JPS5855815B2 - Manufacturing method of highly active denitrification catalyst - Google Patents

Manufacturing method of highly active denitrification catalyst

Info

Publication number
JPS5855815B2
JPS5855815B2 JP53001721A JP172178A JPS5855815B2 JP S5855815 B2 JPS5855815 B2 JP S5855815B2 JP 53001721 A JP53001721 A JP 53001721A JP 172178 A JP172178 A JP 172178A JP S5855815 B2 JPS5855815 B2 JP S5855815B2
Authority
JP
Japan
Prior art keywords
aluminum
steel
catalyst
highly active
denitrification catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53001721A
Other languages
Japanese (ja)
Other versions
JPS5494488A (en
Inventor
重雄 清水
正治 福島
孝次 北沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP53001721A priority Critical patent/JPS5855815B2/en
Publication of JPS5494488A publication Critical patent/JPS5494488A/en
Publication of JPS5855815B2 publication Critical patent/JPS5855815B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 この発明は、高活性脱硝触媒の製造法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a highly active denitrification catalyst.

いわゆる選択的還元排煙脱硝法に用いられる脱硝触媒と
しては、鋼材表面をアルミニウム層でコーティングし、
ついで鋼材とアルミニウムを熱拡散合金化し、さらにア
ルミニウムを溶出して鋼材表面を酸化活性化したものが
知られている(特開昭52−4491号公報参照)。
The denitrification catalyst used in the so-called selective reduction flue gas denitrification method is a catalyst that coats the surface of steel with an aluminum layer.
It is known that steel and aluminum are then formed into a thermal diffusion alloy, and the aluminum is further eluted to activate the steel surface by oxidation (see Japanese Patent Laid-Open No. 52-4491).

この触媒は表面が多孔質化していて、かなり高い活性を
示すが、まだ完全なものとはいえない。
This catalyst has a porous surface and exhibits fairly high activity, but it is still not perfect.

したがってより高い活性を得るには、表面積をより大き
くする必要がある。
Therefore, to obtain higher activity, a larger surface area is required.

ところで、鋼材表面にアルミニウム皮膜がコーティング
されたものは、素地鋼材と鋼−アルミニウム合金層との
熱膨張係数が異なるため、冷却に伴って引張り残留応力
が生じ、場合によっては鋼材に亀裂が生じることがある
By the way, for steel materials whose surfaces are coated with an aluminum film, the thermal expansion coefficients of the base steel material and the steel-aluminum alloy layer are different, so tensile residual stress occurs as it cools, and in some cases, cracks may occur in the steel material. There is.

この発明は上記の現象に着目してなされたものであって
、積極的に亀裂を生せしめることにより触媒の表面積を
増大させ、ひいては高活性の触媒を得ることを目的とす
るものである。
This invention was made with attention to the above-mentioned phenomenon, and the object is to increase the surface area of a catalyst by actively generating cracks, thereby obtaining a highly active catalyst.

この発明による高活性脱硝触媒の製造法は、鋼材表面を
アルミニウムでコーティングする工程と、鋼材とアルミ
ニウムを熱拡散合金化する工程と、アルミニウムを溶出
して鋼材表面を多孔質化する工程と、鋼材表面を酸化活
性化する工程とからなる触媒製造法において、コーティ
ング工程の後および/または熱拡散合金化工程の後に、
固状のコーティング層ないし合金層を有する高温鋼材を
急冷処理することを特徴とするものである。
The method for producing a highly active denitrification catalyst according to the present invention includes a step of coating the surface of a steel material with aluminum, a step of forming a thermal diffusion alloy between the steel material and aluminum, a step of eluting the aluminum to make the surface of the steel material porous, and a step of making the surface of the steel material porous. In a catalyst production method comprising a step of oxidizing the surface, after the coating step and/or after the thermal diffusion alloying step,
This method is characterized by rapidly cooling a high-temperature steel material having a solid coating layer or alloy layer.

コーティング処理温度はアルミニウムの融点(660℃
)以上の温度であり、通常700°C付近である。
The coating treatment temperature is the melting point of aluminum (660℃
) or higher, usually around 700°C.

また熱拡散合金化処理温度は約800℃である。Further, the thermal diffusion alloying treatment temperature is about 800°C.

急冷処理は固状のコーティング層ないし合金層を有する
高温鋼材を水中に浸漬するのが一般的である。
In the rapid cooling process, a high temperature steel material having a solid coating layer or alloy layer is generally immersed in water.

鋼材および鋼−アルミニウム合金層の各熱膨張係数は、
それぞれ12×10−6/℃および17x 10−6/
℃であるので、上記急冷処理によって合金層に亀裂が生
じる。
The coefficient of thermal expansion of the steel material and the steel-aluminum alloy layer is
12 x 10-6/℃ and 17 x 10-6/℃ respectively
℃, cracks occur in the alloy layer due to the rapid cooling treatment.

この場合亀裂は合金層の厚み方向に入り、そのため合金
層が鋼材基部から剥離することがない。
In this case, the cracks enter in the thickness direction of the alloy layer, so that the alloy layer does not separate from the base of the steel material.

したがって、その後合金層からアルミニウムを溶出させ
ると、溶出が速かに進み、しかも表面積の大きい多孔質
体が得られる。
Therefore, when aluminum is subsequently eluted from the alloy layer, the eluting progresses rapidly and a porous body with a large surface area is obtained.

そこでこれを酸化活性化すれば、活性層の厚い脱硝触媒
が得られる。
Therefore, if this is oxidized and activated, a denitrification catalyst with a thick active layer can be obtained.

急冷処理は、コーティング工程の後または熱拡散合金化
工程の後に行われるが、より好ましくはこれら両工程の
後にそれぞれ行われる。
The quenching treatment is performed after the coating step or after the thermal diffusion alloying step, and more preferably after both of these steps.

なお、鋼材を溶融アルミニウム浴に浸漬してコーティン
グを行った後に急冷する場合には、鋼材表面にアルミニ
ウムが溶融状態で付着しているときに水冷を行うと、水
が急激に膨張して爆発を起し危険である。
Note that when steel is immersed in a molten aluminum bath to be coated and then rapidly cooled, if water cooling is performed while molten aluminum is attached to the surface of the steel, the water will expand rapidly and cause an explosion. This is dangerous.

したがって、水冷は、溶融アルミニウムが固化した後に
行う。
Therefore, water cooling is performed after the molten aluminum has solidified.

そうすれば、安全である上に、アルミニウム表面に付着
した余分なフシックスを除去できる。
This is not only safe, but also allows you to remove excess fusic from the aluminum surface.

この発明によれば、コーティング工程の後および/また
は熱拡散合金化工程の後に固状のコーティング層ないし
合金層を有する高温鋼材を急冷処理するので、合金層に
亀裂を生せしめて、表面積を大きくしかつ活性層を厚く
することができる。
According to this invention, the high temperature steel material having a solid coating layer or alloy layer is rapidly cooled after the coating process and/or after the heat diffusion alloying process, so that cracks are generated in the alloy layer and the surface area is increased. Moreover, the active layer can be made thicker.

こうして高活性の触媒を得ることができ、その結果触媒
の使用量の減少が可能となるとともに脱硝装置の小型化
が達成される。
In this way, a highly active catalyst can be obtained, and as a result, the amount of catalyst used can be reduced, and the denitrification apparatus can be downsized.

また冷却期間の短縮が可能となり、作業性の点でも有利
となる。
Furthermore, the cooling period can be shortened, which is advantageous in terms of workability.

また、従来のように徐冷を行った場合には、亀裂が生じ
ないため合金層の残留応力が活性層の剥離などの形で解
放されたが、この発明では亀裂によって残留応力が解放
されるので、活性層の剥離などによる触媒劣下のおそれ
が全くない・ 実施例 SUS 304製鋼板(10mm×50mmX O,5
mm)を溶融アルミニウム浴(約700℃)に5分間浸
漬処理し、表面にアルミニウムをコーティングした。
In addition, when slow cooling is performed as in the past, residual stress in the alloy layer is released in the form of peeling of the active layer because no cracks occur, but in this invention, residual stress is released due to cracks. Therefore, there is no risk of deterioration of the catalyst due to peeling of the active layer, etc. Example SUS 304 steel plate (10 mm x 50 mm x O, 5
mm) was immersed in a molten aluminum bath (approximately 700°C) for 5 minutes to coat the surface with aluminum.

表面の溶融アルミニウムが固化したら、直ちに鋼板を水
冷した。
Once the molten aluminum on the surface solidified, the steel plate was immediately cooled with water.

次に鋼板を約800℃に加熱してアルミニウムと鋼との
固相間拡散合金化処理を行い、ついでさらに水冷を行っ
た。
Next, the steel plate was heated to about 800° C. to undergo solid-phase diffusion alloying treatment between aluminum and steel, and then further water-cooled.

以上の処理を従来の操作とともに第1図に示す。The above processing is shown in FIG. 1 along with conventional operations.

次に鋼板をアルカリ水溶液に浸漬してアルミニウムを溶
出させた。
Next, the steel plate was immersed in an alkaline aqueous solution to dissolve the aluminum.

このとき水素ガスが発生したが、この発生量を従来法の
場合と比較して第2図に示す。
Hydrogen gas was generated at this time, and the amount of hydrogen gas generated is shown in FIG. 2 in comparison with the conventional method.

最後に鋼材表面を酸化活性化した。こうして厚い活性層
を有する脱硝触媒が得られた。
Finally, the steel surface was activated by oxidation. In this way, a denitrification catalyst having a thick active layer was obtained.

この触媒の断面を従来の触媒と比較して第3図に示す。A cross section of this catalyst is shown in FIG. 3 in comparison with a conventional catalyst.

第3図において1は鋼母材、2は合金層、3は活性層で
ある。
In FIG. 3, 1 is a steel base material, 2 is an alloy layer, and 3 is an active layer.

次にこの触媒の活性を従来の触媒と比較して下表に示す
Next, the activity of this catalyst is compared with that of conventional catalysts and is shown in the table below.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す時間と温度との関係グ
ラフ、第2図は時間と水素発生量との関係グラフ、第3
図は触媒の断面図である。
FIG. 1 is a graph of the relationship between time and temperature showing an example of the present invention, FIG. 2 is a graph of the relationship between time and hydrogen generation amount, and FIG.
The figure is a cross-sectional view of the catalyst.

Claims (1)

【特許請求の範囲】[Claims] 1 鋼材表面をアルミニウムでコーティングする工程と
、鋼材とアルミニウムを熱拡散合金化する工程と、アル
ミニウムを溶出して鋼材表面を多孔質化する工程と、鋼
材表面を酸化活性化する工程とからなる触媒製造法にお
いて、コーティング工程の後および/または熱拡散合金
化工程の後に、固状のコーティング層ないし合金層を有
する高温鋼材を急冷処理することを特徴とする高活性脱
硝触媒の製造法。
1. A catalyst consisting of the steps of coating the steel surface with aluminum, forming a thermal diffusion alloy between the steel and aluminum, eluting aluminum to make the steel surface porous, and oxidizing the steel surface. A method for producing a highly active denitrification catalyst, which comprises subjecting a high-temperature steel material having a solid coating layer or alloy layer to a rapid cooling treatment after a coating step and/or a thermal diffusion alloying step.
JP53001721A 1978-01-10 1978-01-10 Manufacturing method of highly active denitrification catalyst Expired JPS5855815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53001721A JPS5855815B2 (en) 1978-01-10 1978-01-10 Manufacturing method of highly active denitrification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53001721A JPS5855815B2 (en) 1978-01-10 1978-01-10 Manufacturing method of highly active denitrification catalyst

Publications (2)

Publication Number Publication Date
JPS5494488A JPS5494488A (en) 1979-07-26
JPS5855815B2 true JPS5855815B2 (en) 1983-12-12

Family

ID=11509422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53001721A Expired JPS5855815B2 (en) 1978-01-10 1978-01-10 Manufacturing method of highly active denitrification catalyst

Country Status (1)

Country Link
JP (1) JPS5855815B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142022U (en) * 1984-02-27 1985-09-20 オ−エスジ−株式会社 Tap with oil hole

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142022U (en) * 1984-02-27 1985-09-20 オ−エスジ−株式会社 Tap with oil hole

Also Published As

Publication number Publication date
JPS5494488A (en) 1979-07-26

Similar Documents

Publication Publication Date Title
US4959342A (en) Method of producing catalyst carriers
KR890011670A (en) Corrosion-resistant aluminum composite sheet for soldering and manufacturing method thereof
US3059326A (en) Oxidation resistant and ductile iron base aluminum alloys
EP0149655A1 (en) Diffusion treated hot-dip aluminum coated steel and method or treating.
US2900715A (en) Protection of titanium
JP2000517002A (en) Method for producing FeCrAl ferritic stainless steel strip
US2167701A (en) Method of producing aluminum treated articles of iron
JPS5855815B2 (en) Manufacturing method of highly active denitrification catalyst
JPH0323624B2 (en)
US3183588A (en) Production of alloy-clad articles
US3832147A (en) Composite article comprising three dissimilar metals
US5540792A (en) Components based on intermetallic phases of the system titanium-aluminum and process for producing such components
JP4392087B2 (en) Surface treatment method of die casting mold and die
US1066312A (en) Process of producing clad metals.
US1197616A (en) Plating ferrous metals.
US4739818A (en) Casting transition metal alloy containing rare earth metal
JPH0925557A (en) Production of pipe excellent in corrosion resistance in outside face
JPS58112648A (en) Production of composite member
US2883346A (en) Preparation of oxidation catalytic units
SU651891A1 (en) Metallic casting mould manufacturing method
JP2001254163A (en) METHOD OF COATING Ni OR Ni ALLOY SUBSTRATE WITH Al OR Al ALLOY
JPH04128359A (en) Formation of thermally sprayed metal film
JPH05305420A (en) Manufacture of composite member
JP2001506317A (en) Method for annealing non-ferrous metal parts without fusion joints
GB2124939A (en) Method of hot-forming metals prone to crack during rolling