JPS5855798A - Method of protecting overflow in semi-underground type power plant - Google Patents
Method of protecting overflow in semi-underground type power plantInfo
- Publication number
- JPS5855798A JPS5855798A JP56154082A JP15408281A JPS5855798A JP S5855798 A JPS5855798 A JP S5855798A JP 56154082 A JP56154082 A JP 56154082A JP 15408281 A JP15408281 A JP 15408281A JP S5855798 A JPS5855798 A JP S5855798A
- Authority
- JP
- Japan
- Prior art keywords
- condenser
- cooling water
- water
- piping
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
Landscapes
- Separation By Low-Temperature Treatments (AREA)
- Control Of Non-Electrical Variables (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、例えば汽力発電設備、とくに復水器が冷却水
取水面または放水面より低所に設置された半地下式発電
所の復水器冷却水の溢水防止方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for preventing overflow of condenser cooling water in, for example, steam power generation equipment, particularly in a semi-underground power plant where the condenser is installed at a location lower than the cooling water intake surface or water discharge surface. Regarding.
近時汽力発電所の大容量化に伴ない、復水器冷却水の大
流量化、また原子力発電所を例にとれば、耐震設計上か
ら岩盤の上に建屋を設置することになり、必然的に冷却
水取水面または放水面水位よりも、復水器が下方に位置
する場合が生じている。With the recent increase in the capacity of steam power plants, the flow rate of condenser cooling water has increased, and in the case of nuclear power plants, for example, buildings have to be built on bedrock for seismic design reasons. In some cases, the condenser is located below the water level of the cooling water intake or water discharge surface.
すなわち中地下式発電所で、その−例を第1図に示す、
第1図において、取水源/に配設された冷却水汲み上げ
用ボンプコには、ポンプ出口弁Jを介して配管亭が接続
されている。一方地表面!より低位置の人工岩盤4上の
[117内に、タービンlおよび復水器を等の機器が設
置されている。その復水器デは、第一図に示すように複
数個の熱交換部9*、9bが並列に設けられ、前記配管
亭から分岐された分岐導管1m、 亭すがそれぞれ復
水器人口弁io、 //を介して接続されている。また
内熱交換部?a、Wbは復水器出口弁lコ、13を介し
て配管陣に接続され、その配管t4Ild放水路l!上
に開口している。さらに熱交換部の氷室は連絡弁/4゜
/りを有する連絡管路によって互いに連接されていゐ。In other words, it is an underground type power plant, an example of which is shown in Figure 1.
In FIG. 1, a piping stop is connected to a cooling water pump disposed at a water intake source via a pump outlet valve J. On the other hand, the ground surface! Equipment such as a turbine 1 and a condenser are installed in [117] on the artificial bedrock 4 at a lower position. As shown in Fig. 1, the condenser device is equipped with a plurality of heat exchange sections 9* and 9b arranged in parallel, a branch conduit of 1 m branched from the piping bow, and a condenser valve for each condenser. io, connected via //. Also, the internal heat exchange section? a, Wb are connected to the piping system via the condenser outlet valve lko, 13, and the piping t4Ild is the tailrace l! It is open at the top. Furthermore, the ice chambers of the heat exchange section are connected to each other by connecting pipes having connecting valves /4°/.
しかして、復水器冷却水け、冷却水取水源lから冷却水
汲み上げ用ポンプコで汲み上げられ、ボンプ出ロ弁J、
配管ゲ、復水器人口弁10. //を順次通って復水器
9に入り、タービンtの排気蒸気を間接冷却し、凝縮さ
せて復水器出目弁/Lm、 /、?および配管/41を
経て、放水路/jに排出する。このように構成した冷却
水系統において、その途中で万−配管亭、陣が破裂した
場合、冷却水は機−器室内に流入する。とくに大容量の
原子力発電所等においては、散水源lよりも復水器デが
低い位置に設置されているため、機器室内に冷却水が溜
り、ボンプコを停止するか、またけポンプ出口弁3を閉
じるまで流入することKなり、配管り、陣が大口径であ
り、且つ非常に長い場合などにおいては、多量の冷却水
が流入する。このような事象によって、機器室内に設置
された復水器!を始めとして各種機器、電気品等が水没
、すなわち極端な場合、取水源l水位と同じ水位まで水
没する虞れがある。Therefore, the cooling water is pumped up from the condenser cooling water drain and the cooling water intake source L by the pump valve J,
Piping, condenser valve 10. It passes sequentially through // and enters the condenser 9, where the exhaust steam of the turbine t is indirectly cooled and condensed to the condenser outlet valve /Lm, /, ? It is discharged to the water discharge channel /j via the pipe /41. In the cooling water system configured as described above, if a pipe or pipe ruptures in the middle of the system, the cooling water will flow into the equipment room. Particularly in large-capacity nuclear power plants, etc., where the condenser is installed at a lower position than the water spray source, cooling water accumulates in the equipment room, and the pump must be stopped or the straddle pump outlet valve 3 If the piping or pipe is large in diameter and very long, a large amount of cooling water will flow in until the pipe is closed. Due to such an event, a condenser was installed in the equipment room! In extreme cases, there is a risk that various equipment, electrical items, etc., including water may be submerged in water to the same level as the water level of the water intake source.
これによって各種機器、電気品等の故障や作動不良等の
惹起が考えられ、著しい信頼性の低下が懸念されている
。従来このような配管の破裂時の溢水に対しては、汲み
上げ用ボンプコを停止する方法、ポンプ出口弁3を閉じ
る方法等により、冷却水の流れを停止する方法がある。This is thought to cause failures and malfunctions of various devices, electrical products, etc., and there is concern that reliability will deteriorate significantly. Conventionally, there are methods of stopping the flow of cooling water, such as stopping the pump pump or closing the pump outlet valve 3, to prevent water from overflowing when a pipe ruptures.
しかしながらこれらの方法では、大口径で且つ非常に長
い配管や、配管の高低差の非常に大きい場合等において
は、冷却水の流れを停止する方法をとっても、慣性の大
きいこと、流れの停止までに時間を要すること、冷却水
が気水分離して低所に流入しゃすくなること等の欠点が
あり、機器室内への溢水量の減少には効果が少ない。However, with these methods, in cases where the piping is large in diameter and very long, or where the height difference between the piping is very large, even if a method of stopping the flow of cooling water is used, the inertia is large and it may take a long time to stop the flow. This method has drawbacks such as it takes time, and the cooling water separates into steam and water, making it difficult for it to flow into low areas, and it is not very effective in reducing the amount of water overflowing into the equipment room.
本発明け、このような点に鑑みてなされたもので、冷却
水の溢水があっても、その溢水量を極力少なくし、ひい
ては設置機器や電気品の水没を抑止すゐ、半地下式発電
所の溢水防止方法を提供することを目的とし、復水器の
前後に設けられた入口弁、出口弁および、復水器の氷室
間を連絡する連絡管路上の連絡弁を、配管からの冷却水
の漏洩を検出し、漏洩箇所の冷却水の流出のみを停止す
るように、漏洩箇所の入口と出口の弁を閉じるよ・うに
したことを特徴とする。The present invention has been developed in consideration of these points, and is a semi-underground power generation system that minimizes the amount of overflow of cooling water even if it overflows, thereby preventing submergence of installed equipment and electrical items. In order to provide a method to prevent overflows, the inlet valves and outlet valves installed before and after the condenser, as well as the connecting valve on the connecting pipe connecting the ice chamber of the condenser, are cooled from the piping. The system is characterized in that water leakage is detected and valves at the inlet and outlet of the leakage point are closed to stop only the outflow of cooling water at the leakage point.
以下第7図および第一図を参照して、本発明の一実施例
について説明する。An embodiment of the present invention will be described below with reference to FIG. 7 and FIG.
第7図および第2図において、配管の破裂は一般に復水
器入口弁10. //の下流側、復水器出口弁/コ、/
Jの上流側および連絡管路部勢の線部/I、 /l。In FIGS. 7 and 2, the pipe rupture generally occurs at condenser inlet valve 10. Downstream side of //, condenser outlet valve /ko, /
Line parts /I, /l of the upstream side of J and the connecting pipe section.
〃、コ/、 u、 2J、 2’l、 #で発生すると
考えられる。It is thought to occur in 〃, ko/, u, 2J, 2'l, #.
令弟λ図に示すように復水器連絡弁/A、 /7を閉じ
、復水器人口弁lθ、 itおよび復水器出口弁lコ、
i3を開として、図の矢印方向の流れの状態、すなわ
ち取水源lからボンプコにて冷却水を汲み上げ、配管ダ
を経て、復水器デの各入口弁10. //および復水器
出口弁lコ、 i3を通って放水路/1へ流れている状
態において、例えば斜線部/l或いは/1にて配管破裂
があり、冷却水の漏水が生じた場合、従来はボンプコの
停止或いは、ポンプ出口弁3を閉とするが、冷却水の慣
性やポンプ出口弁3を全閉するまでに、時間を要するこ
と等により、大口径の配管弘を通って多量の冷却水を破
裂部から流出する。As shown in the diagram, close the condenser communication valves /A, /7, and close the condenser population valves lθ, it and condenser outlet valves lθ,
i3 is opened, the flow is in the direction of the arrow in the figure, that is, the cooling water is pumped up from the water intake source 1 at the Bonpco, passes through the piping d, and then flows through each inlet valve 10 of the condenser d. // and the condenser outlet valve l, i3, and flowing to the discharge channel /1, for example, if there is a piping rupture at the shaded area /l or /1, and cooling water leaks, Conventionally, the Bonpco is stopped or the pump outlet valve 3 is closed, but due to the inertia of the cooling water and the time it takes to fully close the pump outlet valve 3, a large amount of water passes through the large diameter piping. Cooling water flows out from the rupture.
また放水路/jから配管/41を通って破裂部に冷却水
が逆流し、同様に多量の流出を招いている。これらに対
して本発明では、冷却水の漏出を検出し、復水器人口弁
IOおよび出口弁lコを急速に閉じる。In addition, cooling water flows back from the waterway /j to the rupture part through the pipe /41, causing a large amount of water to flow out as well. In contrast, in the present invention, leakage of cooling water is detected and the condenser artificial valve IO and the outlet valve IO are rapidly closed.
これによって破裂部へのポンプコ側からの水の流入を防
止するとともに、放水路tj側からの水の逆流入をも防
ぐことができ、冷却水の機器室内への流出は極力少なく
することがでどろ。このような処置は、他の破裂箇所例
えば斜線部1. !/、 u。This prevents water from flowing into the rupture part from the pump side, and also prevents water from flowing back from the spillway tj side, making it possible to minimize the flow of cooling water into the equipment room. Mud. Such treatment may be applied to other rupture locations, such as the shaded area 1. ! /, u.
Jj、 24I、 #においても同様に実施することが
できゐ。Jj, 24I, # can be similarly implemented.
以上説明したように本発明によれば、ポンプを停止する
ことなく、復水器へ冷却水を送水する大口弁、出口弁お
よび連絡弁を、配管からの冷却水の漏洩を検出し、漏洩
箇所の冷却水の流出のみを停止するように、漏洩箇所の
入口と出口の弁を閉じることにより、冷却水の流出を最
少限にとどめることかでどろ。このことけ1例えば大口
弁と復水器との間の配管から漏出の場合に、ポンプを停
止することなく、他のl連の復水器側、すなわち、配管
、大口弁、復水器、出口弁を通って放水路までの流路を
健全に保持し、復水器の一つの熱交換部をバイパスして
通水して復水器の運転を行なうことができる。したがっ
てプラントを停止することなく、冷却水の漏洩事故の復
旧を行なうことがでどる等の効果を奏すゐ。As explained above, according to the present invention, without stopping the pump, the large mouth valve, outlet valve, and communication valve that send cooling water to the condenser can detect leakage of cooling water from piping, and detect leakage points. It is possible to minimize the outflow of cooling water by closing the valves at the inlet and outlet of the leakage point so as to stop only the outflow of cooling water. This point 1: For example, in the case of leakage from the piping between the large outlet valve and the condenser, without stopping the pump, the condenser side of the other 1 series, that is, the piping, the large outlet valve, the condenser, The condenser can be operated by maintaining a healthy flow path through the outlet valve to the discharge waterway and by passing water through one heat exchange section of the condenser. Therefore, it is possible to recover from a cooling water leakage accident without shutting down the plant.
第1図は復水器冷却水装置の概要図、第2図は同上装置
の冷却水流れ図である。
/・・・取水源、コ・・・冷却水汲み上げ用ポンプ、q
。
lダ・・・配管、9・・・復水器、10. /ハ・・復
水器人口弁、/J /J・・・復水器出目弁、/j・・
・放水路、/A、 /7・・・連絡弁。
出願人代理人 猪 股 清FIG. 1 is a schematic diagram of a condenser cooling water system, and FIG. 2 is a flowchart of cooling water in the same system. /...Water intake source, K...Cooling water pump, q
. lda...piping, 9...condenser, 10. /C... Condenser population valve, /J /J... Condenser output valve, /j...
・Discharge channel, /A, /7...Connection valve. Applicant's agent Kiyoshi Inomata
Claims (1)
た中地下式発電所において、復水器の前後に設けられた
大口弁、出口弁、および復水器の氷室間を連絡する、連
絡管路上の連絡弁を、配管からの冷却水の漏洩を検出し
、漏洩箇所の冷却水の流出のみを停止するように、漏洩
箇所の前後位置の弁を閉じることを4!徴とする、半地
下式発電所の溢水防止方法。In an underground power plant with a condenser installed below the cooling water intake or discharge surface, connect the large outlet valve, outlet valve, and ice chamber of the condenser installed before and after the condenser. 4. Detect the leakage of cooling water from the piping with the connecting valve on the connecting pipe, and close the valves in front and behind the leakage point so as to stop the flow of cooling water only at the leakage point! A method for preventing flooding in semi-underground power plants.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56154082A JPS5855798A (en) | 1981-09-29 | 1981-09-29 | Method of protecting overflow in semi-underground type power plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56154082A JPS5855798A (en) | 1981-09-29 | 1981-09-29 | Method of protecting overflow in semi-underground type power plant |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5855798A true JPS5855798A (en) | 1983-04-02 |
Family
ID=15576491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56154082A Pending JPS5855798A (en) | 1981-09-29 | 1981-09-29 | Method of protecting overflow in semi-underground type power plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5855798A (en) |
-
1981
- 1981-09-29 JP JP56154082A patent/JPS5855798A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104409112B (en) | Containment recirculating system | |
CN105781629B (en) | A kind of temperature of power plant steam turbine steam pipework drain valve control method | |
CN209308881U (en) | A kind of system improving power station technical water supply reliability | |
JPS5855798A (en) | Method of protecting overflow in semi-underground type power plant | |
JPH06273077A (en) | Apparatus and method for preventing water hammer of coolant pipe of condenser of steam turbine plant | |
CN205579163U (en) | Two -way gas water seal device of U type | |
JPH06289186A (en) | Cooling sea water discharge device for nuclear power plant | |
JP4435922B2 (en) | Gas leak detection device | |
RU103368U1 (en) | CASCADE OF DERIVATIVE HYDRO POWER PLANTS | |
JPH07279614A (en) | By-pass valve automatically warming device | |
JPS5584805A (en) | Method of controlling operation of eight-valve type backwash system for condenser used in thermoelectric or nuclear power plant | |
JPS5590764A (en) | Inlet valve for hydraulic machine | |
JPS60205289A (en) | Nuclear power plant | |
CN1013798B (en) | Air inleakage monitoring system | |
JPS6134073B2 (en) | ||
JPH0472471A (en) | Feedwater heater drain pump up system | |
JPS62242707A (en) | Steam turbine plant | |
JPS6098394A (en) | Open and close loop type circulating water system | |
JPS58182595A (en) | High water level protecting device of reactor | |
JPS646716B2 (en) | ||
CN112017797A (en) | Device for discharging steam from reactor core in small-break loss of coolant accident | |
JPH0113079B2 (en) | ||
Perliter et al. | Pipeline surges and their effect on pump station design | |
JPS5632012A (en) | Drain inflow preventing system for steam valve | |
JPS5844396A (en) | Bwr type reactor plant |