JPS5856026B2 - Manufacturing method of aluminum coated stainless steel - Google Patents

Manufacturing method of aluminum coated stainless steel

Info

Publication number
JPS5856026B2
JPS5856026B2 JP594279A JP594279A JPS5856026B2 JP S5856026 B2 JPS5856026 B2 JP S5856026B2 JP 594279 A JP594279 A JP 594279A JP 594279 A JP594279 A JP 594279A JP S5856026 B2 JPS5856026 B2 JP S5856026B2
Authority
JP
Japan
Prior art keywords
stainless steel
aluminum
temperature
alloy layer
coated stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP594279A
Other languages
Japanese (ja)
Other versions
JPS5597460A (en
Inventor
重雄 清水
孝次 北沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP594279A priority Critical patent/JPS5856026B2/en
Publication of JPS5597460A publication Critical patent/JPS5597460A/en
Publication of JPS5856026B2 publication Critical patent/JPS5856026B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】 本発明はアルミニウム被覆ステンレス鋼の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing aluminum coated stainless steel.

最近の石油化学、合成化学、その他反応と熱を扱う工学
の分野の発展は著るしいものがあり、また省エネルギー
化、安価なエネルギーの活用などが検討されている。
Recent advances in petrochemistry, synthetic chemistry, and other fields of engineering that deal with reactions and heat have been remarkable, and energy conservation and the use of inexpensive energy are being considered.

その検討の一例として、機器の熱効率向上のため、操業
温度圧力の上昇、排熱の回収利用、低品位燃料の使用な
ど挙げられている。
Examples of such considerations include raising the operating temperature and pressure, recovering and utilizing waste heat, and using low-grade fuel to improve the thermal efficiency of equipment.

これらはいずれも機器を構成する材料の使用条件を過酷
にするものである。
All of these make the conditions for use of the materials constituting the equipment harsh.

そこで安価で優れた性質の材料の開発が強く要望されて
いる。
Therefore, there is a strong demand for the development of inexpensive materials with excellent properties.

とくに石油化学、合成化学に用いられる反応塔、熱交換
器、接続部品などは高温で硫化水素、硫酸ガス雰囲気に
さらされ、高温強度と材料の腐食が問題になる。
In particular, reaction towers, heat exchangers, connecting parts, etc. used in petrochemistry and synthetic chemistry are exposed to hydrogen sulfide and sulfuric acid gas atmospheres at high temperatures, causing problems with high-temperature strength and material corrosion.

従来、これらに用いられるパイプ類は中、高温用炭素鋼
(STB管)、低クロムモリブデン鋼(2a Cr
I Mo )にアルミニウムを被覆処理した材料が採用
されているが、将来操業条件の過酷化、特に操業温度、
圧力の上昇を考えると、これらの材料では強度が不足す
る。
Conventionally, the pipes used for these are medium and high temperature carbon steel (STB pipe), low chromium molybdenum steel (2a Cr
Although aluminum-coated materials have been adopted for I Mo), it is anticipated that operating conditions will become harsher in the future, especially as the operating temperature increases.
Considering the pressure increase, these materials lack strength.

またステンレス鋼、特にオーステナイト系ステンレス鋼
(18Cr−8Ni鋼、18Cr−1ONi−2Mo)
は高温強度があり、優れた加工性、耐食性を有するため
、広く反応容器、配管類に採用されているが、18 C
r−8Ni鋼の場合、高温度(700°C〜800’C
)で使用すると表面が酸化スケーリングし、厚い酸化被
膜を形成する。
Also, stainless steel, especially austenitic stainless steel (18Cr-8Ni steel, 18Cr-1ONi-2Mo)
18C is widely used for reaction vessels and piping because it has high temperature strength, excellent workability, and corrosion resistance.
In the case of r-8Ni steel, high temperature (700°C to 800'C
), the surface will undergo oxidation scaling and form a thick oxide film.

その酸化被膜は剥離しやすく、くり返し使用していると
母材がやせて使えなくなる。
The oxide film easily peels off, and if used repeatedly, the base material will become thin and unusable.

さらに母材中にNi成分を含むため、高温の硫化水素雰
囲気中では硫化ニッケル(NiS)となり、腐食され、
Niを含まないステンレス鋼や軟鋼より著るしく耐食性
が低下するため、硫化水素雰囲気中では使えない。
Furthermore, since the base material contains Ni, it becomes nickel sulfide (NiS) in a high-temperature hydrogen sulfide atmosphere and corrodes.
It cannot be used in a hydrogen sulfide atmosphere because its corrosion resistance is significantly lower than that of stainless steel or mild steel that does not contain Ni.

またNiミラまないフェライト系ステンレス鋼は多くの
優れた性質を有するが、加工性が悪く、用途が限られて
くる。
Further, although ferritic stainless steel that does not contain Ni has many excellent properties, it has poor workability and its uses are limited.

そこで高温強度に優れたオーステナイト系ステンレス鋼
の表面に硫化水素などの硫黄雰囲気に優れた耐食性を有
するアルミニウムを被覆すれば、かかる問題点を解消す
ることができる。
This problem can be solved by coating the surface of austenitic stainless steel, which has excellent high-temperature strength, with aluminum, which has excellent corrosion resistance in sulfur atmospheres such as hydrogen sulfide.

アルミニウム被覆処理の方法には二つあり、それぞれ特
長、欠点を有する。
There are two methods for aluminum coating, each with its own advantages and disadvantages.

まず粉末アルミニウムないしアルミニウム合金に材料を
埋めて高温に加熱し拡散処理する固体拡散法(カワライ
ジング法)では、材料の表面に30 wt%以下の鉄−
Al拡散層が約100μm程度形成される。
First, in the solid diffusion method (kawarizing method), in which a material is buried in powdered aluminum or aluminum alloy and then heated to a high temperature for diffusion treatment, less than 30 wt% of iron is deposited on the surface of the material.
An Al diffusion layer is formed to a thickness of about 100 μm.

この拡散層は1%程度の伸びしか許されないため、その
後の加工は不可能である。
Since this diffusion layer is only allowed to elongate by about 1%, subsequent processing is impossible.

無理な取扱いをすると亀裂が発生し、耐食性が急激に劣
下するのみならず、亀裂が鋭い切欠きになるため材料の
しん性が著るしく低下する。
If the material is handled with excessive force, cracks will occur and not only will the corrosion resistance be drastically reduced, but the cracks will become sharp notches, which will significantly reduce the toughness of the material.

したがって表面処理後の運搬、取付けなどには慎重を期
さねばならない。
Therefore, care must be taken during transportation and installation after surface treatment.

さらに処理には高温度(800℃〜1000℃)で長時
間(6h〜10h以上)が必要なため、処理費用が高く
つくばかりでなく、材料の結晶粒の粗大化が起こり、機
械的性質が劣下する。
Furthermore, processing requires high temperatures (800°C to 1000°C) and long periods of time (6 to 10 hours or more), which not only increases processing costs but also causes coarsening of the material's crystal grains and impairs its mechanical properties. be inferior.

もう一つの方法であるところの溶融アルミニウム中に材
料を浸漬し、表面にアルミニウムを付着させる溶融浸漬
法(アルマ−法)では、短時間で良いが、材料表面にA
lの他に鉄−A1合金層が形成され、この合金層の伸び
は全く期待できず、その後の加工は不可能である。
Another method, the molten immersion method (aluma method), in which the material is immersed in molten aluminum and aluminum is attached to the surface, takes only a short time, but
In addition to 1, an iron-A1 alloy layer is formed, and no elongation of this alloy layer can be expected, making subsequent processing impossible.

したがって処理後において加工性を与えるには合金層を
薄くするか、全く無くす他はない。
Therefore, the only way to provide workability after processing is to make the alloy layer thinner or eliminate it altogether.

そこで従来溶融アルミニウム浴にSiなどを10%程度
添加し、合金層の形成を防いでいる。
Therefore, conventionally, about 10% of Si or the like is added to the molten aluminum bath to prevent the formation of an alloy layer.

Siなどの他元素の添加はアルミニウム浴の管理を難し
くするとともに浸漬により材料が浴中に溶は出す量が増
し、浴中不純物量の増加、ドロス(不純物の沈殿)の発
生など問題を増す。
Addition of other elements such as Si makes it difficult to manage the aluminum bath, and increases the amount of material dissolved into the bath during immersion, leading to problems such as an increase in the amount of impurities in the bath and the occurrence of dross (precipitation of impurities).

ところでSUS 304 (18Cr−8Ni )のス
テンレス鋼をアルミニウム浴(97%Al)中に浸漬し
た場合における合金層形成量ならびに溶解量に及ぼす浸
漬温度の影響は第1図に示すとうりである。
By the way, when stainless steel SUS 304 (18Cr-8Ni) is immersed in an aluminum bath (97% Al), the influence of the immersion temperature on the amount of alloy layer formed and the amount of dissolution is as shown in FIG.

図によれば温度660℃(Alの溶解温度)〜690℃
までは合金層が形成され、母材の減肉量も太きい。
According to the figure, the temperature is between 660°C (melting temperature of Al) and 690°C.
Until then, an alloy layer is formed, and the amount of thinning of the base metal is large.

しかるに690℃を境として690℃以上の温度で合金
層は形成されず、母材の減肉量も少なくなるがさらに高
温になると母材の減肉量は増す。
However, at temperatures above 690°C, no alloy layer is formed and the amount of thinning of the base material decreases, but as the temperature rises further, the amount of thinning of the base material increases.

したがってステンレス鋼上に合金層の無いl’層を形成
させるには、少くとも690℃以上の温度が必要で、さ
らにステンレス鋼の溶解量を押え浴中の不純物を少くす
るには浸漬温度は750’C以下が望ましい。
Therefore, in order to form an l' layer without an alloy layer on stainless steel, a temperature of at least 690°C is required, and in order to suppress the amount of stainless steel dissolved and reduce impurities in the bath, the immersion temperature is 750°C. 'C or lower is desirable.

本発明はかかる事実に鑑み、前記後者の方法を改良して
、かかる方法の有する問題点を完全に解消したアルミニ
ウム被覆ステンレス鋼の製造方法を提案するものである
In view of this fact, the present invention proposes a method for manufacturing aluminum-coated stainless steel, which improves the latter method and completely eliminates the problems of this method.

以下、本発明の一実施例を第2図および第3図に基づい
て説明する。
Hereinafter, one embodiment of the present invention will be described based on FIGS. 2 and 3.

第2図において1は5US304 (18Cr−8Ni
)のオーステナイト系ステンレス鋼からなる薄板、2
はアンコイラ−3は切断溶接装置、4はストレージルー
プカー、5は水洗槽、6は乾燥装置、7は予熱槽、8は
溶解アルミニウム槽、9は冷風吹出しノズル、10はス
トレージループカー 11は切断装置、12は巻取り装
置である。
In Figure 2, 1 is 5US304 (18Cr-8Ni
) thin plate made of austenitic stainless steel, 2
is an uncoiler, 3 is a cutting and welding device, 4 is a storage loop car, 5 is a washing tank, 6 is a drying device, 7 is a preheating tank, 8 is a molten aluminum tank, 9 is a cold air blowing nozzle, 10 is a storage loop car, 11 is a cutting The device 12 is a winding device.

上記構成において、薄板1を水洗槽5において水洗し、
表面の油類を脱脂した後、乾燥装置6により乾燥し、次
にこの薄板1を予熱槽7内に浸漬し、690〜750℃
に予熱する。
In the above configuration, the thin plate 1 is washed with water in the washing tank 5,
After removing oil from the surface, it is dried using a drying device 6, and then this thin plate 1 is immersed in a preheating tank 7 at a temperature of 690 to 750°C.
Preheat to.

ここで予熱する理由は、冷たいままの薄板1を溶解アル
ミニウム槽8内に浸漬すると、昇温中に660〜690
℃の温度範囲で薄板1上に合金層が形成され、さらに昇
温すると、この合金層が浴中に溶解して浴中不純物量が
増加し、また母材、すなわち薄板1が減少するからであ
る。
The reason for preheating here is that when the cold thin plate 1 is immersed in the molten aluminum tank 8, the temperature rises to 660~690 during heating.
This is because an alloy layer is formed on the thin plate 1 in the temperature range of °C, and when the temperature is further increased, this alloy layer dissolves in the bath, increasing the amount of impurities in the bath and reducing the base material, that is, the thin plate 1. be.

予熱槽7の予熱塔としては、フラックス浴(例えばKC
l、 NaC1,Na1AlF6、AlF3などを配合
したもの)が望ましい。
As the preheating tower of the preheating tank 7, a flux bath (for example, KC
1, NaC1, Na1AlF6, AlF3, etc.) is desirable.

700℃程度まで予熱した薄板1を同じく700℃程度
の溶解アルミニウム槽8内に浸漬すれば、合金層の形成
を無くして、しかも母材の溶解が少ない状態にすること
ができる。
By immersing the thin plate 1 preheated to about 700° C. into the molten aluminum bath 8 also at about 700° C., it is possible to eliminate the formation of an alloy layer and create a state in which the base material is less likely to melt.

次に所要時間(短かいほど良い)浸漬した後、薄板1を
溶解アルミニウム槽8から素早く引き上げ、ノズル9か
ら吹き出る冷風により690〜660°Cの間を急冷す
れば良い。
Next, after being immersed for a required period of time (the shorter the better), the thin plate 1 is quickly pulled up from the molten aluminum tank 8 and rapidly cooled to between 690 and 660°C by cold air blown from the nozzle 9.

圧縮ガスの吹き付けは付着Al量を制御する上で好まし
く、平面の付着A1分布が均一になるなど利点がある。
Blowing compressed gas is preferable in terms of controlling the amount of Al deposited, and has advantages such as uniform distribution of Al deposited on the plane.

しかし表面のAlが凝固する660℃以下の温度では、
冷風の吹き付けによる利点が少なく、急冷による内部残
留応力の発生などが予想されるため、薄板1の引き上げ
時だけで十分であるし、冷風を吹き付けなくても、空冷
でも必要な冷却速度が得られる。
However, at temperatures below 660°C where the surface Al solidifies,
Since there is little benefit from blowing cold air and internal residual stress is expected to occur due to rapid cooling, it is sufficient to pull up the thin plate 1, and the necessary cooling rate can be obtained even without blowing cold air. .

第3図に本発明実施例によって得られたアルミニウム被
覆ステンレス鋼板の断面組織顕微鏡写真を示す。
FIG. 3 shows a microscopic photograph of the cross-sectional structure of an aluminum-coated stainless steel sheet obtained according to an example of the present invention.

図においてイは5US304(18Cr8Ni)のステ
ンレス鋼板、口はアルミニウム層であって、該アルミニ
ウム層口とステンレス鋼イとの間に合金層は見られない
In the figure, A is a 5US304 (18Cr8Ni) stainless steel plate, the opening is an aluminum layer, and no alloy layer is seen between the aluminum layer opening and the stainless steel A.

上記実施例では薄板1を例に上げて説明したが、これ以
外にパイプ類、構造部材など種々のステンレス系材料全
般に適用できるのはいうまでもない。
Although the above embodiment has been explained using the thin plate 1 as an example, it goes without saying that the present invention can be applied to a variety of stainless steel materials in general, such as pipes and structural members.

以上述べたごとく本発明のアルミニウム被覆ステンレス
鋼の製造方法によれば、所定形状のオーステナイト系ス
テンレス鋼を690〜750℃に予熱し、次にこれを6
90〜750℃の溶解アルミニウム中に浸漬し、上記ス
テンレス鋼の表面をアルミニウムにより被覆した後、そ
の鋼を溶解アルミニウム中から引き抜き、690〜66
0℃間を急冷するものであるから、ステンレス鋼とアル
ミニウム層との間に合金層が生じず、ステンレス鋼の溶
解を少なくすることができるものである。
As described above, according to the method for producing aluminum-coated stainless steel of the present invention, austenitic stainless steel of a predetermined shape is preheated to 690 to 750°C, and then heated to 690 to 750°C.
After immersing the stainless steel in molten aluminum at 90 to 750°C to coat the surface of the stainless steel with aluminum, the steel is pulled out from the molten aluminum and heated to 690 to 66°C.
Since rapid cooling is performed between 0°C, no alloy layer is formed between the stainless steel and the aluminum layer, and melting of the stainless steel can be reduced.

したがってオーステナイト系ステンレス鋼の特徴である
ところの強度性、加工性に優れ、またアルミニウムの特
徴であるところの硫化水素などの硫黄雰囲気に優れた耐
食性を示すものである。
Therefore, it exhibits excellent strength and workability, which are characteristics of austenitic stainless steel, and excellent corrosion resistance in sulfur atmospheres such as hydrogen sulfide, which is a characteristic of aluminum.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はステンレス鋼をアルミニウム浴に浸漬した場合
における浸漬温度と母材減少厚さおよび合金層厚さとの
関係を示すグラフ、第2図および第3図は本発明の一実
施例を示し、第2図は被覆手順を示す概略説明図、第3
図はアルミニウム被覆ステンレス鋼の断面組織顕微鏡写
真である。 1・・・・・・ステンレス鋼からなる薄板、7・・・・
・・予熱槽、8・・・・・・溶解アルミニウム槽。
FIG. 1 is a graph showing the relationship between immersion temperature, base metal thickness reduction, and alloy layer thickness when stainless steel is immersed in an aluminum bath, and FIGS. 2 and 3 show an embodiment of the present invention. Figure 2 is a schematic explanatory diagram showing the coating procedure;
The figure is a micrograph of the cross-sectional structure of aluminum-coated stainless steel. 1... Thin plate made of stainless steel, 7...
... Preheating tank, 8... Molten aluminum tank.

Claims (1)

【特許請求の範囲】[Claims] 1 所定形状のオーステナイト系ステンレス鋼を690
〜750℃に予熱し、次にこれを690〜750℃の溶
解アルミニウム中に浸漬して、上記ステンレス鋼の表面
をアルミニウムにより被覆した後、その鋼を溶解アルミ
ニウム中から引き抜き、690〜660℃間を急冷する
ことを特徴とするアルミニウム被覆ステンレス鋼の製造
方法。
1 Austenitic stainless steel of a predetermined shape is made of 690
The stainless steel is preheated to ~750°C, then immersed in molten aluminum at 690~750°C to coat the surface of the stainless steel with aluminum, and then pulled out of the molten aluminum and immersed in molten aluminum at 690~660°C. A method for producing aluminum-coated stainless steel, characterized by rapidly cooling the aluminum-coated stainless steel.
JP594279A 1979-01-20 1979-01-20 Manufacturing method of aluminum coated stainless steel Expired JPS5856026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP594279A JPS5856026B2 (en) 1979-01-20 1979-01-20 Manufacturing method of aluminum coated stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP594279A JPS5856026B2 (en) 1979-01-20 1979-01-20 Manufacturing method of aluminum coated stainless steel

Publications (2)

Publication Number Publication Date
JPS5597460A JPS5597460A (en) 1980-07-24
JPS5856026B2 true JPS5856026B2 (en) 1983-12-13

Family

ID=11624945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP594279A Expired JPS5856026B2 (en) 1979-01-20 1979-01-20 Manufacturing method of aluminum coated stainless steel

Country Status (1)

Country Link
JP (1) JPS5856026B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8420699D0 (en) * 1984-08-15 1984-09-19 Singer A R E Flow coating of metals
US4675214A (en) * 1986-05-20 1987-06-23 Kilbane Farrell M Hot dip aluminum coated chromium alloy steel
KR100489269B1 (en) * 2002-11-18 2005-05-11 포항강판 주식회사 Aluminum coating system for stainless steel plate and method for coating thereof
SE527174C2 (en) * 2003-12-30 2006-01-17 Sandvik Intellectual Property Method of manufacturing an austenitic stainless steel alloy by coating with aluminum and its use in high temperature applications

Also Published As

Publication number Publication date
JPS5597460A (en) 1980-07-24

Similar Documents

Publication Publication Date Title
WO2020108593A1 (en) Method for forming zinc-plated steel plate or steel belt having good corrosion resistance
CN101352946B (en) Hot-dip aluminizing zincium steel plate/belt for deep drawing and method for producing the same
CN102899582B (en) High strength nickel base corrosion resistance alloy and manufacturing method thereof
WO2021223760A1 (en) High-strength high-temperature alloys for thermal power units and processing technique therefor
JPH02104650A (en) Method for continuous hot dipping of a steel strip with use of aluminium
JPS6237077B2 (en)
CN110039031A (en) A kind of device and its pouring procedure being poured bimetallic pipe billet
US20230002862A1 (en) Nickel-based superalloy for diffusion bonding and method for diffusion bonding using the same
US4175163A (en) Stainless steel products, such as sheets and pipes, having a surface layer with an excellent corrosion resistance and production methods therefor
JPS5856026B2 (en) Manufacturing method of aluminum coated stainless steel
JP4264373B2 (en) Method for producing molten Al-based plated steel sheet with few plating defects
JPH05156494A (en) Welded pipe having excellent corrosion resistance on inside surface and production thereof
KR101356866B1 (en) Austenitic stainless steel with high corrosion resistance and the method of manufacturing the same
US5222652A (en) Non-corrosive double walled tube and process for making the same
KR102373161B1 (en) Low-alloy and Corrosion-resistant Steel Having Improved Corrosion-resistant at Corrosive Environment and the Method Thereof
JP2001355053A (en) HOT DIP Zn-Al-Mg-Si PLATED STEEL EXCELLENT IN SURFACE PROPERTY AND ITS PRODUCTION METHOD
CN112359295B (en) Corrosion-resistant stainless steel pipe for ship
US5297587A (en) Sealed double wall steel tubing having steel outer surface
US5145103A (en) Partial elimination of copper plate from steel strip by mechanical means
US2586142A (en) Process for the production of lead coatings
JP2746014B2 (en) Manufacturing method of metal double tube
JP2002102936A (en) Manufacturing method of elbow joint
JP4764008B2 (en) COOLING ELEMENT AND MANUFACTURING METHOD THEREOF
JP2000256816A (en) Production of hot-dip aluminized steel sheet excellent in workability and corrosion resistance
JP2011157589A (en) Method for improving corrosion resistance of stainless steel product