JPS5855835B2 - Ultrasonic cleaning method for continuous linear thin materials - Google Patents

Ultrasonic cleaning method for continuous linear thin materials

Info

Publication number
JPS5855835B2
JPS5855835B2 JP55029463A JP2946380A JPS5855835B2 JP S5855835 B2 JPS5855835 B2 JP S5855835B2 JP 55029463 A JP55029463 A JP 55029463A JP 2946380 A JP2946380 A JP 2946380A JP S5855835 B2 JPS5855835 B2 JP S5855835B2
Authority
JP
Japan
Prior art keywords
pipe
tank
vibrating body
cleaning
cleaning liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55029463A
Other languages
Japanese (ja)
Other versions
JPS56126476A (en
Inventor
洋治 伊勢田
尚美 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JINMEIDAI KOGYO KK
Original Assignee
JINMEIDAI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JINMEIDAI KOGYO KK filed Critical JINMEIDAI KOGYO KK
Priority to JP55029463A priority Critical patent/JPS5855835B2/en
Publication of JPS56126476A publication Critical patent/JPS56126476A/en
Publication of JPS5855835B2 publication Critical patent/JPS5855835B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は線材、フープ(Hoop )材のように比較的
細物で連続的に送りをかげることができる物体の超音波
洗浄方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic cleaning method for relatively thin objects such as wire rods and hoop materials that can be continuously reduced in feed.

従来は線状やフープ材(たとえば帯鉄)などを超音波を
用いて連続洗浄する場合には、たとえば第1図に示すよ
うに洗浄槽1の底面外側または底面内側に超音波振動子
2または21を取付げ、ケーブル3を介して高周波発振
器4から高周波電力をこの振動子に与えて超音波振動を
洗浄液5内に放射している。
Conventionally, when continuously cleaning wires or hoop materials (for example, iron bands) using ultrasonic waves, an ultrasonic vibrator 2 or 21 is attached, and high frequency power is applied to this vibrator from a high frequency oscillator 4 via a cable 3 to radiate ultrasonic vibrations into the cleaning liquid 5.

この超音波音場内を被洗浄物である線状やフープ材6を
音場の強さと汚れの程度に見合った速度で通過させれば
、通過の長さに比例した洗浄効果が得られる。
If the object to be cleaned, such as a wire or hoop material 6, is passed through this ultrasonic sound field at a speed commensurate with the strength of the sound field and the degree of contamination, a cleaning effect proportional to the length of passage can be obtained.

このとき一般には被洗浄物はなるべく振動子の放射面に
近すげた方が洗浄効果が良く、またそうすることによっ
て洗浄液の深さを被洗浄物が丁度洗浄液面下に没する程
度にまで浅くできるので洗浄液が少くて済み、投入高周
波電力も少くてよいので経済的であることがわかってい
る。
In general, the cleaning effect is better when the object to be cleaned is placed as close to the radiation surface of the vibrator as possible, and by doing so, the depth of the cleaning liquid can be made shallow enough that the object to be cleaned is just submerged under the surface of the cleaning liquid. It is known that it is economical because it requires less cleaning liquid and less high-frequency power input.

しかしそのようにするには、たとえば第1図の7.7’
、γ′、7# で示すようなガイドローラを設置し、洗
浄槽の上部を通る被洗浄物を槽の底面近くまで押し下げ
る必要があるが、被洗浄物の可撓性が悪い程その曲げ角
度が大きくなり、余り曲げられないので結果として押し
下げた傾斜の部分の長さを長くすることが必要で洗浄槽
自体の長さも長くなり、全体の設備が大型化するという
欠点がある。
However, in order to do so, for example 7.7' in Fig.
, γ′, 7# It is necessary to install guide rollers to push down the object passing through the top of the washing tank to near the bottom of the tank, but the less flexible the object, the lower the bending angle. is large and cannot be bent very much, so as a result, it is necessary to lengthen the sloping part pushed down, and the length of the cleaning tank itself also increases, resulting in an increase in the size of the entire equipment.

また非常に固い被洗浄物の場合には曲げることすら不可
能であるから、ガイドローラによる押し下げ方式は採用
できない。
Furthermore, in the case of a very hard object to be cleaned, it is impossible to even bend it, so the push-down method using guide rollers cannot be adopted.

次に上記の欠点を避けるため直線状に移送しつつ洗浄す
る方法がある。
Next, in order to avoid the above-mentioned drawbacks, there is a method of washing while transporting the material in a straight line.

第2図はこの方式の原理的構成図で、第1図と図中の記
号は共通である。
FIG. 2 is a diagram showing the basic configuration of this system, and the symbols in the diagram are the same as those in FIG. 1.

この方式では被洗浄槽の側壁面に穴8,8′をあげ被洗
浄物は直線的に槽1内を移送されるが、穴8゜ぎの位置
はその中心が被洗浄物の中心に合わせであるので、穴か
ら洗浄液が9,9′のように漏れそのままでは被洗浄物
が液面上に露出するまでに液面は低下する。
In this method, holes 8 and 8' are formed in the side wall of the tank to be cleaned, and the object to be cleaned is transported linearly through the tank 1, but the center of the hole is aligned with the center of the object to be cleaned. Therefore, if the cleaning liquid leaks from the holes 9 and 9', the liquid level will drop by the time the object to be cleaned is exposed above the liquid level.

そこで通常は穴を被洗浄物に傷を残さぬように柔かい布
などで塞ぎ、漏液を少くすると共に、その分を補液口1
0より補給して液面をあるレベル以下にならぬようにす
る。
Therefore, the hole is usually covered with a soft cloth to avoid leaving any scratches on the object to be cleaned, to reduce leakage, and to drain the amount of fluid into the fluid replenishment port 1.
Replenish from 0 to prevent the liquid level from dropping below a certain level.

なおこの除濁れる液は補給槽(図示せず)に回収するの
が普通である。
Note that this turbidity removing liquid is normally collected in a replenishment tank (not shown).

さて以上2つの従来方式に共通する欠点は第3図に示す
ように音源の拡散音場11を利用していることである。
A common drawback of the above two conventional methods is that they utilize a diffuse sound field 11 of the sound source, as shown in FIG.

すなわち音場の強さは振動子の放射面より離れるに従っ
て減少する。
That is, the strength of the sound field decreases as it moves away from the radiation surface of the vibrator.

言うまでもなく一度放射した超音波振動は液面および洗
浄槽壁で多重反射するが、一般に液面での反射が最も大
きいので振動子面と液面間に明確な定在波が生じその強
い振動位置をねらって被洗浄物を通すのが普通である。
Needless to say, once emitted ultrasonic vibrations undergo multiple reflections on the liquid surface and the cleaning tank wall, but in general, the reflection at the liquid surface is the largest, creating a distinct standing wave between the transducer surface and the liquid surface, and the location of the strong vibration. It is normal to pass the object to be cleaned through it.

しかしその位置の強さも振動子の放射面の強さ以上には
なり得ない。
However, the strength at that position cannot exceed the strength at the radiation surface of the vibrator.

こXで洗浄効果を高めるには、被洗浄物のある所の音圧
を増大させることおよび洗浄に寄与するキャビテーショ
ンを強めることが要求されるが、これも振動面での強さ
以上にすることはできず、しかもある程度以上に音圧を
上げると振動面のキャビテーションにより音波の進行が
阻止され、被洗浄物での音圧が急激に低下する。
In order to improve the cleaning effect with this X, it is necessary to increase the sound pressure at the location of the object to be cleaned and to strengthen the cavitation that contributes to cleaning, but this also needs to be stronger than the vibration level. However, if the sound pressure is increased above a certain level, cavitation on the vibrating surface will prevent the sound waves from proceeding, and the sound pressure at the object to be cleaned will drop sharply.

従ってこの方式では音圧とキャビテーションの強さをあ
る程度以上に上げることができないので、洗浄効果にも
制限がある。
Therefore, with this method, the sound pressure and the intensity of cavitation cannot be increased beyond a certain level, and the cleaning effect is also limited.

さらに前記のように被洗浄物が細長く、洗浄すべき面積
が狭いのに必要とする洗浄槽の容量が大きく、投入する
超音波の電力を大きくすることが必要である。
Furthermore, as described above, since the object to be cleaned is long and narrow and the area to be cleaned is narrow, the capacity of the cleaning tank required is large, and it is necessary to increase the power of the ultrasonic waves applied.

しかじ音圧レベルの制限との兼ね合わせで、投入する電
力の割には被洗浄物の表面積当りの電力密度は小さく、
著しく非能率的な洗浄方法と言わねばならない。
In combination with the limitation of sound pressure level, the power density per surface area of the object to be cleaned is small considering the amount of power input.
It must be said that this is an extremely inefficient cleaning method.

以上のように一般の洗浄槽の構成のまSで線材やフープ
などの細物を洗浄するには、複数個の被洗浄物を同時に
洗浄槽に通しても、超音波電力の利用率が低く洗浄速度
がおそいので、洗浄区間を長くし、超音波電力を増す必
要があるなど不経済なもので、実用化された例は少い。
As mentioned above, in order to clean thin objects such as wire rods and hoops with S, the usage rate of ultrasonic power is low even if multiple objects to be cleaned are passed through the cleaning tank at the same time. Since the cleaning speed is slow, it is uneconomical to lengthen the cleaning period and increase the ultrasonic power, so there are few examples of practical use.

本発明はもとより従来の欠点を除くために行ったもので
あるが、(1)超音波電力に対する洗浄液の割合を少く
して超音波電力利用率を上げる、(2)被洗浄物の表面
におげろ音圧レベルを上げる、(3X1)、(2)によ
り超音波電力当りの処理量を多くし処理速度を大きくす
る、(4)線材、フープ材等を直線状で移送する形態を
用いる、(5)利用分野として線材、フープ材のインラ
インでの高速高級洗浄、具体的にはたとえばピアノ線の
光輝焼鈍前の洗浄等を目的としている。
The present invention was originally developed to eliminate the drawbacks of the conventional method, but it (1) increases the ultrasonic power utilization rate by reducing the ratio of cleaning liquid to ultrasonic power; Increasing the sound pressure level, (3X1), (2) increasing the processing amount per ultrasonic power and increasing the processing speed, (4) using a method of transferring wire rods, hoop materials, etc. in a straight line, ( 5) The field of application is high-speed, high-quality in-line cleaning of wire rods and hoop materials, specifically, for example, cleaning of piano wire before bright annealing.

次に本発明を実施例によって詳細に説明する。Next, the present invention will be explained in detail by way of examples.

第4図は本発明の基礎となる超音波振動体の構成例と動
作説明図である。
FIG. 4 is a diagram illustrating an example of the configuration and operation of an ultrasonic vibrator that is the basis of the present invention.

第4図aの12は鋼鉄のような弾性体のパイプ、13は
同一材質の棒である。
In FIG. 4a, 12 is a pipe made of an elastic material such as steel, and 13 is a rod made of the same material.

棒13はパイプ12の中央に相互の軸が直交するように
接合する。
The rod 13 is joined to the center of the pipe 12 so that their axes are perpendicular to each other.

14は接合点である。棒13に超音波の振動を軸方向に
与える、すなわち縦波の超音波振動を与えるとその振動
はパイプ12に伝達される。
14 is a junction point. When ultrasonic vibrations are applied to the rod 13 in the axial direction, that is, longitudinal ultrasonic vibrations are applied, the vibrations are transmitted to the pipe 12.

パイプの直径が超音波の周波数に共振する値であればパ
イプはよく呼吸振動をする。
If the diameter of the pipe is such that it resonates with the ultrasonic frequency, the pipe will often vibrate when breathing.

この呼吸振動はパイプ12の軸方向に伝達される。This respiratory vibration is transmitted in the axial direction of the pipe 12.

パイプ12の長さが超音波の周波数に共振する値であれ
ば、その軸方向に呼吸振動の定在波が発生する。
If the length of the pipe 12 is a value that resonates with the frequency of the ultrasonic wave, a standing wave of respiratory vibration is generated in the axial direction.

第4図すは棒13(これを以下伝達棒という)のパイプ
12との接合点14における縦振動すなわち疎密波の疎
になり切った時点におけるパイプ12の軸方向の定在波
を示し、第4図Cは疎密波の密になり切った時点におけ
る定在波を示している。
Figure 4 shows the standing wave in the axial direction of the pipe 12 at the point when the longitudinal vibration, that is, the compressional wave becomes sparse, at the junction point 14 of the rod 13 (hereinafter referred to as the transmission rod) with the pipe 12; Figure 4C shows the standing wave at the time when the compression wave becomes dense.

これらの振動を伝達棒13の駆動超音波の周波数に従っ
て繰返す。
These vibrations are repeated according to the frequency of the driving ultrasonic wave of the transmission rod 13.

第4図中のLlりL2ツL3ツL1’、 L2!’、
L、7. N、ツN2フN3りN、’ 、 N2’ 、
N3’は定在波の振幅の腹および節の位置を示すもの
で図から自明のことである。
In Figure 4, L2, L3, L1', L2! ',
L, 7. N, TsuN2fuN3riN,' , N2' ,
N3' indicates the position of the antinode and node of the amplitude of the standing wave, and is obvious from the figure.

さて上記の関係は次の式で近似される。Now, the above relationship can be approximated by the following formula.

いま駆動超音波の周波数をf (KHz )、弾性体内
の縦波の音速をC(cm/ sec ) 、弾性体内の
超音波の波長をλ(cm、 )、パイプ12の平均直径
をD(の)とすると、パイプ12の円周πDは 定在波の波長 λ′ξλからλ′/2ξc / 2 f (2) たとえば弾性体が鋼鉄なら0250105cm、/se
cで、f=28KHz の場合に(主1)、(2)両
式からD#5.7crIL、λ’/2=9mとなる。
Now, the frequency of the driving ultrasonic wave is f (KHz), the sound speed of the longitudinal wave inside the elastic body is C (cm/sec), the wavelength of the ultrasonic wave inside the elastic body is λ (cm, ), and the average diameter of the pipe 12 is D (of ), the circumference πD of the pipe 12 is calculated from the wavelength of the standing wave λ′ξλ by λ′/2ξc / 2 f (2) For example, if the elastic body is steel, it is 0250105 cm, /se
c, when f=28KHz, D#5.7crIL, λ'/2=9m from both equations (principal 1) and (2).

従って第4図すの場合を例にとると であるから、パイプ12の全長は9CIrLX5=45
のとなる。
Therefore, taking the case shown in Figure 4 as an example, the total length of the pipe 12 is 9CIrLX5=45
becomes.

これらから平均直径5.7CrrLで長さ45C1rL
の鋼鉄のパイプの中央から28KHz の超音波振動で
駆動すると、軸方向に5か所の呼吸振動が発生すること
がわかる。
From these, the average diameter is 5.7CrrL and the length is 45C1rL.
It can be seen that when a steel pipe is driven by ultrasonic vibrations of 28 KHz from the center, breathing vibrations are generated at five locations in the axial direction.

なお呼吸運動とは第4図右側に示したa、b、cの切断
面図のようにパイプ12の直径が周期的に伸び縮みの変
化をする運動である3次の上記のように定在波による呼
吸振動をするパイプ内部に液体を満たした場合には、パ
イプ内の音場はパイプの・軸上に集中し、この軸付近に
沿って線材、フープ材などを通すとその上に強い音場を
生じ、洗浄処理が効果的に行われる。
Note that the breathing motion is a motion in which the diameter of the pipe 12 periodically expands and contracts as shown in the cross-sectional views a, b, and c shown on the right side of Figure 4. When a pipe is filled with a liquid that causes breathing vibrations due to waves, the sound field in the pipe is concentrated on the axis of the pipe, and if a wire or hoop material is passed along this axis, a strong sound field will be generated above it. A sound field is created and the cleaning process is effectively performed.

第5図は第4図の原理を活用した本発明の超音波洗浄装
置の構成側図で図中のAは横断面図、Bは上面図である
FIG. 5 is a side view of the configuration of an ultrasonic cleaning apparatus of the present invention utilizing the principle of FIG. 4, where A is a cross-sectional view and B is a top view.

たgし高周波発振源等は省略しである。However, the high frequency oscillation source and the like are omitted.

この図において12と13は第4図に説明した弾性体の
パイプと棒であって、パイプの両端にはタンク15およ
び15′を設け、その貫通孔16 、16’にパイプ1
20両端を通し水密的に結合する。
In this figure, reference numerals 12 and 13 are the elastic pipes and rods explained in FIG.
20 and connect both ends in a watertight manner.

このタンク15 、1 s’はB図より明らかなように
、それぞれ間仕切り壁17.17’によって前後2室に
分割しである。
As is clear from Figure B, the tanks 15 and 1s' are divided into two chambers, front and rear, by partition walls 17 and 17', respectively.

また2つの間仕切りの一方(この例では17′とする)
を他方17より高さを低くする、たgしパイプ12の高
さよりは高く保つものとする。
Also, one of the two partitions (17' in this example)
The height of the pipe 17 shall be lower than that of the other pipe 17, but the height of the pipe 12 shall be kept higher than that of the pipe 12.

さらにタンク15,15’のパイプ結合側と反対側の壁
にはパイプ12の軸線上に貫通孔18と18′、間仕切
り壁17と17′には貫通孔19と19′がそれぞれ設
けられている。
Furthermore, through holes 18 and 18' are provided on the axis of the pipe 12 in the wall on the side opposite to the pipe connection side of the tanks 15 and 15', and through holes 19 and 19' are provided in the partition walls 17 and 17', respectively. .

タンク15と15′のパイプ12を差込んでいない外側
の間仕切り室の底には、排液用のドレインパイプ20と
20′をそれぞれ設け、配管21によって貯液槽22に
排液を導く。
Drain pipes 20 and 20' for draining liquid are provided at the bottoms of the outer partitions of the tanks 15 and 15' into which the pipe 12 is not inserted, respectively, and the drained liquid is led to a liquid storage tank 22 by a pipe 21.

さてタンク15 、15’およびパイプ12には槽22
内の液23がポンプ24のパイプ25により吸上げられ
供給パイプ26を介して流入される。
Now, tanks 15, 15' and pipe 12 have a tank 22.
The liquid 23 inside is sucked up by the pipe 25 of the pump 24 and flows in through the supply pipe 26.

タンク15,15’の内液はそれぞれ貫通孔19゜19
′より流出し、タンク内の液レベルが低下するとポンプ
24より液23が吸上げられてタンク15.15’のこ
の例ではパイプ12差入れ側聞仕切室に補給し、各タン
クの間仕切り壁から貫通孔19 、19’を通じて液が
オーバーフローする程度の液流とする。
The internal liquid of tanks 15 and 15' is supplied through through holes 19 and 19, respectively.
When the liquid level in the tank decreases, the liquid 23 is sucked up by the pump 24, and in this example, the pipe 12 in the tank 15. The liquid flow is such that the liquid overflows through the holes 19 and 19'.

すなわち液はパイプ12内を満たした上でタンク15の
方から間仕切り壁の高さが低いタンク15′の方に液が
流れることになる。
That is, the liquid fills the inside of the pipe 12 and then flows from the tank 15 to the tank 15' where the height of the partition wall is low.

そこでいま処理すべき線材とかフープ材27を貫通孔1
8,19,19’、18を介してパイプ12内を軸方向
に通し、伝達棒13から超音波振動を与えれば期待する
処理を被処理材27に施すことができる。
Therefore, the wire rod or hoop material 27 to be processed is inserted into the through hole 1.
If the ultrasonic vibration is applied from the transmission rod 13 by passing it through the pipe 12 in the axial direction via the rods 8, 19, 19', and 18, the material to be treated 27 can be subjected to the desired treatment.

たとえば洗浄の場合には処理液には洗浄液を用い、被処
理材の方向を第5図では左から右に連続的に移動させる
ものとすれば、図示のように被処理材の出口では常に新
鮮な液(パイプ26よりの液)にさらされつS洗浄が連
続的に行われる。
For example, in the case of cleaning, if a cleaning liquid is used as the processing liquid and the direction of the material to be treated is continuously moved from left to right in Figure 5, the material to be treated will always be fresh at the outlet as shown in the figure. S cleaning is performed continuously while being exposed to a liquid (liquid from pipe 26).

、さてこSで問題となるのはパイプ12とタンク15
、15’の貫通部16,16’との水密的な結合方法で
ある。
, Now, the problem with S is pipe 12 and tank 15.
, 15' and the through parts 16, 16' in a watertight manner.

簡単にろう付けまたは溶接すれば水密性を得ることはで
きるが、呼吸振動すべきパイプを機械的にクランプして
振動を抑えてしまうことになる。
Watertightness can be obtained by simple brazing or welding, but this means mechanically clamping the pipe that is supposed to vibrate to suppress the vibration.

この欠点を除くにはたとえば第4図のN3.N3′のよ
うな呼吸振動の節点で結合すればよ(、このときは抑制
作用をかなり減少させることができる。
To eliminate this drawback, for example, N3 in FIG. If they are coupled at a node of respiratory vibration such as N3', the suppressive effect can be considerably reduced.

しかしこの位置は軸方向の縦波定在波の振動の腹(lo
op)となるので抑制作用が働き不具合である。
However, this position is the antinode (lo) of the vibration of the longitudinal standing wave in the axial direction.
op), so the suppressing effect works and is a problem.

本発明ではこの結合方法を第6図のように構成し、ゴム
弾性のOリングにより水密性を得ている。
In the present invention, this coupling method is constructed as shown in FIG. 6, and watertightness is achieved by a rubber elastic O-ring.

第6図において12はパイプで、その管端の01Jング
受げ28(貫通部16側のみ示すものとする。
In FIG. 6, reference numeral 12 denotes a pipe, and only the 01J ring receiver 28 (only the penetrating portion 16 side is shown) at the end of the pipe.

貫通部16′側には28′がある。29〜32について
も同様であるが図示は省略した)と接する個所は機械的
に仕上げである。
There is 28' on the penetrating portion 16' side. The same applies to 29 to 32, but the portions in contact with (not shown) are mechanically finished.

タンクの貫通孔部16にOリング受げ28Aを水密的に
接合する。
The O-ring support 28A is watertightly joined to the through-hole portion 16 of the tank.

このOリング受げには0 リング28の収まる個所すな
わちOリング室29とねじ部30がある。
This O-ring holder has a portion where the O-ring 28 is accommodated, that is, an O-ring chamber 29 and a threaded portion 30.

パイプ120両端をそれぞれOリング28,28’と共
にOリング受げ28A、28’Aに装着し、ブシュ31
,31’をねじ32,32’によりねじ込んでOリング
28 、2 B’を圧着させれば、パイプ12はタンク
15 、15’と水密的に結合される。
Attach both ends of the pipe 120 to the O-ring receivers 28A and 28'A with O-rings 28 and 28', respectively, and attach the bush 31
, 31' are screwed in with the screws 32, 32' and the O-rings 28, 2B' are crimped, so that the pipe 12 is watertightly connected to the tanks 15, 15'.

この方法によればOリング28゜28′の位置を節部N
2.N2′の付近とすれば、振蹴を抑制することなくパ
イプとタンクを密着させることができ、組立や解体も容
易である。
According to this method, the position of the O-ring 28°28' is adjusted to the node N.
2. If it is set near N2', the pipe and tank can be brought into close contact without suppressing shaking, and assembly and disassembly are also easy.

第7図はパイプ12を複数個直列に接続する場合の接合
部の構成を示す断面図で、Oリング受げ28Aを33の
ように変形すれば、簡単に水密接続させることができる
FIG. 7 is a sectional view showing the configuration of a joint when a plurality of pipes 12 are connected in series.If the O-ring support 28A is modified as shown in 33, a watertight connection can be easily achieved.

第7図中の34,35はブシュ、36,37はOリング
である。
In FIG. 7, 34 and 35 are bushes, and 36 and 37 are O-rings.

なお第4図においては振動棒13のパイプ12への結合
位置14はパイプ12の中央としたが、実際には中央点
に限る必要はなく、振動の腹部となるなどの点(たとえ
ばL2. L2’ 、 L3. L3’等)でも−よい
ことは言うまでもない。
In FIG. 4, the connecting position 14 of the vibrating rod 13 to the pipe 12 is set at the center of the pipe 12, but in reality, it is not necessary to limit it to the central point, and it can be connected to a point such as the abdomen of the vibration (for example, L2, L2 ', L3. L3', etc.) - Needless to say, it's good.

以上の説明から明らかなように本発明の効果として (1)装置が簡潔(コンパクト)になる。As is clear from the above explanation, the effect of the present invention is (1) The device becomes simpler (compact).

特に実際には線材、フープ材の複数本並列処理が通例で
複数の処理装置を並列に配置しても占有面積は僅かで済
む、すなわち前後のタンクの横幅Wはパイプの直径より
多少大きくとればよ(並列に並べるに好都合である。
In particular, in practice, it is common to process multiple wire rods and hoop materials in parallel, and even if multiple processing devices are arranged in parallel, the occupied area is small.In other words, if the width W of the front and rear tanks is made slightly larger than the diameter of the pipe, (It is convenient to arrange them in parallel.)

(2)パイプの直列接続が簡単で、第4図の超音波振動
体を複数個第7図の要領にて直列に接続しその両端にタ
ンク15,15’を設けて処理能力を増すことができる
(2) It is easy to connect pipes in series, and processing capacity can be increased by connecting multiple ultrasonic vibrators shown in Figure 4 in series as shown in Figure 7 and providing tanks 15 and 15' at both ends. can.

(3)パイプ内にのみ液を流し外部への超音波エネルギ
の損失がなく効果が良い。
(3) The liquid is flowed only inside the pipe and there is no loss of ultrasonic energy to the outside, making it highly effective.

(4)パイプの振動面積当りの液量が従来の超音波槽と
比べて遥かに少い(なぜなら円筒の体積と面積の比が小
さい)からパワー密度が大きい。
(4) The power density is high because the amount of liquid per vibration area of the pipe is much smaller than in conventional ultrasonic tanks (because the ratio of the volume to area of the cylinder is small).

(5)パイプの中心軸には特にパワーが集中する。(5) Power is particularly concentrated on the central axis of the pipe.

(6)パイプの交換を簡単に行える。(6) Pipes can be replaced easily.

(7)パイプ端部の水密部の音響的損失が少い。(7) There is little acoustic loss in the watertight part of the pipe end.

等があげられる本発明の実用上の効果は明白である。The practical effects of the present invention are obvious.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は直線状細物物体に対する従来の超音波洗浄装置
の一例の構成図、第2図は別な例の構造図、第3図は音
源の拡散の説明図、第4図は本発明の基礎となる超音波
振動体の構成例と動作説明図、第5図は本発明装置の構
成例図、第6図は振動パイプと洗浄液タンクとの水密結
合部の一例の断面図、第7図はパイプを直列接合すると
きの水密結合部の一例の断面図である。 1・・・・・・洗浄槽、2,2/−・・・・・超音波振
動子、3・・・・・・高周波ケーブル、4・・・・・・
高周波発振器、5・・・・・・洗浄液、6・・・・・・
被洗浄物、7〜7“・・・・・・ローラ、8.81・・
・・・・穴、9,9′・・・・・・漏液、10・・・・
・・補給液11・・・・・・拡散音場、12・・・・・
・弾性体のパイプ、13・・・・・・弾性体の棒、14
・・・・・・パイプと棒の接合点、15 、15’・・
・・・・タンク、16,16’・・・・・・貫通孔、1
7 、17’・・・・・・間仕切り壁、1B、18’、
19゜19/−・・・・・貫通孔、20,20’−・・
・・・ドレインパイプ。 21・・・・・・配管、22・・・・・・貯液槽、23
・・・・・・液、24・・・・・・ポンプ、25・・・
・・・吸上げパイプ、26・・・・・・供給パイプ、2
7・・・・・・線材、フープ材の被処理物、28,36
,37・・・・・・Oリング、28A。 33・・・・・・Oリング受け、29・・・・・・Oリ
ング室、30・・・・・・ネジ、31,34,3501
061.787゜32・・・・・・ねじ。
Fig. 1 is a configuration diagram of an example of a conventional ultrasonic cleaning device for a thin linear object, Fig. 2 is a structural diagram of another example, Fig. 3 is an explanatory diagram of the diffusion of the sound source, and Fig. 4 is the invention of the present invention. Fig. 5 is an example of the structure of the device of the present invention, Fig. 6 is a cross-sectional view of an example of a watertight joint between the vibration pipe and the cleaning liquid tank, and Fig. 7 The figure is a sectional view of an example of a watertight joint when pipes are joined in series. 1...Cleaning tank, 2,2/-...Ultrasonic vibrator, 3...High frequency cable, 4...
High frequency oscillator, 5...Cleaning liquid, 6...
Item to be cleaned, 7~7"...Roller, 8.81...
...hole, 9,9'...leakage, 10...
... Replenishment liquid 11 ... Diffusion sound field, 12 ...
・Elastic pipe, 13...Elastic rod, 14
・・・・・・Joint point of pipe and rod, 15, 15'...
...Tank, 16,16'...Through hole, 1
7, 17'...Partition wall, 1B, 18',
19゜19/-...Through hole, 20,20'-...
...Drain pipe. 21...Piping, 22...Liquid storage tank, 23
...Liquid, 24...Pump, 25...
... Suction pipe, 26 ... Supply pipe, 2
7... Wire rod, hoop material to be processed, 28, 36
, 37... O-ring, 28A. 33... O-ring receiver, 29... O-ring chamber, 30... Screw, 31, 34, 3501
061.787°32...screw.

Claims (1)

【特許請求の範囲】[Claims] 1 円周では呼吸振動、中心軸方向では定在波振動を同
一共振周波数で発生する弾性体パイプの振動腹部の1個
所において、パイプより細い直径の伝送棒をパイプの軸
にはg直角になるように結合してこの伝送棒より上記共
振周波数の高周波電力にて駆動され、かつ内部に被洗浄
細物材と洗浄液を軸に沿って一定方向に流通させたパイ
プ状振動体を1個または複数個直列にかつ気密に係合さ
せた振動体と、パイプ状振動体のパイプ両端に設げられ
パイプの定在波振動の節部附近においてパイプを貫通さ
せ水密に結合した2つの洗浄液タンクとを具備し、上記
各タンクはパイプ状振動体の軸方向と直角方向に2室に
分割して洗浄液は一方のタンクのパイプ結合側の室に供
給しパイプ状振動体内を流通して他端のタンクのパイプ
結合室から他室にオーバーフローさせてポンプによる洗
浄液の循環流通を行い、また両タンクはパイプの軸線に
合わせてそれぞれの槽壁に貫通孔を設は線材やフープ材
等の直線状被洗浄細物材をは文−直線上にあるパイプと
貫通孔に連続移動させることを特徴とする連続直線状細
物材の超音波洗浄方法。
1. At one point in the vibration abdomen of an elastic pipe that generates breathing vibrations around the circumference and standing wave vibrations along the central axis at the same resonant frequency, a transmission rod with a diameter smaller than the pipe is placed at a right angle g to the axis of the pipe. One or more pipe-shaped vibrating bodies are connected to each other so as to be driven by high-frequency power at the above-mentioned resonance frequency from the transmission rod, and inside which the fine material to be cleaned and the cleaning liquid flow in a fixed direction along the axis. A vibrating body that is airtightly engaged with the vibrating body in series, and two cleaning liquid tanks that are installed at both ends of the pipe of the pipe-like vibrating body and that are watertightly connected by penetrating the pipe near the nodes of standing wave vibration of the pipe. Each tank is divided into two chambers in a direction perpendicular to the axial direction of the pipe-shaped vibrating body, and the cleaning liquid is supplied to the chamber on the pipe-joining side of one tank, flows through the pipe-shaped vibrating body, and enters the tank at the other end. The cleaning liquid is circulated by a pump by overflowing from the pipe joint chamber to another chamber, and both tanks have through holes in their respective walls aligned with the axis of the pipe. A method for ultrasonic cleaning of continuous linear fine materials, characterized in that the thin materials are continuously moved through pipes and through holes located in a straight line.
JP55029463A 1980-03-08 1980-03-08 Ultrasonic cleaning method for continuous linear thin materials Expired JPS5855835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55029463A JPS5855835B2 (en) 1980-03-08 1980-03-08 Ultrasonic cleaning method for continuous linear thin materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55029463A JPS5855835B2 (en) 1980-03-08 1980-03-08 Ultrasonic cleaning method for continuous linear thin materials

Publications (2)

Publication Number Publication Date
JPS56126476A JPS56126476A (en) 1981-10-03
JPS5855835B2 true JPS5855835B2 (en) 1983-12-12

Family

ID=12276786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55029463A Expired JPS5855835B2 (en) 1980-03-08 1980-03-08 Ultrasonic cleaning method for continuous linear thin materials

Country Status (1)

Country Link
JP (1) JPS5855835B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015186785A (en) * 2014-03-27 2015-10-29 三菱電機株式会社 Cleaning device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629681U (en) * 1992-09-25 1994-04-19 佳英 柴野 Ultrasonic cleaning equipment
JP6664952B2 (en) * 2015-12-17 2020-03-13 東レエンジニアリング株式会社 Coating device cleaning device and coating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341465A (en) * 1976-09-27 1978-04-14 Sato Masanori Production of garlic preparation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341465A (en) * 1976-09-27 1978-04-14 Sato Masanori Production of garlic preparation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015186785A (en) * 2014-03-27 2015-10-29 三菱電機株式会社 Cleaning device

Also Published As

Publication number Publication date
JPS56126476A (en) 1981-10-03

Similar Documents

Publication Publication Date Title
US2578505A (en) Supersonic agitation
US3873071A (en) Ultrasonic wave cleaning apparatus
US3066686A (en) Sonic treating apparatus
EP1010796A1 (en) Process and device for the continuous ultrasound washing of textile materials
AU1180695A (en) Ultrasonic agitator
US3688527A (en) Apparatus for cleaning resilient webs
US2845077A (en) Ultrasonic cleaning apparatus
KR100375184B1 (en) Ultrasonic cleaner and wet processing nozzle with the same
CN106269699A (en) A kind of continuous washing machine of soaking and rushing of external-placed type supersonic
JPS5855835B2 (en) Ultrasonic cleaning method for continuous linear thin materials
US3499792A (en) Cleaning method and apparatus
JPH0855827A (en) Wafer cassette and cleaning equipment using it
JP4591316B2 (en) Ultrasonic cleaning method and ultrasonic cleaning apparatus
KR100333341B1 (en) How to clean thread or strip articles, especially wire
US3829328A (en) Method for cleaning resilient webs
US7299662B2 (en) Ultrasonic cleaning system for cleaning a plurality of parallel extending, strand like products, such as example wire, profiles and pipes
WO1987007421A1 (en) Ultrasonic field generation
JPH0420546Y2 (en)
US2832572A (en) Wave energy coupling device for ultrasonic energy
CN2710739Y (en) Ultrasonic treatment device
RU2158235C1 (en) Device for reagentless treatment of liquid
EP0613049B1 (en) Apparatus for the processing of sheet material
SU471124A1 (en) Ultrasound transducer
SU1163897A1 (en) Apparatus for high-amplitude ultrasonic treatment of articles in fluid
SU1204245A1 (en) Ultrasonic device for mixing liquid components