JPS5855791A - Reactor - Google Patents

Reactor

Info

Publication number
JPS5855791A
JPS5855791A JP56153641A JP15364181A JPS5855791A JP S5855791 A JPS5855791 A JP S5855791A JP 56153641 A JP56153641 A JP 56153641A JP 15364181 A JP15364181 A JP 15364181A JP S5855791 A JPS5855791 A JP S5855791A
Authority
JP
Japan
Prior art keywords
reactor
core
control rod
control rods
absorbing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56153641A
Other languages
Japanese (ja)
Inventor
間所 学
住川 雅晴
小西 俊雄
良一 加藤
大友 康正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Hitachi Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Hitachi Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP56153641A priority Critical patent/JPS5855791A/en
Publication of JPS5855791A publication Critical patent/JPS5855791A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、原子炉に係り、特にタンク型高速増殖炉の反
応度制御に好適な原子炉に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nuclear reactor, and particularly to a nuclear reactor suitable for controlling the reactivity of a tank-type fast breeder reactor.

タンク型FBFLの炉心反応度制御は、原子炉上部構造
物に設置された制御棒駆動装置を介して支持される制御
棒の炉心への挿入深さを変えることにより行なわれる。
Core reactivity control of a tank-type FBFL is performed by changing the insertion depth into the core of a control rod supported via a control rod drive device installed in a reactor superstructure.

従来における原子炉出力上昇および炉心燃焼に伴って必
要とされる炉心反応度の投入は、制御棒を上方向に引抜
くことにより行なわれている。従って通常運転時に何ら
かの原因、例えば地震等によりタンク型FBRの炉容器
の上部構造と炉心との距離が変化した場合、炉心内の制
御棒深さが変化し、これに伴い炉心の反応度が変化する
という原子炉運転制御上好ましくない要因を有している
In the past, the injection of core reactivity required for increasing reactor power and core combustion was performed by withdrawing the control rods upward. Therefore, if the distance between the upper structure of the tank-type FBR reactor vessel and the reactor core changes due to some reason, such as an earthquake, during normal operation, the depth of the control rods in the reactor core will change, and the reactivity of the reactor core will change accordingly. This has unfavorable factors in terms of reactor operation control.

本発明の目的は、上述の従来方法の技術的課題において
原子炉上部構造と炉心の相対距離の変化に対する炉心反
応度変化の感受性を低減する原子炉を提供することにあ
る。
An object of the present invention is to provide a nuclear reactor that reduces the sensitivity of core reactivity changes to changes in the relative distance between the reactor superstructure and the reactor core, in view of the technical problems of the conventional methods described above.

タンク型FBHの炉心反応度制御装置は、約30本の主
炉停止系制御棒と約10本の後備炉停止系制御棒から構
成され、前者は、原子炉通常運転時炉心への挿入深さを
変えることによシ原子炉出力レベルの調整に供され、又
必要時には急速に炉心内に挿入して炉を未臨界に保つた
めに使用される。一方、後者は、原子炉通常運転時には
炉心よシ引抜かれておシ、原子炉緊急停止時に主炉停止
系制御棒と同様に炉心に挿入され、主炉停止系が何らか
の理由で機能しない場合にも独立に炉を未臨界に保つた
めに供される。本発明は、これらの制御棒のうち、主炉
停止系制御棒の約半数の制御棒を下降させることにより
炉心反応度が増加するように、制御棒内のポイズン分布
を設定した制御棒およびその駆動機構と残り約半数の従
来型の主炉停止系制御棒および後備炉停止系制御棒とで
、タンク型FBRの炉心反応度制御系を構成する。
The core reactivity control system of a tank-type FBH consists of approximately 30 main reactor shutdown system control rods and approximately 10 backup reactor shutdown system control rods, the former of which are inserted into the core at a depth during normal reactor operation. It is used to adjust the reactor power level by changing the reactor's power level, and when necessary, it is rapidly inserted into the reactor core to keep the reactor subcritical. On the other hand, the latter is pulled out from the core during normal reactor operation, and inserted into the core in the same way as the main reactor shutdown system control rods during an emergency shutdown, and is used when the main reactor shutdown system does not function for some reason. It is also used independently to keep the reactor subcritical. The present invention provides a control rod in which the poison distribution within the control rod is set so that the core reactivity is increased by lowering approximately half of the control rods in the main reactor shutdown system. The drive mechanism and the remaining half of the conventional main reactor shutdown system control rods and back-up reactor shutdown system control rods constitute the core reactivity control system of the tank-type FBR.

これによシ、原子炉通常運転時の原子炉上部構造と炉心
との相対変位による炉心反応度変化の緩和が期待できる
This can be expected to alleviate changes in core reactivity due to relative displacement between the reactor upper structure and the reactor core during normal reactor operation.

第1図は、従来のタンク型FBRの炉心と炉心反応度制
御系の構成を模式的に示す概念図であり、通常運転状態
を示すものである。
FIG. 1 is a conceptual diagram schematically showing the configuration of the core and core reactivity control system of a conventional tank-type FBR, and shows a normal operating state.

タンク型FBRは、炉容器の上部に取付けられ心1は、
炉容器内のナトリウム(冷却材)中に配置されている。
The tank type FBR is installed at the top of the reactor vessel, and the core 1 is
It is placed in sodium (coolant) inside the furnace vessel.

炉心1は軸方向ブランケット領域2(ガスプレナム、放
射線遮蔽体を含む)および半径方向“ブランケット領域
3に囲まれている。炉心1および軸方向ブランケット領
域2は、軸方向の中央に炉心燃料1両端部にブランケッ
ト燃料を有する多数の炉心燃料集合体を配置したもので
ある。また、半径方向ブランケット領域3はブランケッ
ト燃料のみを有する多数のブランケット燃料集合体を配
置したものである。炉心燃料集合体およびブランケット
燃料集合体は、炉容器内に設置される炉心支持板に取付
けられる。複数の制御棒案内管4は。
The core 1 is surrounded by an axial blanket region 2 (including gas plenum, radiation shield) and a radial blanket region 3. A large number of core fuel assemblies having blanket fuel are placed in the radial blanket region 3.A large number of blanket fuel assemblies having only blanket fuel are placed in the radial blanket region 3.Core fuel assemblies and blanket The fuel assembly is attached to a core support plate installed in the reactor vessel.A plurality of control rod guide tubes 4 are installed.

炉心燃料集合体の間に設けられる。制御棒案内管4内に
は主炉停止系制御棒5および後備炉停止系−制御棒6が
挿入され、それらは回転プラグ(原子炉上部構造物)7
上に設置された制御棒駆動装置8によシ結合機構9を介
して支持される。主炉停止系制御棒5および後備炉停止
系制御棒6等のそれぞれの制御棒内には炉心1の高さに
相当する長さの中性子吸収物質10が充填されている。
Provided between core fuel assemblies. A main reactor shutdown system control rod 5 and a backup reactor shutdown system control rod 6 are inserted into the control rod guide tube 4, and they are connected to a rotating plug (reactor upper structure) 7.
It is supported via a coupling mechanism 9 by a control rod drive device 8 installed above. Each control rod, such as the main reactor shutdown system control rod 5 and the backup reactor shutdown system control rod 6, is filled with a neutron absorbing material 10 having a length corresponding to the height of the reactor core 1.

原子炉の通常運転時においては、主炉停止系制御棒5が
原子炉の臨界を保つために中性子吸収物質10の適切な
長さを上方に移動させるように引抜かれている。さらに
、炉心燃料の燃焼に伴う炉心反応度の劣化を補償す・る
ため、漸次上方に引き抜かれていく。一方、後備炉停止
系制御棒6の中性子吸収物質10の部分は、炉心1よシ
完全に引抜かれておシ1通常運転時の反応度制御には預
からない。
During normal operation of the nuclear reactor, the main reactor shutdown system control rod 5 is withdrawn so as to move the neutron absorbing material 10 upward by an appropriate length in order to maintain the criticality of the reactor. Furthermore, in order to compensate for the deterioration of core reactivity due to the combustion of core fuel, it is gradually withdrawn upward. On the other hand, the neutron absorbing material 10 portion of the backup reactor shutdown system control rod 6 is completely withdrawn from the reactor core 1 and is not used for reactivity control during normal operation of the reactor core 1.

従って1回転プラグ7、すなわち原子炉蓋と炉心1との
間の距離が、例えば地震の振動等により長くなった場合
、前述のように主炉停止系制御棒5の中性子吸収物質1
0が炉心1よシ引抜がれることになり、炉心反応度が増
加することが考えられる。
Therefore, if the distance between the one-turn plug 7, that is, the reactor cover and the reactor core 1 becomes longer due to earthquake vibration, etc., the neutron absorbing material 1 of the main reactor shutdown system control rod 5 will
0 will be withdrawn from the core 1, and it is conceivable that the core reactivity will increase.

第2図は、タンク型FBRに適用した本発明による一実
施例において炉心と炉心反応度制御系の構成を模式的に
示したものであシ、原子炉の通常運転時の状態を示すも
のである。主炉停止系制御棒のうち約半数は、制御棒の
下端に中性子吸収物質13を内包している制御棒(下部
ポイズン制御棒と称す)11と残り約半数は従来型の中
央部にポイズンを内包している主炉停止系制御棒(中部
ポイズン制御棒と称す)12にわけられる。後備炉停止
系制御棒6は、従来の後備炉停止系制御棒6と同様な機
能および構造を有している。本実施例において、炉心燃
料の燃焼に伴う反応度劣化補償および出力上昇等のため
の炉心反応度投入は。
Figure 2 schematically shows the configuration of the reactor core and core reactivity control system in one embodiment of the present invention applied to a tank-type FBR, and shows the state during normal operation of the reactor. be. Approximately half of the main reactor shutdown system control rods are control rods (referred to as lower poison control rods) 11 that contain a neutron absorbing substance 13 at the lower end of the control rod, and the remaining half are conventional control rods that contain a poison in the center. It is divided into 12 contained main reactor shutdown system control rods (referred to as middle poison control rods). The backup reactor shutdown system control rod 6 has the same function and structure as the conventional backup reactor shutdown system control rod 6. In this embodiment, core reactivity is input to compensate for reactivity deterioration due to combustion of core fuel and to increase output.

下部ボイズ/制御棒11を下降させて下部ボイズ/制御
棒11内の中性子吸収物質13の炉心1内の長さを減少
させるか、もしくは中部ポイズン制御棒12を上昇させ
て中性子吸収物質13の炉心1内の長さを減少させるこ
とによシ行う。従って。
Lower the lower void/control rod 11 to reduce the length of the neutron absorbing material 13 in the lower void/control rod 11 in the core 1, or raise the middle poison control rod 12 to reduce the length of the neutron absorbing material 13 in the core 1. This is done by decreasing the length within 1. Therefore.

本実施例を採用することにより原子炉蓋と炉心1の相対
距離が何らかの原因(例えば、地震)で変化しても、炉
心1内に挿入されている中性子吸収物質13の長さは基
本的に変わらない。すなわち、地震時に回転プ2グアが
上方に移動した場合、中部ポイズン制御棒12の中性子
吸収物質13は炉心1より引抜かれるが、代りに下部ポ
イズン制御棒11の中性子吸収物質13は炉心1内に挿
入される。従って、炉心反応度の変化は、極めて/J%
、さなものとなる。
By adopting this embodiment, even if the relative distance between the reactor cover and the reactor core 1 changes due to some reason (for example, an earthquake), the length of the neutron absorbing material 13 inserted into the reactor core 1 will basically remain the same. does not change. That is, when the rotating P2G moves upward during an earthquake, the neutron absorbing material 13 of the middle poison control rod 12 is pulled out of the reactor core 1, but instead, the neutron absorbing material 13 of the lower poison control rod 11 is pulled out into the reactor core 1. inserted. Therefore, the change in core reactivity is extremely /J%
, it becomes a small thing.

なお、本実施例においては主炉停止系制御棒を約半数ず
つ下部ポイズン制御棒11と中部ポイズン制御棒12に
振り分けているが、それぞれの制御棒価値に応じて員数
を振り分けても同様な効果が得られることは言をまたな
い。
In this embodiment, approximately half of the main reactor shutdown system control rods are divided into the lower poison control rods 11 and the middle poison control rods 12, but the same effect can be achieved even if the number of control rods is distributed according to the value of each control rod. Needless to say, you can get this.

タンク型FBRにおいては、燃料交換時に結合機構9を
離して制御棒と制御棒駆動装置を切り離す必要がある。
In a tank-type FBR, it is necessary to separate the control rod and control rod drive device by separating the coupling mechanism 9 when exchanging fuel.

しかし1本発明では第3図に示すように下部ポイズン制
御棒11内の中性子吸収物質13は炉心1より抜は出る
が、後備炉停止系制御棒6により原子炉は未臨界に保た
れ、機能上問題ない。
However, in the present invention, as shown in FIG. 3, although the neutron absorbing material 13 in the lower poison control rod 11 is extracted from the reactor core 1, the reactor is kept subcritical by the back-up reactor shutdown system control rod 6 and remains functional. There is no problem.

下部ポイズン制御棒11と同様に、後備炉停止−・ 系制御棒6の幾つかの下部にポイズンを充填することも
考えられる。この制御棒を、下部ポイズン後備制御棒と
称す。しかし、この場合には、通常運転時において炉心
1の出力分布に歪を与えず、しかも炉心反応度の低下を
防ぐために、可能な限り下部ポイズン後備制御棒の中性
子吸収物質を炉心1から離しておく必要がある。一方、
スクラム時の挿入時間の短縮のため、下部ポイズン後備
制御棒の中性子吸収物質層の上端は、可能な限り炉心1
近くに停止することが要求される。これらの相反する要
求を満すためには、下部ポイズン後備制御棒の中性子吸
収物質層の上端を炉心1の下端より15crn下方に配
置することが望しい。
Similarly to the lower poison control rods 11, it is also conceivable to fill the lower portions of some of the backup reactor shutdown system control rods 6 with poison. This control rod is called the lower poison backup control rod. However, in this case, in order not to distort the power distribution of the core 1 during normal operation and to prevent a decrease in core reactivity, the neutron absorbing material in the lower poison backup control rod should be moved as far away from the core 1 as possible. It is necessary to keep it. on the other hand,
In order to shorten the insertion time during scram, the upper end of the neutron absorbing material layer of the lower poison backup control rod should be placed as close to the core 1 as possible.
A nearby stop is required. In order to satisfy these conflicting demands, it is desirable to arrange the upper end of the neutron absorbing material layer of the lower poison backup control rod 15 crn below the lower end of the reactor core 1.

この15crnは、炉心と制御棒の許容相対変位約1、
5 cmに比して十分離れており、従って下部ポイズン
後備制御棒では本発明で期待する炉心−制御棒の相対変
位による反応度変化を防止することは不可能r6る。逆
にいいかえると、炉心−制御棒相対変位による反応度変
化を防止するため下・部ポイズン後備制御棒を炉心1直
下まで引上げておくと、炉心の余剰反応度を低下させる
ことになり。
This 15 crn corresponds to the allowable relative displacement between the core and control rods of approximately 1,
5 cm, and therefore, it is impossible for the lower poison backup control rod to prevent the reactivity change due to the relative displacement between the core and the control rods as expected in the present invention. In other words, if the lower and lower poison backup control rods are pulled up to just below the core 1 in order to prevent changes in reactivity due to relative displacement between the core and the control rods, the excess reactivity of the core will be reduced.

燃焼度の低下等の極めて不経済な原子炉を作ることにな
る。
This would result in an extremely uneconomical reactor with reduced burnup.

本発明によれば、原子炉蓋と炉心の相対変位による炉心
反応度の変化は極めて少なく、従ってプラント運転中に
おける地震等の外乱に対し、安定した炉心制御特性を与
える原子炉制御システムを供給できる。
According to the present invention, there is extremely little change in core reactivity due to relative displacement between the reactor cover and the reactor core, and therefore it is possible to provide a reactor control system that provides stable core control characteristics against disturbances such as earthquakes during plant operation. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のタンク型FBRの炉心付近の概念図、第
2図は本発明によるタンク型FBRの炉、σ付近の概念
図、第3図は第2図のタンク型原子炉の燃料交換時の状
態を示す説明図である。 1・・・炉心、5,6,11.12・・・制御棒、7・
・・原第30 第1頁の続き 0出 願 人 財団法人電力中央研究所東京都千代田区
大手町−丁目6 番1号
Figure 1 is a conceptual diagram of the vicinity of the core of a conventional tank-type FBR, Figure 2 is a conceptual diagram of the reactor of the tank-type FBR according to the present invention, and the vicinity of σ, and Figure 3 is a fuel exchange of the tank-type reactor of Figure 2. FIG. 1... Core, 5, 6, 11. 12... Control rod, 7.
...Hara No. 30 Continuation of page 1 0 Applicant: Central Research Institute of Electric Power Industry, Otemachi-6-1, Chiyoda-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] 1、原子炉容器と、前記原子炉容器の上部に取付けられ
る原子炉蓋と、前記原子炉容器内に配置されて前記原子
炉容器に支持される炉心部と、前記原子炉蓋に保持され
て前記炉心部に挿入される複数の主炉停止制御棒および
後備炉停止制御棒とからなる原子炉において、前記主炉
停止制御棒の幾つかが下部に中性子吸収物質を充填し、
しかも前記炉心部の下方より前記炉心部に挿入される第
1主炉停止制御棒であシ、残シの他の前記主炉停止制御
棒が前記第1主炉停止制御棒の中性子吸収物質充填領域
より上方に少なくとも中性子吸収物質が充填され、しか
も前記炉心部の上方より前記炉心部に挿入される第2主
炉停止制御棒であることを特徴とする原子炉。
1. A reactor vessel, a reactor lid attached to the top of the reactor vessel, a reactor core disposed within the reactor vessel and supported by the reactor vessel, and a reactor core held by the reactor lid. In a nuclear reactor comprising a plurality of main reactor shutdown control rods and backup reactor shutdown control rods inserted into the reactor core, some of the main reactor shutdown control rods have their lower portions filled with a neutron absorbing material,
Moreover, the first main reactor shutdown control rod is inserted into the reactor core from below the reactor core, and the remaining main reactor shutdown control rods are filled with neutron absorbing material in the first main reactor shutdown control rod. A nuclear reactor characterized in that the second main reactor shutdown control rod is filled with at least a neutron absorbing material above the region and is inserted into the reactor core from above the reactor core.
JP56153641A 1981-09-30 1981-09-30 Reactor Pending JPS5855791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56153641A JPS5855791A (en) 1981-09-30 1981-09-30 Reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56153641A JPS5855791A (en) 1981-09-30 1981-09-30 Reactor

Publications (1)

Publication Number Publication Date
JPS5855791A true JPS5855791A (en) 1983-04-02

Family

ID=15566955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56153641A Pending JPS5855791A (en) 1981-09-30 1981-09-30 Reactor

Country Status (1)

Country Link
JP (1) JPS5855791A (en)

Similar Documents

Publication Publication Date Title
EP0204288B1 (en) Fuel assembly
US4894200A (en) Method of operating a nuclear reactor
JPS5855791A (en) Reactor
US4462958A (en) LMFBR fuel assembly design for HCDA fuel dispersal
JP3221989B2 (en) Fast reactor core
US4316770A (en) Liquid-metal-cooled reactor
US11398315B2 (en) Fuel element, fuel assembly, and core
JP3167771B2 (en) Reactor and fuel assemblies
US4710340A (en) Mechanical spectral shift reactor
JPH0552979A (en) Small-sized fast breeder reactor
US4274920A (en) Water-cooled nuclear reactor with passive emergency shutdown and core cooling capability and on-line refueling
JPS6361184A (en) Fast breeder reactor
JPS61226685A (en) Fuel aggregate for boiling water type reactor
JP2711342B2 (en) Fuel assembly for boiling water reactor
JPH067182B2 (en) Fuel assembly
JP3314382B2 (en) Fuel assembly
JPS6258193A (en) Operation control rod for nuclear reactor
JPH0350232B2 (en)
JPH0414317B2 (en)
JPH08211176A (en) Fuel assembly
JPS588755B2 (en) Reactor
JPS60195492A (en) Control rod
JPH0456955B2 (en)
Yamanari et al. Containment vessel for a nuclear reactor
JPS62263495A (en) Fuel aggregate