JP2001355053A - HOT DIP Zn-Al-Mg-Si PLATED STEEL EXCELLENT IN SURFACE PROPERTY AND ITS PRODUCTION METHOD - Google Patents

HOT DIP Zn-Al-Mg-Si PLATED STEEL EXCELLENT IN SURFACE PROPERTY AND ITS PRODUCTION METHOD

Info

Publication number
JP2001355053A
JP2001355053A JP2001111342A JP2001111342A JP2001355053A JP 2001355053 A JP2001355053 A JP 2001355053A JP 2001111342 A JP2001111342 A JP 2001111342A JP 2001111342 A JP2001111342 A JP 2001111342A JP 2001355053 A JP2001355053 A JP 2001355053A
Authority
JP
Japan
Prior art keywords
plating
plated steel
steel material
cooling rate
surface properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001111342A
Other languages
Japanese (ja)
Other versions
JP4555499B2 (en
Inventor
Akira Tanaka
曉 田中
Yoshihiro Suemune
義広 末宗
Akira Takahashi
高橋  彰
Hisayoshi Komatsu
久芳 小松
Takeshi Miyake
豪 三宅
Hajime Onozawa
元 小野澤
Takuo Ikeda
卓穂 池田
Yasuhide Morimoto
康秀 森本
Kazuhiko Honda
和彦 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001111342A priority Critical patent/JP4555499B2/en
Publication of JP2001355053A publication Critical patent/JP2001355053A/en
Application granted granted Critical
Publication of JP4555499B2 publication Critical patent/JP4555499B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer

Abstract

PROBLEM TO BE SOLVED: To provide an excellent hot dip Zn-Al-Mg-Si plated steel improved in surface properties and to provide its production method. SOLUTION: In this hot dip Zn-Al-Mg-Si plated steel excellent in surface properties, on the surface of plated steel having a plated layer having a composition containing, by mass, 5 to 18% Al, 1 to 10% Mg and 0.01 to 2% Si, if required, containing <=1% Fe, or further containing 0.1 to 2% Sn, and the balance Zn with unavoidable impurities, an Al phase is present by >=200 pieces per mm2. Then, in the production method, the cooling rate after plating is controlled to <10 deg.C/s.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面性状に優れた
溶融Zn−Al−Mg−Siめっき鋼材とその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot-dip Zn-Al-Mg-Si plated steel material having excellent surface properties and a method for producing the same.

【0002】[0002]

【従来の技術】近年、自動車、家庭電気製品、建材等の
耐用年数の長期化に対応するため、表面処理鋼材の使用
が拡大している。特にZn−5質量%Al溶融めっき鋼
材は、今までの溶融亜鉛めっきに比較して耐食性が優れ
ていることから、建材などを中心に使用されている。ま
たZnにAlやMgを添加する溶融めっきについては、
米国特許第3505043号公報で、Al:3〜17
%、Mg:1〜5%、残部Znからなる溶融めっき浴を
用いた高耐食性溶融Zn−Al−Mgめっき鋼板が提案
されて以来、様々な技術が提案されてきた。たとえば、
特開平8−60324号公報では、Alが最大0.25
%、Mgが最大3%である。また、特開平9−1436
59号公報では、Mg:0.05〜3%、Al:0.1
〜1%、Ni:0.01〜0.2%を含有している。こ
れらは、確かに耐食性向上効果はあるものの、Mg含有
量が3%近くになると、浴上に酸化物(ドロス)が厚く
堆積し、工業生産に不向きである。最近では、特開平1
0−226865号公報のように、Al:4〜10%、
Mg:1〜4%添加しためっき鋼板や、特願平11−1
79913号公報のようにZn−Al−Mg系めっき鋼
板に更にSiを添加させた溶融めっき鋼板が提案されて
いる。
2. Description of the Related Art In recent years, the use of surface-treated steel materials has been expanding in order to cope with prolonged service life of automobiles, household electric appliances, building materials and the like. In particular, Zn-5 mass% Al hot-dip galvanized steel is used mainly for building materials and the like because of its superior corrosion resistance as compared with conventional hot-dip galvanizing. For hot-dip plating in which Al or Mg is added to Zn,
In U.S. Pat. No. 3,505,043, Al: 3 to 17
%, Mg: 1-5%, and various techniques have been proposed since the high corrosion-resistant hot-dip Zn-Al-Mg plated steel sheet using a hot-dip plating bath composed of Zn was proposed. For example,
In Japanese Patent Application Laid-Open No. H8-60324, the maximum Al content is 0.25
%, And Mg up to 3%. Also, Japanese Patent Application Laid-Open No. 9-1436
No. 59, Mg: 0.05-3%, Al: 0.1
-1%, Ni: 0.01-0.2%. Although these have the effect of improving the corrosion resistance, when the Mg content is close to 3%, thick oxide (dross) is deposited on the bath, which is not suitable for industrial production. Recently, Japanese Patent Application Laid-Open
0-226865, Al: 4-10%,
Mg: coated steel sheet with 1-4% addition, and Japanese Patent Application No. 11-1
JP-A-79913 discloses a hot-dip coated steel sheet in which Si is further added to a Zn-Al-Mg-based coated steel sheet.

【0003】ところが、Zn−Al−Mg系めっきでは
数mm〜10mm程度の点状の外観模様が発生すること
があり、商品上問題になる場合がある。この解決方案と
しては、たとえば前述した特開平10−226865号
公報では、Mgの存在形態が重要であるとし、製造時め
っき浴温を450℃以下ないし、470℃未満とし、冷
却速度を10℃/s以上と速くするか或いは浴温を47
0℃以上とし冷却速度を0.5℃/s以上に制御するこ
とにより、これを回避できるとしている。更に、特開平
10−306357号公報では、めっきにTi、Bを添
加することにより、製造条件の制約が緩和されるとして
いる。ところが、われわれの調査によれば、これらの技
術は、Zn−Al−Mg−Siめっきの点状の表面不
良を回避することが出来ないこと、浴温はめっき釜、
めっき機器の溶食の問題があり、470℃以上に、上げ
ることが困難であること、TiやBの添加はドロス生
成を招き、表面性状が悪化する等、数々の致命的な欠点
があることが明らかとなった。
However, in the case of Zn-Al-Mg-based plating, a dot-like appearance pattern of several mm to about 10 mm may be generated, which may cause a problem in a product. As a solution to this problem, for example, in the above-mentioned Japanese Patent Application Laid-Open No. 10-226865, it is assumed that the presence form of Mg is important, the plating bath temperature during production is set to 450 ° C. or less or less than 470 ° C. s or faster or set the bath temperature to 47
This can be avoided by controlling the cooling rate to 0.5 ° C./s or more by setting the cooling rate to 0 ° C. or more. Further, Japanese Patent Application Laid-Open No. 10-306357 states that by adding Ti and B to plating, restrictions on manufacturing conditions are relaxed. However, according to our research, these techniques cannot avoid the point-like surface defects of Zn-Al-Mg-Si plating, and the bath temperature is
There is a problem of corrosion of plating equipment, and it is difficult to raise the temperature to 470 ° C or more. Addition of Ti or B causes dross formation and deteriorates surface properties, and has many fatal drawbacks. Became clear.

【0004】[0004]

【発明が解決しようとする課題】このような状況に鑑
み、表面性状を改善した溶融Zn−Al−Mg−Siめ
っき鋼材を提供することが本発明の目的である。
In view of such circumstances, it is an object of the present invention to provide a hot-dip Zn-Al-Mg-Si plated steel material having improved surface properties.

【0005】[0005]

【課題を解決するための手段】本発明者等は、先の検討
から、Zn−Al−MgめっきとZn−Al−Mg−S
iめっきの点状欠陥の生成メカニズムが異なることが推
察されることから、Zn−Al−Mg−Siめっきの表
面性状について鋭意検討した。そして、斑点状欠陥が、
従来知見と異なり、冷却速度を上げると顕著に発生する
ことを突き止めた。この斑点部分は、大きさは約1.5
mm程度、周囲に比して、黒っぽい平滑な外観を呈して
いる。この斑点部の表面分析を光顕、電子線プローブマ
イクロアナリシス装置(CMA)などで実施したとこ
ろ、斑点部ではAl相の樹枝状構造が表面に突起状に突
き出しておらず、一方、点状欠陥のない正常部では、A
l相の樹枝状構造が表面に突起状に突き出しており、点
状欠陥は、Al相の析出形態の違いであることを見いだ
し本発明を完成するに至った。ここで、Al相とは、め
っき浴中から最初に凝固析出を開始するAlリッチ相と
定義される。
SUMMARY OF THE INVENTION The inventors of the present invention, based on the above investigation, have found that Zn-Al-Mg plating and Zn-Al-Mg-S
Since it is presumed that the generation mechanism of the point defects of the i-plating is different, the surface properties of the Zn-Al-Mg-Si plating were studied diligently. And the spot defect is
Unlike the conventional knowledge, it was found that the occurrence of a remarkable increase when the cooling rate was increased. These spots are approximately 1.5
mm and a blackish smooth appearance compared to the surroundings. When the surface analysis of the spots was carried out with a light microscope, an electron beam probe micro-analysis device (CMA), etc., the dendritic structure of the Al phase did not protrude to the surface at the spots, while the spot-like defects were observed. If there is no normal part, A
The 1-phase dendritic structure protrudes from the surface in a protruding manner, and the point-like defect was found to be a difference in the precipitation form of the Al phase, and the present invention was completed. Here, the Al phase is defined as an Al-rich phase in which solidification precipitation starts first from the plating bath.

【0006】そして、このAl相の析出を制御すること
を指向し、めっき浴温度や冷却速度と、点状欠陥との関
係を調査した。その結果、従来知見と異なりめっき浴
温は点状欠陥生成に影響しないこと、めっき後の冷却
速度が非常に重要であることが判った。特に後者につい
ては、凝固終了温度近傍の温度範囲の冷却速度が斑点の
生成に非常に重要であり、この範囲の冷却速度を小さく
し、Al相の析出を制御することで、点状欠陥生成を回
避できることを知見した。このメカニズムは未だ明らか
ではないが、冷却速度が大きいと局所的に過冷却状態が
生じ、Alの析出挙動が変化し、過冷部ではAl相の成
長が遅れ、表面へのAl相の突起が少なくなり、斑点が
生じるものと推察される。ここで、Al相とは、めっき
浴中から最初に凝固析出を開始するAlリッチ相と定義
される。本発明は、このような種々の新規知見に基づき
完成されたものであり、要旨とするところは、以下に示
す通りである。
[0006] Then, with the aim of controlling the precipitation of the Al phase, the relationship between the plating bath temperature and cooling rate and the point-like defects was investigated. As a result, it was found that, unlike the conventional knowledge, the plating bath temperature did not affect the generation of point defects, and the cooling rate after plating was very important. In particular, for the latter, the cooling rate in the temperature range near the solidification end temperature is very important for the generation of spots, and by reducing the cooling rate in this range and controlling the precipitation of the Al phase, point-like defects can be generated. It was found that it could be avoided. Although this mechanism is not yet clear, if the cooling rate is high, a supercooled state occurs locally, the precipitation behavior of Al changes, the growth of the Al phase is delayed in the supercooled portion, and projections of the Al phase on the surface are formed. It is presumed that the number of spots decreases and spots occur. Here, the Al phase is defined as an Al-rich phase in which solidification precipitation starts first from the plating bath. The present invention has been completed based on such various new findings, and the gist is as follows.

【0007】(1) 鋼材の表面に、Al:5〜18質
量%、Mg:1〜10質量%、Si:0.01〜2質量
%、残部Zn及び不可避的不純物とからなるめっき層を
有するめっき鋼材表面に、Al相が1mm2当たり20
0個以上存在することを特徴とする表面性状に優れた溶
融Zn−Al−Mg−Siめっき鋼材。
(1) On the surface of a steel material, there is provided a plating layer composed of 5 to 18% by mass of Al, 1 to 10% by mass of Mg, 0.01 to 2% by mass of Si, the balance being Zn and unavoidable impurities. Al phase on the surface of plated steel material is 20 per mm 2
A hot-dip Zn-Al-Mg-Si plated steel material having excellent surface properties, characterized in that there are zero or more steels.

【0008】(2) 上記(1)に記載のめっき鋼材の
めっき層中に、更にFe:1質量%以下含有することを
特徴とする表面性状に優れた溶融Zn−Al−Mg−S
iめっき鋼材。
(2) Fused Zn—Al—Mg—S having excellent surface properties, characterized in that the plated layer of the plated steel material according to (1) further contains Fe: 1% by mass or less.
i-plated steel.

【0009】(3) 上記(1)または(2)に記載の
めっき鋼材のめっき層中に、更にSn:0.1〜2質量
%含有することを特徴とする表面性状に優れた溶融Zn
−Al−Mg−Siめっき鋼材。
(3) Fused Zn excellent in surface properties, characterized in that the plated layer of the plated steel material according to (1) or (2) further contains Sn: 0.1 to 2% by mass.
-Al-Mg-Si plated steel material.

【0010】(4) 上記(1)乃至(3)のいずれか
に記載のめっき鋼材のめっき層上に更に、無機酸化物皮
膜を70mg/m2〜2g/m2有することを特徴とする
表面性状に優れた溶融Zn−Al−Mg−Siめっき鋼
材。
(4) A surface characterized by further comprising an inorganic oxide film on the plated layer of the plated steel material according to any one of (1) to (3) above, in an amount of 70 mg / m 2 to 2 g / m 2. Hot-dip Zn-Al-Mg-Si plated steel with excellent properties.

【0011】(5) 上記(1)乃至(3)のいずれか
に記載のめっき鋼材のめっき層上に更に、有機樹脂皮膜
を100mg/m2〜2.0g/m2有することを特徴と
する表面性状に優れた溶融Zn−Al−Mg−Siめっ
き鋼材。
(5) An organic resin film is further provided on the plated layer of the plated steel material according to any of (1) to (3) above, in an amount of from 100 mg / m 2 to 2.0 g / m 2. Hot-dip Zn-Al-Mg-Si plated steel with excellent surface properties.

【0012】(6) めっき後の冷却速度を10℃/s
未満にすることを特徴とする上記(1)乃至(5)のい
ずれかに記載の表面性状に優れた溶融Zn−Al−Mg
−Siめっき鋼材の製造方法。
(6) The cooling rate after plating is 10 ° C./s
The molten Zn-Al-Mg having excellent surface properties according to any one of the above (1) to (5), wherein
-A method for producing a Si-plated steel material.

【0013】(7) めっき後、凝固終了温度±10℃
の温度範囲の冷却速度を10℃/s未満にすることを特
徴とする上記(1)乃至(5)のいずれかに記載の表面
性状に優れた溶融Zn−Al−Mg−Siめっき鋼材の
製造方法。
(7) Solidification end temperature ± 10 ° C. after plating
Production of a hot-dip Zn-Al-Mg-Si plated steel material having excellent surface properties according to any one of the above (1) to (5), wherein the cooling rate in the temperature range described above is less than 10 ° C / s. Method.

【0014】(8) めっき後、凝固終了温度+10℃
までの冷却速度を10℃/s以上とし、更に続いて凝固
終了温度±10℃の温度範囲の冷却速度を10℃/s未
満にすることを特徴とする上記(1)乃至(5)のいず
れかに記載の表面性状に優れた溶融Zn−Al−Mg−
Si鋼材の製造方法。
(8) Solidification end temperature + 10 ° C. after plating
The cooling rate up to 10 ° C./s or more, and then the cooling rate in the temperature range of the solidification end temperature ± 10 ° C. to less than 10 ° C./s. Fused Zn-Al-Mg-
Manufacturing method of Si steel material.

【0015】[0015]

【発明の実施の形態】以下、本発明を詳細に説明する。
まずめっき層中に含有させる元素について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
First, the elements contained in the plating layer will be described.

【0016】めっき層中のAlは耐食性の向上と、めっ
き表面の突起状Al相樹枝状構造を生成させる目的で添
加する。5%(mass%、以下同じ)未満では表面の
突起状Al相の生成が不十分であり、耐食性も劣る。一
方、18%を超えるとひけ状の凹凸が大きくなり表面外
観が劣化すると共に耐食性向上効果が飽和するため、範
囲を5〜18%とした。
Al in the plating layer is added for the purpose of improving corrosion resistance and forming a protruding Al phase dendritic structure on the plating surface. If it is less than 5% (mass%, the same applies hereinafter), the formation of a protruding Al phase on the surface is insufficient, and the corrosion resistance is poor. On the other hand, if it exceeds 18%, the sink-like unevenness becomes large, the surface appearance deteriorates, and the effect of improving the corrosion resistance is saturated. Therefore, the range is set to 5 to 18%.

【0017】Mgは一般には耐食性向上効果があると言
われているが、前述しためっき表面のAl相の樹枝状突
起物の生成に影響を与え、1%未満ではこの生成が実質
的にない。一方、10%を超えると、めっき浴が大気接
触により酸化が進行し黒色酸化物(ドロス)を生成し、
めっき製造が困難になるため、範囲を1〜10%とし
た。
Although Mg is generally said to have an effect of improving corrosion resistance, it affects the formation of the Al phase dendrites on the plating surface described above, and when it is less than 1%, this formation is substantially absent. On the other hand, if it exceeds 10%, the plating bath is oxidized by contact with the air, and a black oxide (dross) is generated.
Since plating production becomes difficult, the range was set to 1 to 10%.

【0018】Siは、一般的には耐食性向上、めっき密
着性向上のために添加される。0.01%未満では、こ
れらの効果が小さく、2%以上では、ドロス生成が増加
し、またSi酸化物が斑点状模様が増加するので、0.
01〜2%とした。
Si is generally added for improving corrosion resistance and plating adhesion. If it is less than 0.01%, these effects are small, and if it is 2% or more, dross generation increases and the spot pattern of the Si oxide increases.
01 to 2%.

【0019】Feは、Fe−Zn−Al合金、Fe−Z
n、Fe−Al金属間化合物等を形成し、初晶Al樹枝
状突起物の形成を妨げ、斑点模様の発生を誘発すること
があるので1%以下とした。
Fe is an Fe—Zn—Al alloy, Fe—Z
n, an Fe-Al intermetallic compound, etc. are formed to prevent the formation of primary Al dendrites and to induce the formation of spotted patterns.

【0020】Snは、耐食性向上のために必要に応じて
添加される元素であり、耐食性向上効果のためには0.
1%以上の添加が必要である。2%を超えるとめっきひ
け状の凹凸が出やすくなり外観が悪化するので、0.1
〜2%とした。
Sn is an element added as needed for improving the corrosion resistance.
Addition of 1% or more is required. If it exceeds 2%, it becomes easy to form sink marks and irregularities, and the appearance is deteriorated.
22%.

【0021】次に製造方法について説明する。使用する
めっき原材の材質には特に限定はなく、Alキルド鋼、
極低炭素鋼、高C鋼、各種高張力鋼、Ni、Cr含有鋼
等が使用可能である。また、鋼板、鋼線等のいずれにつ
いても適用可能であり、製鋼方法や鋼の強度、熱間圧延
方法、酸洗方法、冷延方法等の鋼材の前処理加工につい
ても特に制限がない。めっきの製造方法に関しては、ゼ
ンジミアタイプ、フラックスタイプ、または、プレめっ
きタイプ等、2浴法等の製造方法によらず、本技術は適
用可能である。
Next, the manufacturing method will be described. There is no particular limitation on the material of the plating raw material to be used.
Ultra low carbon steel, high C steel, various high tensile steels, Ni and Cr containing steels, etc. can be used. Further, the present invention can be applied to any of steel plates, steel wires, and the like, and there is no particular limitation on the pretreatment of a steel material such as a steelmaking method, steel strength, a hot rolling method, an acid pickling method, and a cold rolling method. The present technology is applicable to a plating manufacturing method regardless of a manufacturing method such as a two-bath method such as a Sendzimir type, a flux type, or a pre-plating type.

【0022】めっき時の浴温については、特に制限はな
いが、めっき機器溶損の点から470℃未満で行うこと
が望ましい。めっき後のワイピング方法には、制限がな
く、空気、及び窒素ワイピングの使用が可能である。ま
た、冷却方法にも特に制限がないが、局所的過冷却を避
けるために気体冷却をすることが望ましい。そして、こ
のAl相の析出を制御することを指向し、めっき浴温度
や冷却速度と、点状欠陥との関係を調査した。その結
果、従来知見と異なりめっき浴温は点状欠陥生成に影
響しないこと、めっき後の冷却速度が非常に重要であ
ることが判った。特に後者については、凝固終了温度近
傍の温度範囲の冷却速度が斑点の生成に非常に重要であ
り、この範囲の冷却速度を小さくし、Al相の析出を制
御することで、点状欠陥生成を回避できることを知見し
た。このメカニズムは未だ明らかではないが、冷却速度
が大きいと局所的に過冷却状態が生じ、Alの析出挙動
が変化し、過冷部ではAl相の成長が遅れ、表面へのA
l相の突起が少なくなり、斑点が生じるものと推察され
る。めっき後の冷却速度は本発明にとり非常に重要であ
り、斑点生成を回避するにはめっき後から凝固終了温度
までの冷却速度が10℃/s未満とする必要がある。更
に言えば、凝固点近傍、すなわち凝固終了温度±10℃
の範囲における冷却速度を10℃/s未満とすること
で、斑点生成を回避できる。この温度範囲を除けば、冷
却速度を10℃/s以上としてもかまわない。
The bath temperature at the time of plating is not particularly limited. However, it is preferable that the bath temperature is less than 470 ° C. from the viewpoint of melting of the plating equipment. The wiping method after plating is not limited, and air and nitrogen wiping can be used. Although there is no particular limitation on the cooling method, it is desirable to perform gas cooling in order to avoid local overcooling. In order to control the precipitation of the Al phase, the relationship between the plating bath temperature and the cooling rate and the point-like defects was investigated. As a result, it was found that, unlike the conventional knowledge, the plating bath temperature did not affect the generation of point defects, and the cooling rate after plating was very important. In particular, for the latter, the cooling rate in the temperature range near the solidification end temperature is very important for the generation of spots, and by reducing the cooling rate in this range and controlling the precipitation of the Al phase, point-like defects can be generated. It was found that it could be avoided. Although this mechanism is not yet clear, if the cooling rate is high, a supercooled state occurs locally, the precipitation behavior of Al changes, the growth of the Al phase is delayed in the supercooled portion, and A
It is presumed that the number of l-phase protrusions decreases and spots occur. The cooling rate after plating is very important for the present invention, and the cooling rate from plating to the solidification end temperature must be less than 10 ° C./s in order to avoid the formation of spots. More specifically, near the freezing point, ie, the freezing end temperature ± 10 ° C
By setting the cooling rate in the range of less than 10 ° C./s, spot formation can be avoided. Excluding this temperature range, the cooling rate may be 10 ° C./s or more.

【0023】めっき後に後処理であるCoフラッシュ、
Co−Niフラッシュなどの水系後処理をしても本発明
の効果を損なうことはない。
Co-flash, which is post-treatment after plating,
Even if an aqueous post-treatment such as Co-Ni flash is used, the effect of the present invention is not impaired.

【0024】めっき後のめっき層上に、更に、Mg、Z
r、Mo、Ce、Caの酸化物から選ばれる少なくとも
1種以上の無機酸化物を被覆させることにより、耐食性
を更に向上させることが出来る。この場合、たとえば硫
酸塩、硝酸塩、燐酸塩等の複合酸化物とすることも何ら
問題ない。これらの合計が、70mg/m2未満である
と、耐食性向上効果が小さい。これらの合計が2.0g
/m2を超えると、耐食性向上効果が飽和するので70
mg/m2〜2.0g/m2の範囲とする。
On the plated layer after plating, further add Mg, Z
By coating at least one or more inorganic oxides selected from the oxides of r, Mo, Ce, and Ca, the corrosion resistance can be further improved. In this case, there is no problem in forming a composite oxide such as a sulfate, a nitrate, and a phosphate. When the sum of these is less than 70 mg / m 2 , the effect of improving corrosion resistance is small. 2.0g of these
/ M 2 , the effect of improving corrosion resistance is saturated.
mg / m 2 to 2.0 g / m 2 .

【0025】また、この代わりに有機樹脂皮膜を被覆さ
せることによっても耐食性向上を図ることが出来る。こ
の皮膜の付着量が100mg/m2以下では、この効果
が少なく、2.0g/m2を超えると耐食性向上効果が
飽和するので100mg/m2〜2.0g/m2の範囲と
する。有機樹脂としては、水系樹脂、溶剤系樹脂、粉体
系樹脂、無溶剤系樹脂のどのような形態でもよい。ここ
で言う水系樹脂とは水溶性樹脂のほか、本来水不溶性で
ありながらエマルジョンやサスペンジョンのように水不
溶性樹脂が水中に微分散された状態になりうるもの(水
分散性樹脂)を含めて言う。有機樹脂として使用できる
樹脂としては、特に制限はないが、ポリオレフィン系樹
脂、アクリルオレフィン系樹脂、ポリウレタン系樹脂、
アクリル系樹脂、ポリカーボネート系樹脂、エポキシ系
樹脂、ポリエステル系樹脂、アルキド系樹脂、フェノー
ル系樹脂、その他の加熱硬化型の樹脂などを例示でき、
架橋可能であることがより好ましい。有機樹脂は2種類
以上を混合してあるいは共重合して使用してもよい。ま
た、必要により各種メラミン樹脂、アミノ樹脂等の架橋
剤を添加してもよい。有機樹脂に加えて微粒シリカや潤
滑剤の若干の添加も問題ない。もちろん各種クロメート
処理を行うことも問題ない。
Alternatively, the corrosion resistance can be improved by coating an organic resin film instead. Adhesion amount of the coating in 100 mg / m 2 or less, this effect is small, the corrosion resistance improving effect exceeds 2.0 g / m 2 is in the range of 100mg / m 2 ~2.0g / m 2 so saturated. The organic resin may be in any form of a water-based resin, a solvent-based resin, a powder-based resin, or a solventless resin. The term “aqueous resin” used herein includes not only water-soluble resins but also resins that are inherently water-insoluble but can be finely dispersed in water such as emulsions and suspensions (water-dispersible resins). . The resin that can be used as the organic resin is not particularly limited, but a polyolefin resin, an acrylic olefin resin, a polyurethane resin,
Acrylic resins, polycarbonate resins, epoxy resins, polyester resins, alkyd resins, phenolic resins, and other heat-curable resins can be exemplified.
More preferably, it is crosslinkable. The organic resin may be used as a mixture of two or more or a copolymer. If necessary, a crosslinking agent such as various melamine resins and amino resins may be added. There is no problem in adding fine silica or a lubricant in addition to the organic resin. Of course, there is no problem in performing various chromate treatments.

【0026】これら、無機酸化物或いは有機皮膜を形成
させるための塗布方法としては、スプレー、カーテン、
フローコーター、ロールコーター、バーコーター、刷毛
塗り、浸漬及びエアナイフ絞り等のいずれの方法を用い
てもよい。また、到達焼き付け温度は80〜250℃と
するのが望ましい。80℃未満では、塗料中の水が完全
に揮発しづらいため耐食性が低下し、250℃を超える
と有機物である樹脂のアルキル部分が熱分解等の変性を
起こしたり、皮膜の硬化が進みすぎて耐食性や加工性が
低下したりするため好ましくない。80〜160℃がよ
り好ましい。また、乾燥設備については特に規制するも
のではないが、熱風吹き付けによる方法や、ヒーターに
よる間接加熱方法、赤外線による方法、誘導加熱による
方法、並びにこれらを併用する方法が採用できる。ま
た、使用する有機樹脂の種類によっては、紫外線や電子
線などのエネルギー線によって硬化させることも出来
る。
The coating methods for forming these inorganic oxide or organic films include spray, curtain,
Any method such as a flow coater, a roll coater, a bar coater, brush coating, dipping, and air knife drawing may be used. Further, the ultimate baking temperature is desirably 80 to 250 ° C. If the temperature is lower than 80 ° C., the corrosion resistance is reduced because the water in the paint is difficult to completely volatilize. If the temperature exceeds 250 ° C., the alkyl portion of the organic resin undergoes denaturation such as thermal decomposition or the film hardens too much. It is not preferable because corrosion resistance and workability are reduced. 80-160 ° C is more preferred. The drying equipment is not particularly limited, but a method using hot air blowing, an indirect heating method using a heater, a method using infrared rays, a method using induction heating, and a method using these in combination can be adopted. In addition, depending on the type of the organic resin used, the resin can be cured by energy rays such as ultraviolet rays and electron beams.

【0027】また、調質圧延を行ってもかまわない。Further, temper rolling may be performed.

【0028】めっき表面に現れる樹枝状Al相は、直径
数ミクロンから数十ミクロンの大きさのAl相であり、
これらが線状に並び、樹枝状模様を形成している。
The dendritic Al phase appearing on the plating surface is an Al phase having a diameter of several microns to several tens of microns,
These are linearly arranged to form a dendritic pattern.

【0029】光学顕微鏡とCMAを併用することで、容
易に調査でき、1mm2の範囲に、200個以上あると
点状欠陥がなくなり、外観が良好となる。
By using the optical microscope and CMA together, it is easy to investigate, and if there are 200 or more in the range of 1 mm 2 , the point defect is eliminated and the appearance is improved.

【0030】[0030]

【実施例】(実施例1)鋼スラブを溶製して通常の方法
で製造した板厚0.8mmのSPCC板をめっき原板と
した。めっきは無酸化炉タイプの連続溶融亜鉛めっきラ
インにて加熱、焼鈍、めっきを行った。焼鈍雰囲気は、
10%水素、残90%窒素ガス雰囲気であり、露点を−
30度とした。焼鈍温度は730℃、焼鈍時間は3分で
ある。めっき浴組成はAl:3.9〜19%、Mg:
0.3〜11.3%、Si:2.2%以下、Fe:0.
01〜1.2%、Sn:0.05〜2.5%、残Zn及
び不可避的不純物とからなり、めっき浴温は430℃で
ある。めっき付着量は通常の窒素ガスワイピング法によ
りめっき付着量を片面当たり90g/m2とした。めっ
き後の冷却は空冷にて、8℃/sで320℃まで行った
のち、気水冷却を実施した。なお、用いた浴の凝固終了
温度は340℃である。その後調質圧延を1%行った。
EXAMPLES (Example 1) An SPCC plate having a thickness of 0.8 mm, which was produced by melting a steel slab and manufactured by a usual method, was used as a plating original plate. The plating was performed by heating, annealing and plating in a continuous hot-dip galvanizing line of a non-oxidizing furnace type. The annealing atmosphere is
10% hydrogen, 90% nitrogen gas atmosphere, dew point-
30 degrees. The annealing temperature is 730 ° C. and the annealing time is 3 minutes. Plating bath composition: Al: 3.9-19%, Mg:
0.3-11.3%, Si: 2.2% or less, Fe: 0.
The plating bath temperature is 430 ° C., which is composed of 01 to 1.2%, Sn: 0.05 to 2.5%, residual Zn and unavoidable impurities. The coating weight was 90 g / m 2 per one side by a usual nitrogen gas wiping method. Cooling after plating was performed by air cooling at 8 ° C./s to 320 ° C., and then steam-water cooling was performed. In addition, the coagulation end temperature of the used bath is 340 ° C. Thereafter, temper rolling was performed at 1%.

【0031】その後必要に応じて、後処理を行った。後
処理は無機酸化物被覆または有機樹脂被覆、クロ
メート処理を行った。めっき製造時には、めっき浴表面
酸化物(ドロス)生成量を目視で確認し、ドロスの多い
ものを×、やや多いものを△、少ないものを○とした。
また、耐食性については、JIS−Z−2371に記載
されている塩水噴霧試験(SST)を1000時間行っ
た後の腐食減量で評価した。5g/m2未満を◎◎◎、
5g/m2以上10g/m2未満を◎◎、10g/m2
上30g/m2未満を◎、30g/m2以上40g/m2
未満を○、40g/m2以上60g/m2未満を△、60
g/m2以上を×とし、○以上を合格とした。めっき外
観は、斑点状模様の有無、ヒケの生成、ドロス付着など
が現れているものは、×とし、良好なものを○とした。
めっき表面に現れる初晶Alは、光学顕微鏡写真と一般
にCMAと呼ばれる電子線プローブマイクロアナリシス
装置(島津製作所)で、1mm×1mmの範囲でめっき
表面の測定により、突起状のAl相の数を数えた。めっ
き密着性は、180度の曲げを実施後、曲げ部を粘着テ
ープで剥離試験した。剥離無しを○、剥離有りを×とし
た。これらの結果を表1及び表2に示した。Alが5%
以上で、かつMgが1%以上であると、耐食性は良好で
ある。
Thereafter, post-processing was performed as required. The post-treatment was performed with an inorganic oxide coating or an organic resin coating and a chromate treatment. At the time of plating production, the amount of oxide (dross) generated on the plating bath surface was visually checked.
The corrosion resistance was evaluated by the weight loss after the salt spray test (SST) described in JIS-Z-2371 for 1000 hours. Less than 5 g / m 2 ◎◎◎,
5 g / m 2 or more and less than 10 g / m 2 ◎◎ 10 g / m 2 or more and less than 30 g / m 2 ◎, 30 g / m 2 or more and 40 g / m 2
Less than ○, 40 g / m 2 or more and less than 60 g / m 2 △, 60
g / m 2 or more was evaluated as x, and ○ or more was evaluated as acceptable. Regarding the plating appearance, those with spotted patterns, generation of sink marks, dross adhesion, etc., were evaluated as x, and those with good appearance were evaluated as ○.
The number of protruding Al phases is counted by measuring the plating surface in the area of 1 mm x 1 mm with an optical microscope photograph and an electron probe micro-analysis device (Shimadzu Corporation) generally called CMA, which appears on the plating surface. Was. The plating adhesion was evaluated by peeling the bent portion with an adhesive tape after performing 180 ° bending.無 し indicates no peeling and × indicates peeling. The results are shown in Tables 1 and 2. Al is 5%
As described above, when the Mg content is 1% or more, the corrosion resistance is good.

【0032】No.1からNo.73は本発明例であ
り、耐食性と表面性状に優れている。No.74からN
o.76はAlが少なすぎるため、耐食性が悪い。N
o.77からNo.79のようにAl量が多すぎると、
冷却時にヒケが発生し、めっき外観が悪い。
No. No. 1 to No. 73 is an example of the present invention and is excellent in corrosion resistance and surface properties. No. 74 to N
o. No. 76 has poor corrosion resistance because Al is too small. N
o. 77 to No. If the amount of Al is too large as in 79,
Sinks occur during cooling, resulting in poor plating appearance.

【0033】No.80からNo.82はMg量が低す
ぎるため耐食性が悪い。No.83からNo.85はM
gが高すぎるため浴ドロスが多くなり、めっき外観も悪
化する。No.86からNo.88は、Si量が少な
く、めっき密着性が悪い。No.89はSnが多すぎて
めっき外観が悪い。No.90からNo.92はSiが
多すぎてドロスが多く、外観が悪い。No.93からN
o.95はFe量が大きすぎて、点状欠陥が出やすくな
り、浴ドロス、外観、めっき密着性のいずれも悪い。N
o.96からNo.100は、無機酸化物皮膜や、有機
物皮膜の量が小さく、耐食性向上効果が小さい。
No. No. 80 to No. No. 82 has poor corrosion resistance because the Mg content is too low. No. 83 to No. 85 is M
Since the g is too high, bath dross increases, and the plating appearance also deteriorates. No. No. 86 to No. 86. No. 88 has a small amount of Si and poor plating adhesion. No. No. 89 has too much Sn and poor plating appearance. No. 90 to No. The sample No. 92 has too much Si, has a lot of dross, and has a poor appearance. No. 93 to N
o. No. 95 has an excessively large amount of Fe, so that point-like defects are likely to appear, and all of bath dross, appearance, and plating adhesion are poor. N
o. No. 96 to No. 100 has a small amount of an inorganic oxide film or an organic film, and a small effect of improving corrosion resistance.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】(実施例2)鋼スラブを溶製して通常の方
法で製造した板厚2.3mmのSPCC板をめっき原板
とした。めっきは無酸化炉タイプの連続溶融亜鉛めっき
ラインにて加熱、焼鈍、めっきを行った。焼鈍雰囲気
は、10%水素、残90%窒素ガス雰囲気であり、露点
を−30度とした。焼鈍温度は730℃、焼鈍時間は3
分である。めっき浴温は440℃である。めっき付着量
は通常の窒素ガスワイピング法によりめっき付着量を片
面当たり100g/m2とした。めっき後の冷却は空冷
にて、5〜22℃/sで320℃まで連続的に行ったの
ち、気水冷却を実施した。なお、用いた浴の凝固終了温
度は340℃である。その後調質圧延を1%行った。斑
点状模様の発生の有無とめっき表面の突起状のAl相の
数を調査した。結果を表3に示す。冷却速度が10℃/
s未満であると、Al相の個数が200個/mm 2以上
となり点状欠陥が発生しないことが判る。
(Example 2) A steel slab is produced by melting
2.3mm-thick SPCC plate manufactured by the plating method
And Plating is non-oxidizing furnace type continuous hot-dip galvanizing
Heating, annealing and plating were performed in a line. Annealing atmosphere
Is an atmosphere of 10% hydrogen and 90% nitrogen gas with a dew point
Was set to −30 degrees. Annealing temperature is 730 ° C, annealing time is 3
Minutes. The plating bath temperature is 440 ° C. Plating weight
Reduces the coating weight by the normal nitrogen gas wiping method.
100g / m per surfaceTwoAnd Air cooling after plating
At 5-22 ° C / s to 320 ° C continuously
Then, air-water cooling was performed. The coagulation end temperature of the bath used
The temperature is 340 ° C. Thereafter, temper rolling was performed at 1%. Spots
The presence / absence of a dot pattern and the presence of a protruding Al phase on the plating surface
The number was investigated. Table 3 shows the results. Cooling rate 10 ° C /
s, the number of Al phases is 200 / mm. Twothat's all
It turns out that a point defect does not occur.

【0037】[0037]

【表3】 [Table 3]

【0038】(実施例3)鋼スラブを溶製して通常の方
法で製造した板厚0.6mmのSPCC板をめっき原板
とした。めっきは無酸化炉タイプの連続溶融亜鉛めっき
ラインにて加熱、焼鈍、めっきを行った。焼鈍雰囲気
は、10%水素、残90%窒素ガス雰囲気であり、露点
を−30度とした。焼鈍温度は730℃、焼鈍時間は3
分である。めっき浴温は420℃である。めっき付着量
は通常の窒素ガスワイピング法によりめっき付着量を片
面当たり100g/m2としためっき後の冷却は、1次
から3次までの段階に分けて実施した。なお、用いた浴
の凝固終了温度は340℃である。この結果を表4に示
す。No.133からNo.147について、例にとり
説明する。まず、1次冷却速度は、14℃/s〜30℃
/sとしており、冷却方法も空冷、気水冷却、水スプレ
ー冷却としているが、これは、No.133〜No.1
36、No.138、No.140〜No.143、N
o.145に示すように1次冷却終了温度を凝固温度+
10℃以上とすれば、点状欠陥はなくなり良好となる。
一方、No.147のように1次冷却終了温度が凝固温
度+10℃未満であると、点状欠陥が発生する。
(Example 3) An SPCC plate having a thickness of 0.6 mm produced by melting a steel slab and producing it by a usual method was used as a plating original plate. The plating was performed by heating, annealing and plating in a continuous hot-dip galvanizing line of a non-oxidizing furnace type. The annealing atmosphere was a 10% hydrogen, 90% remaining nitrogen gas atmosphere, and the dew point was -30 degrees. Annealing temperature is 730 ° C, annealing time is 3
Minutes. The plating bath temperature is 420 ° C. The coating weight was 100 g / m 2 per side by a usual nitrogen gas wiping method. The cooling after the plating was performed in the first to third stages. In addition, the coagulation end temperature of the used bath is 340 ° C. Table 4 shows the results. No. 133 to No. 147 will be described by way of example. First, the primary cooling rate is 14 ° C./s to 30 ° C.
/ S, and the cooling method is air cooling, air-water cooling, or water spray cooling. 133-No. 1
36, no. 138, no. 140-No. 143, N
o. 145, the primary cooling end temperature is set to the solidification temperature +
If the temperature is set to 10 ° C. or higher, point-like defects are eliminated, which is favorable.
On the other hand, No. When the primary cooling end temperature is lower than the solidification temperature + 10 ° C. as in 147, point defects occur.

【0039】また、No.139、No.146のよう
に2次冷却速度が10℃/s以上となり、すなわち凝固
温度近傍の冷却速度が速いと、点状欠陥が生成する。ま
た、No.137、No.144のように、2次冷却終
了温度が凝固温度−10℃以上となり、凝固点±10℃
の範囲の冷却速度が10℃以上となると点状欠陥が現れ
る。以下、No.148〜No.175に示すようにA
lやMgがより高い場合でも、同様な結果となった。
In addition, No. 139, no. When the secondary cooling rate is 10 ° C./s or more as in 146, that is, when the cooling rate near the solidification temperature is high, point-like defects are generated. In addition, No. 137, no. 144, the secondary cooling end temperature becomes the solidification temperature -10 ° C or higher, and the solidification point ± 10 ° C.
When the cooling rate in the range is 10 ° C. or higher, point defects appear. Hereinafter, No. 148-No. A as shown at 175
Similar results were obtained when l and Mg were higher.

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【発明の効果】以上に述べたように本発明によれば、表
面性状に優れた高耐食性Zn−Al−Mg−Siめっき
鋼材を製造でき、自動車、建材等の産業上きわめて影響
が大きい。
As described above, according to the present invention, a highly corrosion-resistant Zn-Al-Mg-Si-plated steel having excellent surface properties can be manufactured, which has a great effect on industries such as automobiles and building materials.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 彰 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 (72)発明者 小松 久芳 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 (72)発明者 三宅 豪 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 (72)発明者 小野澤 元 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 (72)発明者 池田 卓穂 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 (72)発明者 森本 康秀 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 本田 和彦 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 Fターム(参考) 4K027 AA22 AB14 AB44 AC72 AE22 4K044 AA02 BA10 BA12 BA15 BA21 BB03 BC09 CA11 CA16 CA44 CA47 CA53  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Akira Takahashi, 1st Kimitsu, Kimitsu City, Nippon Steel Corporation Kimitsu Works (72) Inventor, Hisayoshi Komatsu 1st, Kimitsu, Kimitsu City Nippon Steel Corporation, Kimitsu Inside the steelworks (72) Inventor Go Miyake 1 Kimitsu, Kimitsu City Inside Nippon Steel Corporation Kimitsu Works (72) Inventor Gen Moto Onozawa 1 Kimitsu, Kimitsu City Inside Nippon Steel Corporation Kimitsu Works ( 72) Inventor Takuho Ikeda 2-6-3 Otemachi, Chiyoda-ku, Tokyo Nippon Steel Corporation (72) Inventor Yasuhide Morimoto 20-1 Shintomi, Futtsu City Nippon Steel Corporation Technology Development Division ( 72) Inventor Kazuhiko Honda 1 Kimitsu, Kimitsu-shi F-term in Kimitsu Works, Nippon Steel Corporation 4K027 AA22 AB14 AB44 AC72 AE22 4K044 AA02 BA10 BA12 BA15 BA21 BB03 BC09 CA11 CA16 C A44 CA47 CA53

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 鋼材の表面に、Al:5〜18質量%、
Mg:1〜10質量%、Si:0.01〜2質量%、残
部Zn及び不可避的不純物とからなるめっき層を有する
めっき鋼材表面に、Al相が1mm2当たり200個以
上存在することを特徴とする表面性状に優れた溶融Zn
−Al−Mg−Siめっき鋼材。
1. A steel material having a surface of Al: 5 to 18% by mass,
Mg: 1 to 10% by mass, Si: 0.01 to 2% by mass, 200 or more Al phases per 1 mm 2 on the surface of a plated steel material having a plating layer composed of Zn and unavoidable impurities. Zn with excellent surface properties
-Al-Mg-Si plated steel material.
【請求項2】 請求項1に記載のめっき鋼材のめっき層
中に、更にFe:1質量%以下を含有することを特徴と
する表面性状に優れた溶融Zn−Al−Mg−Siめっ
き鋼材。
2. A hot-dip Zn-Al-Mg-Si plated steel material having excellent surface properties, wherein the plated layer of the plated steel material according to claim 1 further contains Fe: 1% by mass or less.
【請求項3】 請求項1または2に記載のめっき鋼材の
めっき層中に、更にSn:0.1〜2質量%含有するこ
とを特徴とする表面性状に優れた溶融Zn−Al−Mg
−Siめっき鋼材。
3. A molten Zn—Al—Mg having excellent surface properties, wherein the plating layer of the plated steel material according to claim 1 or 2 further contains Sn: 0.1 to 2% by mass.
-Si plated steel material.
【請求項4】 請求項1乃至請求項3のいずれかに記載
のめっき鋼材のめっき層上に更に、無機酸化物皮膜を7
0mg/m2〜2g/m2有することを特徴とする表面性
状に優れた溶融Zn−Al−Mg−Siめっき鋼材。
4. An inorganic oxide film is further formed on the plated layer of the plated steel material according to claim 1 by applying an inorganic oxide film.
0mg / m 2 ~2g / m 2 melt Zn-Al-Mg-Si plating steel having excellent surface properties, characterized in that it comprises.
【請求項5】 請求項1乃至請求項3のいずれかに記載
のめっき鋼材のめっき層上に更に、有機樹脂皮膜を10
0mg/m2〜2.0g/m2有することを特徴とする表
面性状に優れた溶融Zn−Al−Mg−Siめっき鋼
材。
5. An organic resin film is further formed on the plated layer of the plated steel material according to claim 1 by an organic resin film.
0mg / m 2 ~2.0g / m 2 melt Zn-Al-Mg-Si plating steel having excellent surface properties, characterized in that it comprises.
【請求項6】 めっき後の冷却速度を10℃/s未満に
することを特徴とする請求項1乃至請求項5のいずれか
に記載の表面性状に優れた溶融Zn−Al−Mg−Si
めっき鋼材の製造方法。
6. The molten Zn—Al—Mg—Si having excellent surface properties according to claim 1, wherein a cooling rate after plating is set to less than 10 ° C./s.
Manufacturing method of plated steel.
【請求項7】 めっき後、凝固終了温度±10℃の温度
範囲の冷却速度を10℃/s未満にすることを特徴とす
る請求項1乃至請求項5のいずれかに記載の表面性状に
優れた溶融Zn−Al−Mg−Siめっき鋼材の製造方
法。
7. An excellent surface property according to claim 1, wherein a cooling rate in a temperature range of a solidification end temperature ± 10 ° C. after plating is set to less than 10 ° C./s. Of producing a hot-dip Zn-Al-Mg-Si plated steel material.
【請求項8】 めっき後、凝固終了温度+10℃までの
冷却速度を10℃/s以上とし、更に続いて凝固終了温
度±10℃の温度範囲の冷却速度を10℃/s未満にす
ることを特徴とする請求項1乃至請求項5のいずれかに
記載の表面性状に優れた溶融Zn−Al−Mg−Si鋼
材の製造方法。
8. After the plating, the cooling rate to the solidification end temperature + 10 ° C. is set to 10 ° C./s or more, and further, the cooling rate in the temperature range of the solidification end temperature ± 10 ° C. is set to less than 10 ° C./s. The method for producing a molten Zn-Al-Mg-Si steel material having excellent surface properties according to any one of claims 1 to 5.
JP2001111342A 2000-04-11 2001-04-10 Hot-dip Zn-Al-Mg-Si plated steel with excellent surface properties and method for producing the same Expired - Lifetime JP4555499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001111342A JP4555499B2 (en) 2000-04-11 2001-04-10 Hot-dip Zn-Al-Mg-Si plated steel with excellent surface properties and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000109409 2000-04-11
JP2000-109409 2000-04-11
JP2001111342A JP4555499B2 (en) 2000-04-11 2001-04-10 Hot-dip Zn-Al-Mg-Si plated steel with excellent surface properties and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001355053A true JP2001355053A (en) 2001-12-25
JP4555499B2 JP4555499B2 (en) 2010-09-29

Family

ID=26589856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001111342A Expired - Lifetime JP4555499B2 (en) 2000-04-11 2001-04-10 Hot-dip Zn-Al-Mg-Si plated steel with excellent surface properties and method for producing the same

Country Status (1)

Country Link
JP (1) JP4555499B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003268517A (en) * 2002-03-08 2003-09-25 Nippon Steel Corp Hot dip plated steel having excellent surface smoothness
JP2004059945A (en) * 2002-07-25 2004-02-26 Nippon Steel Corp Method for manufacturing steel sheet hot-dipped with multicomponent metal superior in surface quality
WO2006035527A1 (en) * 2004-09-28 2006-04-06 Nippon Steel Corporation HIGHLY CORROSION RESISTANT Zn ALLOY PLATED STEEL MATERIAL HAVING HAIRLINE APPEARANCE
JP2008534786A (en) * 2005-04-05 2008-08-28 ブルースコープ・スティール・リミテッド Metal coated steel strip
JP5043234B2 (en) * 2009-06-30 2012-10-10 新日本製鐵株式会社 Zn-Al-Mg hot-dip steel sheet and method for producing the same
CN110438427A (en) * 2019-09-05 2019-11-12 首钢集团有限公司 A method of eliminating think gauge zinc-aluminum-magnesium coated steel surface defect
KR20200130850A (en) 2018-05-16 2020-11-20 닛폰세이테츠 가부시키가이샤 Plated steel
JPWO2020261723A1 (en) * 2019-06-27 2020-12-30
WO2021095442A1 (en) 2019-11-14 2021-05-20 日本製鉄株式会社 Plated steel material
WO2021250973A1 (en) 2020-06-09 2021-12-16 日本製鉄株式会社 Hot-dipped zn–al–mg-based plated steel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166961A (en) * 1985-01-17 1986-07-28 Nippon Kokan Kk <Nkk> Highly corrosion resistant hot-dipped steel sheet
JPH03281788A (en) * 1990-03-29 1991-12-12 Nippon Steel Corp Production of zn-al alloy plated steel wire
JPH10226865A (en) * 1996-12-13 1998-08-25 Nisshin Steel Co Ltd Hot dip zinc-aluminum-magnesium plated steel sheet good in corrosion resistance and surface appearance and its production
JPH10306357A (en) * 1997-03-04 1998-11-17 Nisshin Steel Co Ltd Hot dip zn-al-mg coated steel sheet excellent in corrosion resistance and external surface appearance, and its production
JP2000064061A (en) * 1998-08-18 2000-02-29 Nippon Steel Corp Precoated steel sheet excellent in corrosion resistance
JP2001355055A (en) * 2000-04-11 2001-12-25 Nippon Steel Corp HOT DIP Zn-Al-Mg-Si PLATED STEEL EXCELLENT IN CORROSION RESISTANCE OF UNCOATED PART AND COATED EDGE FACE PART
JP2002047549A (en) * 2000-02-29 2002-02-15 Nippon Steel Corp High corrosion resistant plated steel and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166961A (en) * 1985-01-17 1986-07-28 Nippon Kokan Kk <Nkk> Highly corrosion resistant hot-dipped steel sheet
JPH03281788A (en) * 1990-03-29 1991-12-12 Nippon Steel Corp Production of zn-al alloy plated steel wire
JPH10226865A (en) * 1996-12-13 1998-08-25 Nisshin Steel Co Ltd Hot dip zinc-aluminum-magnesium plated steel sheet good in corrosion resistance and surface appearance and its production
JPH10306357A (en) * 1997-03-04 1998-11-17 Nisshin Steel Co Ltd Hot dip zn-al-mg coated steel sheet excellent in corrosion resistance and external surface appearance, and its production
JP2000064061A (en) * 1998-08-18 2000-02-29 Nippon Steel Corp Precoated steel sheet excellent in corrosion resistance
JP2002047549A (en) * 2000-02-29 2002-02-15 Nippon Steel Corp High corrosion resistant plated steel and its manufacturing method
JP2001355055A (en) * 2000-04-11 2001-12-25 Nippon Steel Corp HOT DIP Zn-Al-Mg-Si PLATED STEEL EXCELLENT IN CORROSION RESISTANCE OF UNCOATED PART AND COATED EDGE FACE PART

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003268517A (en) * 2002-03-08 2003-09-25 Nippon Steel Corp Hot dip plated steel having excellent surface smoothness
JP2004059945A (en) * 2002-07-25 2004-02-26 Nippon Steel Corp Method for manufacturing steel sheet hot-dipped with multicomponent metal superior in surface quality
WO2006035527A1 (en) * 2004-09-28 2006-04-06 Nippon Steel Corporation HIGHLY CORROSION RESISTANT Zn ALLOY PLATED STEEL MATERIAL HAVING HAIRLINE APPEARANCE
JP2006124824A (en) * 2004-09-28 2006-05-18 Nippon Steel Corp HIGHLY CORROSION RESISTANT Zn ALLOY PLATED STEEL MATERIAL HAVING HAIRLINE APPEARANCE
JP4546848B2 (en) * 2004-09-28 2010-09-22 新日本製鐵株式会社 High corrosion-resistant Zn-based alloy plated steel with hairline appearance
JP2008534786A (en) * 2005-04-05 2008-08-28 ブルースコープ・スティール・リミテッド Metal coated steel strip
JP5043234B2 (en) * 2009-06-30 2012-10-10 新日本製鐵株式会社 Zn-Al-Mg hot-dip steel sheet and method for producing the same
KR20200130850A (en) 2018-05-16 2020-11-20 닛폰세이테츠 가부시키가이샤 Plated steel
WO2020261723A1 (en) * 2019-06-27 2020-12-30 日本製鉄株式会社 Plated steel material
JPWO2020261723A1 (en) * 2019-06-27 2020-12-30
CN113994018A (en) * 2019-06-27 2022-01-28 日本制铁株式会社 Plated steel material
KR20220012300A (en) * 2019-06-27 2022-02-03 닛폰세이테츠 가부시키가이샤 plated steel
JP7136351B2 (en) 2019-06-27 2022-09-13 日本製鉄株式会社 plated steel
KR102613418B1 (en) 2019-06-27 2023-12-14 닛폰세이테츠 가부시키가이샤 plated steel
CN110438427A (en) * 2019-09-05 2019-11-12 首钢集团有限公司 A method of eliminating think gauge zinc-aluminum-magnesium coated steel surface defect
WO2021095442A1 (en) 2019-11-14 2021-05-20 日本製鉄株式会社 Plated steel material
KR20220073805A (en) 2019-11-14 2022-06-03 닛폰세이테츠 가부시키가이샤 plated steel
US11787156B2 (en) 2019-11-14 2023-10-17 Nippon Steel Corporation Coated steel material
WO2021250973A1 (en) 2020-06-09 2021-12-16 日本製鉄株式会社 Hot-dipped zn–al–mg-based plated steel
KR20230005364A (en) 2020-06-09 2023-01-09 닛폰세이테츠 가부시키가이샤 Hot-dip Zn-Al-Mg coated steel
US11939676B2 (en) 2020-06-09 2024-03-26 Nippon Steel Corporation Hot-dipped Zn—Al—Mg-based plated steel

Also Published As

Publication number Publication date
JP4555499B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
TWI447261B (en) Hot dip al-zn coated steel sheet
CA2879069C (en) Galvanized steel sheet for hot forming
JP3898923B2 (en) High-strength hot-dip Zn-plated steel sheet excellent in plating adhesion and ductility during high processing and method for producing the same
KR20040065996A (en) High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation, and a method of producing the same
JP5586024B2 (en) Method for hot dip galvanizing of AHSS or UHSS strip material and such material
CN101264681B (en) Hot-dip galvannealed steel sheet, steel sheet treated by hot-dip galvannealed layer diffusion and a method of producing the same
TWI521092B (en) Hot dip a1-zn plated steel sheet and method of manufacturing the same
JP3758549B2 (en) Hot pressing method
JP2001355053A (en) HOT DIP Zn-Al-Mg-Si PLATED STEEL EXCELLENT IN SURFACE PROPERTY AND ITS PRODUCTION METHOD
CN105506529A (en) Galvanized steel plate provided with porous iron layer and galvanization method of galvanized steel plate
JP6509160B2 (en) Molten Al-Zn based plated steel sheet and manufacturing method thereof
JP2001355052A (en) Hot dip zinc-aluminum alloy plated steel sheet excellent in spot weldability and its production method
JP3599716B2 (en) Hot-dip Al-Zn-based alloy-coated steel sheet excellent in surface appearance and bending workability and method for producing the same
JP2993404B2 (en) Alloyed hot-dip galvanized steel sheet excellent in film adhesion and method for producing the same
JP2002371342A (en) Hot-dip galvanized steel sheet and manufacturing method therefor
JP2002004017A (en) HOT-DIP Zn-Al-Mg-Si PLATED STEEL MATERIAL EXCELLENT IN SURFACE CHARACTERISTIC AND ITS PRODUCTION METHOD
JP2004277839A (en) Zinc based metal-coated steel
JP3580541B2 (en) Surface-treated steel sheet excellent in workability and corrosion resistance of processed part and method for producing the same
JP2000219950A (en) HOT-DIP Zn-Al-Mg COATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE AFTER COATING
JP3749487B2 (en) Surface-treated steel sheet excellent in workability and corrosion resistance of machined part
JP3654520B2 (en) Surface-treated steel sheet excellent in workability and corrosion resistance of machined part and method for producing the same
JP3205292B2 (en) Manufacturing method of hot-dip galvanized steel sheet with excellent corrosion resistance and plating adhesion
JP2001355054A (en) Hot dip zinc-aluminum alloy plated steel sheet excellent in workability and its production method
JP2005290418A (en) HOT-DIP Al-Zn ALLOY PLATED STEEL SHEET SUPERIOR IN PRESS FORMABILITY, AND MANUFACTURING METHOD THEREFOR
JP3643559B2 (en) Surface-treated steel sheet excellent in workability and corrosion resistance of machined part and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4555499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term