧vthが変化するので、それをセンスすること
に依つて情報の“1”、“0”を知るようにしているも
のである。
In this device, voltages of various levels are applied to the gate electrode 6. For example, it is in a neutral state at zero volts, but when this is changed to a negative voltage C2, the channel layer 4
The holes in the insulating film 2 flow out across the taper (of the junction formed between the substrate 1 and the well 3) of the insulating film 2, as shown by the arrow in FIG. So,
The channel layer 4 is in a state where there are few holes. Therefore, the threshold voltage vth of the transistor changes between the neutral state and the state with few holes, and by sensing this, information "1" and "0" are known. be.

ところが、この記憶装置では、動作させる為の電源とし
て種々のレベルのものを必要とし、メモリ・セルの構造
も複雑であり、パック・ゲート・バイアスも印加するこ
とができず、精々、基板1を接地する程度である。
However, this memory device requires power supplies of various levels to operate, the structure of the memory cell is complex, and pack gate bias cannot be applied. Just enough to ground.

本発明は、蓄積電荷の有無をトランジスタのゲート電位
の変化として検出する形式のメモリ・セルを有する半導
体記憶装置の構造を簡単化し、通常のプロセスで製造で
きるようにするものであって、以下これを詳細に説明す
る。
The present invention simplifies the structure of a semiconductor memory device having a memory cell of a type in which the presence or absence of accumulated charge is detected as a change in the gate potential of a transistor, so that it can be manufactured using a normal process. will be explained in detail.

第3図は本発明一実施例の要部平面図、第4図は第3図
の線A−A’に於ける断面図である。
FIG. 3 is a plan view of essential parts of an embodiment of the present invention, and FIG. 4 is a sectional view taken along line AA' in FIG.

図に於いて、11はP型シリコン半導体基板、12はP
+型チャネル・ストッパ、13はフィールド用二酸化シ
リコン絶縁膜、14はゲート絶縁膜、15は書込みワー
ド線である多結晶シリコンからなる第1の導電線、16
はn+型情報蓄積領域である第1の不純物導入領域、1
7は一端は情報蓄積領域16に接続され他端は電気的C
二フロートしている読出しゲート電極である多結晶シリ
コンからなる第2の導電線、18はC型情報書込み及び
読出し動作共用領域である第2の不純物導入領域、19
はル1型続出し動作専用領域である第5の不純物導入領
域、20はY方向読出し線である多結晶シリコンからな
る第3の導電線、21は燐硅酸ガラス膜、22は書込み
ビット線兼X方向読出し線であるアルミニウムからなる
第4の導電線をそれぞれ示している。尚、−型情報蓄積
領域である第1の不純物導入領域16の底面に近接して
P 型領域を形成し、容量を大6;することも可能であ
る。
In the figure, 11 is a P-type silicon semiconductor substrate, 12 is a P-type silicon semiconductor substrate, and 12 is a P-type silicon semiconductor substrate.
+ type channel stopper, 13 is a field silicon dioxide insulating film, 14 is a gate insulating film, 15 is a first conductive line made of polycrystalline silicon and is a write word line, 16
is the first impurity-introduced region which is an n+ type information storage region, 1
7 has one end connected to the information storage area 16 and the other end connected to the electrical C
2. A second conductive line made of polycrystalline silicon which is a floating readout gate electrode; 18 is a second impurity doped region which is a C-type information writing and reading operation common region; 19;
20 is a third conductive line made of polycrystalline silicon which is a Y-direction read line, 21 is a phosphosilicate glass film, and 22 is a write bit line. A fourth conductive line made of aluminum, which also serves as an X-direction readout line, is shown. It is also possible to increase the capacitance by forming a P-type region close to the bottom of the first impurity-introduced region 16, which is a --type information storage region.

この実施例の動作は次の通りである。The operation of this embodiment is as follows.

(1)書込み時 書込みビット線である第4の導電線22を高電位、書込
みワード線であゐ第1の導電線15を高電位C二すると
、−型情報蓄積領域である第1の不純物導入領域16(
:於ける電子は第2の不純物導入領域18C:吸出され
るので第1の不純物導入領域16は電子が欠乏した状態
、即ち、正の高電位状態となる。第1の不純物領域16
6:は続出しゲート電極である第2の導電線17の一端
が接続されているのでそれも高電位となる。
(1) When writing, if the fourth conductive line 22, which is a write bit line, is at a high potential, and the first conductive line 15, which is a write word line, is at a high potential C2, the first impurity, which is a - type information storage region, is Introduction area 16 (
Since the electrons in the second impurity introduction region 18C are sucked out, the first impurity introduction region 16 becomes in an electron-deficient state, that is, in a positive high potential state. First impurity region 16
6: is connected to one end of the second conductive line 17, which is a successive gate electrode, so it also has a high potential.

(2)  保持時 前記のようt;第1の不純物領域16及び第2の導電線
17が高電位6;なった状態で書込みワード線である第
1の導電線15を低電位にすることに依り、その状態を
維持する。
(2) When holding, the first impurity region 16 and the second conductive line 17 are at a high potential 6 as described above, and the first conductive line 15, which is a write word line, is set to a low potential. Therefore, maintain that state.

(3)  続出し時 第1の導電線15を低電位に維持したまま、X方向読出
し線である第4の導電線22を高電位に、モしてY方向
続出し線である第3の導電線20を低電位(=すると、
読出しゲート電極である第2の導電線17は高電位C:
なっているから第2の不純物領域18と第3の不純物領
域19との間にはチャネルが形成され電流が流れる。
(3) At the time of continuous reading, while keeping the first conductive line 15 at a low potential, the fourth conductive line 22, which is an When the conductive wire 20 is placed at a low potential (=
The second conductive line 17, which is a read gate electrode, is at a high potential C:
Therefore, a channel is formed between the second impurity region 18 and the third impurity region 19, and a current flows.

第4の導電線22と第3の導電線20との間に電圧を印
加して前記の電流6が流れるか否かは第2の導電線17
が高、低いずれのレベルに在るか4=依存するので、そ
の電流の有無を情報の“1″、“O1′に対応させれば
良い。
Whether or not the current 6 flows by applying a voltage between the fourth conductive wire 22 and the third conductive wire 20 is determined by the second conductive wire 17.
Since it depends on whether the current is at high or low level, the presence or absence of the current can be made to correspond to the information "1" and "O1'."

第5図は他の実施例の要部平面図であり、この実施例は
メモリ・セルの2個分について、その領域の一部を共用
することに依り全体として小型化し、また、構造も簡単
化したものである。尚、第3図及び第4図C;示した記
号と同記号は同部分を指示し、また、記号に「′」を附
して指示した部分は他方のメモリ・セルの同部分を指示
している。
FIG. 5 is a plan view of the main part of another embodiment, and this embodiment has a smaller size as a whole by sharing a part of the area for two memory cells, and also has a simpler structure. It has become. In addition, in FIG. 3 and FIG. 4C, the same symbol as the one shown indicates the same part, and the part indicated by adding "'" to the symbol indicates the same part of the other memory cell. ing.

このようにすると、第3の不純物領域19はメモリ・セ
ル2個に対し1個で済ませることができる。
In this way, only one third impurity region 19 is required for every two memory cells.

以上の説明で判るように、本発明l:依れば、所定間隔
を置いて少なくとも一部が対向している第1、第2.第
3の不純物導入領域を設け、第1の不純物導入領域と第
2.第3の不純物導入領域と間(ニゲート電極C;相当
するIJlの導電線を設け、第2の不純物導入領域と第
3の不純物導入領域との間に一端が$1の不純物導入領
域に接続されたゲート電極に相当する第2の導電線を設
け、第2、第3の不純物導入領域に別個C′−第4.第
3の導電線を接続してメモリ・セルを構成し、第2.第
3の不純物導入領域で形成されるトランジスタの閾値電
圧を第1の不純物導入領域に於ける情報電荷の有無に依
って変化させ、それを検出すること1:依り情報の“1
″、“0″に対応させている。これに依って得られる効
果を列挙すると次の通りである。
As can be seen from the above description, according to the present invention, the first, second, . A third impurity doped region is provided, the first impurity doped region and the second impurity doped region. A conductive line of IJl corresponding to the third impurity introduced region (Ni-gate electrode C) is provided, and one end is connected to the impurity introduced region of $1 between the second impurity introduced region and the third impurity introduced region. A second conductive line corresponding to the gate electrode is provided, and separate C'-4th and third conductive lines are connected to the second and third impurity-introduced regions to form a memory cell. Changing the threshold voltage of the transistor formed in the third impurity doped region depending on the presence or absence of information charge in the first impurity doped region and detecting it 1:
” and “0”.The effects obtained by this are listed below.

Cイ) “0”状態と“1”状態とのレベル差が大であ
って、雑音に対する耐性が大である。
C) The level difference between the "0" state and the "1" state is large, and the resistance to noise is large.

((ロ)情報の続出しは電位の検出に依るものであるか
ら取扱う電荷量が微少になっても影響されるところが殆
んどなく、従って、寸法の縮小、特に情報蓄積領域を小
さくすることができる。
((b) Since the successive output of information depends on the detection of electric potential, there is almost no effect even if the amount of charge handled becomes minute. Therefore, it is necessary to reduce the size, especially the information storage area. I can do it.

(ハ)情報の読出しは非破壊で行なわれる。(c) Information is read out non-destructively.

に)構造が簡単であるから特殊なプロセス、例えば基板
と反対導電型のウェルな形成するなどの工程は不要であ
る。
2) Since the structure is simple, special processes such as forming a well of the opposite conductivity type to the substrate are not required.

(ホ)情報蓄積領域が小型でも良いからα線に依るソフ
ト・エラーに対する耐性が大である。
(e) Since the information storage area may be small, it is highly resistant to soft errors caused by alpha rays.

(へ) 動作原理が比較的簡単で、特殊なレベルの電圧
を必要としない。
(f) The operating principle is relatively simple and does not require a special level of voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来例の要部断面図、第3図及び第
4図は本発明一実施例の要部平面図及び要部断面図、第
5゛図は他の実施例の要部平面図である。 図4=於いて、11は基板、12はチャネル・ストッパ
、13は絶縁膜、14はゲート絶縁膜、15は第1の導
電線、16は第1の不純物導入領域、17は第2の導電
線、18はIJ2の不純物導入領域、19は第3の不純
物導入領域、20は第3の導電線、22は第4の導電線
である。 特許出願人 富士通株式会社 代理人 弁理士 玉蟲久五部(外5名)第1図 第2図 第3図 第4図 0 第5図
1 and 2 are sectional views of the main parts of the conventional example, FIGS. 3 and 4 are a plan view and sectional view of the main parts of one embodiment of the present invention, and FIG. 5 is a sectional view of the main parts of another embodiment. FIG. Figure 4: 11 is a substrate, 12 is a channel stopper, 13 is an insulating film, 14 is a gate insulating film, 15 is a first conductive line, 16 is a first impurity doped region, 17 is a second conductive film 18 is an impurity introduced region of IJ2, 19 is a third impurity introduced region, 20 is a third conductive line, and 22 is a fourth conductive line. Patent applicant Fujitsu Ltd. Agent Patent attorney Gobe Tamamushi (5 others) Figure 1 Figure 2 Figure 3 Figure 4 Figure 0 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 一導電型の半導体基板、該半導体基板に形成されそれぞ
れ一部が所定間隔を置いて互に対向する反対導電型の第
1及び第2及び第3の各不純物導入領域、前記第1の不
純物導入領域と前記第2及び第3の不純物導入領域との
間にチャネルを形成する為の第1の導電線、一端が前記
第1の不純物導入領域に接続され且つ他端が電気的にフ
ロートし前記第2の不純物導入領域と前記第3の不純物
導入領域との間(=チャネルを形成する為の第2の導電
線、前記第6の不純物導入領域舊=接続され情報続出し
時に作用する第3の導電線、前記第2の不純物導入領域
に接続され情報畳込み時及び情報続出し時に作用する第
4の導電線を備えてなることを特徴とする半導体記憶装
置。
a semiconductor substrate of one conductivity type; first, second, and third impurity doped regions of opposite conductivity types formed on the semiconductor substrate and facing each other with a predetermined interval; the first impurity doped region; a first conductive line for forming a channel between the region and the second and third impurity doped regions, one end connected to the first impurity doped region and the other end electrically floating; Between the second impurity introduced region and the third impurity introduced region (=second conductive line for forming a channel, said sixth impurity introduced region) A semiconductor memory device comprising a fourth conductive line connected to the second impurity doped region and acting during information convolution and when information is successively output.
JP56155515A 1981-09-30 1981-09-30 Semiconductor memory Pending JPS5856453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56155515A JPS5856453A (en) 1981-09-30 1981-09-30 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56155515A JPS5856453A (en) 1981-09-30 1981-09-30 Semiconductor memory

Publications (1)

Publication Number Publication Date
JPS5856453A true JPS5856453A (en) 1983-04-04

Family

ID=15607736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56155515A Pending JPS5856453A (en) 1981-09-30 1981-09-30 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPS5856453A (en)

Similar Documents

Publication Publication Date Title
US4298962A (en) Memory
US5506436A (en) Semiconductor memory cell
EP0046011B1 (en) Semiconductor memory device
JP2929430B2 (en) DRAM without capacitor and method of manufacturing the same
JPS6136965A (en) Semiconductor memory device
US6201730B1 (en) Sensing of memory cell via a plateline
US4833645A (en) Semiconductor memory device having improved resistance to alpha particle induced soft errors
JP2939536B2 (en) DRAM cell, DRAM, and manufacturing method thereof
JPS59143360A (en) One device memory cell
TW202310370A (en) Memory device using semiconductor element
US4250568A (en) Capacitor semiconductor storage circuit
JPS5856453A (en) Semiconductor memory
JP2554332B2 (en) 1-transistor type dynamic memory cell
EP0058998A1 (en) Semiconductor memory device
GB2200004A (en) Dynamic random access memory array
EP0061859B1 (en) Semiconductor memory device
JPS6113389B2 (en)
JPH05334870A (en) Semiconductor memory
JPS602780B2 (en) semiconductor equipment
EP0061202A1 (en) Semiconductor memory device
JPH04324676A (en) Semiconductor storage device
JPS6410945B2 (en)
JPH0279460A (en) Semiconductor device
JPS5828746B2 (en) semiconductor equipment
JPS6392051A (en) Semiconductor device