JPH0456955B2 - - Google Patents

Info

Publication number
JPH0456955B2
JPH0456955B2 JP59042588A JP4258884A JPH0456955B2 JP H0456955 B2 JPH0456955 B2 JP H0456955B2 JP 59042588 A JP59042588 A JP 59042588A JP 4258884 A JP4258884 A JP 4258884A JP H0456955 B2 JPH0456955 B2 JP H0456955B2
Authority
JP
Japan
Prior art keywords
group
reactor
control rod
fast breeder
absorbing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59042588A
Other languages
Japanese (ja)
Other versions
JPS60186785A (en
Inventor
Kunikazu Kaneto
Yoshio Watari
Shusaku Sawada
Kotaro Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59042588A priority Critical patent/JPS60186785A/en
Publication of JPS60186785A publication Critical patent/JPS60186785A/en
Publication of JPH0456955B2 publication Critical patent/JPH0456955B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は高速増殖炉に係り、特に地震時の反応
度投入事象に対する安全性を向上するに好適な高
速増殖炉に関するものである。 〔発明の背景〕 第1図に、液体金属ナトリウムを冷却材として
用いる典型的なタンク型高速増殖炉の概略構造を
示す。 このタンク型高速増殖炉1は原子炉容器2内に
炉心4が配置され、この炉心4内に炉上部機構6
で支持された複数本の制御棒8が上方から挿入さ
れた構成となつている。なお符号10は炉上部機
構6を支持するルーフスラブである。 制御棒8は内部に中性子吸収材が収納されてお
り、原子炉の運転時、炉の余剰反応度を吸収した
り、出力分布を平坦化する等の働らきがあり、従
来では第3図従来例の欄に示されるように、すべ
ての制御棒8を炉心4から出し入れすることによ
り炉の出力をコントロールするようになつてい
る。 制御棒8は炉上部機構6を介して天井部に設け
られたルーフスラブ10によつて最終支持されて
いるが、炉心4の支持部位とは異なつている。そ
のため地震の発生によつて制御棒8と炉心4とは
相対上下変位を生じ、特に制御棒8が炉心4から
引き抜かれた場合には、即発臨界あるいは燃料の
破損等から大事故になる虞れが高い。 そこで地震等の反応度投入事象に対し安全であ
るように、ルーフスラブ10の剛度およびその強
度部材の強度を高めた構造に設計されている。 一般に、最大投入反応度量は、炉心4内に部分
挿入されている制御棒8の単位ストローク当りの
最大反応度価値に上下相対変位量を乗じて算出さ
れ、即ち炉心4内に部分挿入されている制御棒8
はすべて炉心4内で単位ストローク当りの反応度
価値が最大の位置にあると想定して算出され、こ
の値に基づいた制御棒と炉心の相対上下変位の許
容値を満足するような原子炉構造とすることが必
要であつた。なお、ここで部分挿入とは制御棒の
微小相対変位が本発明上有意の反応度変化を与え
る範囲(例えば、単位ストローク当りの反応度価
値が前記最大反応度価値の1/10程度以上)を意味
するものであり、部分挿入でない制御棒は全挿入
あるいは全引抜と以下で称する。 例えば、電気出力100万KW級の高速増殖炉に
おけるこの許容値は、約30mmであり、ルーフスラ
ブ10の直径約20m、炉心4とルーフスラブ10
の上下間距離約10mと比較して非常にわずかなも
のである。この許容値約30mmを満足するために
は、ルーフスラブ10の強度部材の桁高を3m以
上とし、更にその剛性を高めるため原子炉建屋お
よび原子炉の構造の耐震設計に工夫をこらさねば
ならず、原子炉構造の複雑化、大型化、これに伴
う非経済性という問題点を有していた。 〔発明の目的〕 本発明は原子炉の運転時に炉心内に部分挿入さ
れている制御棒の本数をできるだけ少なくするこ
とにより、制御棒と炉心の相対上下変位の許容値
を緩和することにある。 〔発明の概要〕 本発明に係る高速増殖炉は、炉心内に出し入れ
して出力をコントロールする制御棒を、主として
炉停止余裕機能を有しまず最初に引き抜きが開始
される第1の群と、主として出力温度補償機能を
有しこの第1の群と一緒に引き抜かれる第2の群
と、主として運転維持機能を有し前記第1の群の
引き抜き終了後に引き抜きが開始され、前記第2
の群と一緒に引き抜かれる第3の群と、の3つの
群に分割したことを特徴とし、これによつて前記
目的が達成される。 〔発明の実施例〕 第1表には電気出力100万KW級の典型的な高
速増殖炉において、制御能力上要求される反応度
価値と、その内訳例を示す。
[Field of Application of the Invention] The present invention relates to a fast breeder reactor, and particularly to a fast breeder reactor suitable for improving safety against reactivity injection events during earthquakes. [Background of the Invention] FIG. 1 shows a schematic structure of a typical tank-type fast breeder reactor that uses liquid metal sodium as a coolant. This tank-type fast breeder reactor 1 has a reactor core 4 disposed within a reactor vessel 2, and an upper reactor mechanism 6 within this reactor core 4.
A plurality of control rods 8 supported by the control rods 8 are inserted from above. Note that the reference numeral 10 is a roof slab that supports the furnace upper mechanism 6. The control rod 8 has a neutron absorbing material stored inside it, and has functions such as absorbing excess reactivity of the reactor and flattening the power distribution during operation of the reactor. As shown in the example column, the output of the reactor is controlled by moving all the control rods 8 in and out of the reactor core 4. The control rods 8 are ultimately supported by a roof slab 10 provided on the ceiling via the reactor upper mechanism 6, but this is different from the supporting portion of the reactor core 4. Therefore, when an earthquake occurs, the control rods 8 and the reactor core 4 will undergo relative vertical displacement, and especially if the control rods 8 are pulled out of the reactor core 4, there is a risk of immediate criticality or fuel failure, resulting in a major accident. is high. Therefore, in order to be safe against reactivity events such as earthquakes, the structure is designed to increase the rigidity of the roof slab 10 and the strength of its strength members. Generally, the maximum input reactivity amount is calculated by multiplying the maximum reactivity value per unit stroke of the control rod 8 partially inserted into the reactor core 4 by the vertical relative displacement amount, that is, when the control rod 8 is partially inserted into the reactor core 4. control rod 8
are all calculated assuming that the reactivity value per unit stroke is at the maximum position in the reactor core 4, and the reactor structure is designed to satisfy the allowable relative vertical displacement of the control rods and the core based on this value. It was necessary to do so. Note that partial insertion here refers to the range in which a minute relative displacement of the control rod causes a significant change in reactivity according to the present invention (for example, the reactivity value per unit stroke is about 1/10 or more of the maximum reactivity value). A control rod that is not partially inserted is hereinafter referred to as fully inserted or fully withdrawn. For example, this allowable value in a fast breeder reactor with an electrical output of 1 million KW class is approximately 30 mm, the diameter of the roof slab 10 is approximately 20 m, and the diameter of the core 4 and the roof slab 10 are approximately 30 mm.
This is very small compared to the vertical distance of about 10m. In order to satisfy this allowable value of approximately 30 mm, the girder height of the strength members of the roof slab 10 must be at least 3 m, and in order to further increase its rigidity, it is necessary to make efforts in the seismic design of the reactor building and reactor structure. However, the problem was that the reactor structure became more complex and larger, which made it uneconomical. [Object of the Invention] The purpose of the present invention is to reduce the number of control rods that are partially inserted into the reactor core during operation of a nuclear reactor, thereby relaxing the allowable relative vertical displacement between the control rods and the reactor core. [Summary of the Invention] The fast breeder reactor according to the present invention includes control rods that control the output by moving them in and out of the reactor core, and a first group that mainly has a reactor shutdown margin function and from which withdrawal is started first; A second group mainly has an output temperature compensation function and is extracted together with the first group, and a second group mainly has an operation maintenance function and is started after the first group is extracted, and the second group
The third group is extracted together with the first group, and the third group is extracted together with the second group. [Embodiments of the Invention] Table 1 shows reactivity values required for control performance and examples of their breakdown in a typical fast breeder reactor with an electrical output of 1 million KW class.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれ
ば、制御棒と炉心の相対上下変位の許容値が緩和
されることになるので、高速増殖炉の耐震安全性
が向上する。 また、換言すれば、ルーフスラブおよびその強
度部材の剛性を緩和することができるので、原子
炉の小型化延いては製造コスト低減につながると
いう効果を有する。
As is clear from the above description, according to the present invention, the permissible value of the relative vertical displacement between the control rods and the reactor core is relaxed, so that the seismic safety of the fast breeder reactor is improved. In other words, since the rigidity of the roof slab and its strength members can be relaxed, this has the effect of reducing the size of the nuclear reactor, which in turn leads to lower manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はタンク型高速増殖炉の概略構造図、第
2図は本発明の第1実施例の炉心内の燃料、主系
統制御棒、予備系統制御棒の位置関係を示す平面
配置図、第3図は炉心内における制御棒の位置と
原子炉運転状態との関係を示す図である。 4……炉心、10……ルーフスラブ、12……
炉心板、14……燃料、16A……第1群制御
棒、16B……第2群制御棒、16C……第3群
制御棒、18……予備系統制御棒。
Fig. 1 is a schematic structural diagram of a tank-type fast breeder reactor, Fig. 2 is a plan layout showing the positional relationship of fuel, main system control rods, and standby system control rods in the reactor core according to the first embodiment of the present invention; FIG. 3 is a diagram showing the relationship between the position of the control rod in the reactor core and the operating state of the reactor. 4... Core, 10... Roof slab, 12...
Core plate, 14... fuel, 16A... first group control rod, 16B... second group control rod, 16C... third group control rod, 18... backup system control rod.

Claims (1)

【特許請求の範囲】 1 中性子吸収材を収納してなる制御棒を炉心内
に出し入れすることにより炉の反応度制御を行う
高速増殖炉において、前記制御棒を、主として炉
停止余裕機能を有しまず最初に引き抜きが開始さ
れる第1の群と、主として出力温度補償機能を有
しこの第1の群と一緒に引き抜かれる第2の群
と、主として運転維持機能を有し前記第1の群の
引き抜き終了後に引き抜きが開始され、前記第2
の群と一緒に引き抜かれる第3の群と、の3つの
群に分割したことを特徴とする高速増殖炉。 2 前記第1群制御棒1本当りの平均反応度価値
を前記第3群制御棒1本当りの平均反応度価値よ
り大きくしたことを特徴とする特許請求の範囲第
1項記載の高速増殖炉。 3 前記第1群および第2群の制御棒の全反応度
価値の和の最大値を、前記第2群および第3群の
制御棒の全反応度価値の和の最大値以上に設定し
たことを特徴とする特許請求の範囲第1項又は第
2項記載の高速増殖炉。 4 前記第2群制御棒と第3群制御棒とを、同一
の中性子吸収材を収納した同一構造とし、且つ各
制御棒1本当りの中性子吸収材装荷量を同一とし
たことを特徴とする特許請求の範囲第1項又は第
2項記載の高速増殖炉。 5 前記第1群制御棒と前記第3群制御棒とを、
同一の中性子吸収材物質を収納した同一構造と
し、第1群制御棒1本当りの中性子吸収材装荷量
を第3群制御棒1本当りの中性子吸収材装荷量よ
り多くしたことを特徴とする特許請求の範囲第1
項又は第2項記載の高速増殖炉。
[Scope of Claims] 1. In a fast breeder reactor in which the reactivity of the reactor is controlled by moving a control rod containing a neutron absorbing material into and out of the reactor core, the control rod mainly has a reactor shutdown margin function. A first group whose extraction is started first, a second group which mainly has an output temperature compensation function and is extracted together with the first group, and a second group which mainly has an operation maintenance function and which is the first group. After the drawing is completed, the drawing is started, and the second
A fast breeder reactor characterized in that it is divided into three groups: a third group that is extracted together with the group; and a third group that is extracted together with the group. 2. The fast breeder reactor according to claim 1, wherein the average reactivity value of each first group control rod is greater than the average reactivity value of each third group control rod. . 3. The maximum value of the sum of all reactivity values of the control rods in the first group and the second group is set to be greater than the maximum value of the sum of all the reactivity values of the control rods in the second group and the third group. A fast breeder reactor according to claim 1 or 2, characterized in that: 4. The second group control rods and the third group control rods have the same structure containing the same neutron absorbing material, and the loading amount of the neutron absorbing material per control rod is the same. A fast breeder reactor according to claim 1 or 2. 5 the first group control rods and the third group control rods,
They are characterized in that they have the same structure housing the same neutron absorbing material, and the amount of neutron absorbing material loaded per first group control rod is greater than the amount of neutron absorbing material loaded per third group control rod. Claim 1
The fast breeder reactor according to paragraph 2 or paragraph 2.
JP59042588A 1984-03-05 1984-03-05 Fast breeder reactor Granted JPS60186785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59042588A JPS60186785A (en) 1984-03-05 1984-03-05 Fast breeder reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59042588A JPS60186785A (en) 1984-03-05 1984-03-05 Fast breeder reactor

Publications (2)

Publication Number Publication Date
JPS60186785A JPS60186785A (en) 1985-09-24
JPH0456955B2 true JPH0456955B2 (en) 1992-09-10

Family

ID=12640218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59042588A Granted JPS60186785A (en) 1984-03-05 1984-03-05 Fast breeder reactor

Country Status (1)

Country Link
JP (1) JPS60186785A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2753065B2 (en) * 1989-08-31 1998-05-18 株式会社東芝 Core control method for fast breeder reactor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6061677A (en) * 1983-09-14 1985-04-09 株式会社東芝 Method of operating fast reactor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6061677A (en) * 1983-09-14 1985-04-09 株式会社東芝 Method of operating fast reactor

Also Published As

Publication number Publication date
JPS60186785A (en) 1985-09-24

Similar Documents

Publication Publication Date Title
Dubberley et al. SuperPRISM oxide and metal fuel core designs
US4326919A (en) Nuclear core arrangement
US3122484A (en) Reactor having fuel element coated with burnable poison
US3163583A (en) Fuel follower for a heterogeneous nuclear reactor
US3244597A (en) Fast breeder neutronic reactor
US4148685A (en) Process and apparatus for shutdown and control of a gas-cooled nuclear reactor
US4894200A (en) Method of operating a nuclear reactor
WO1993016477A1 (en) Nonproliferative light water nuclear reactor with economic use of thorium
JPH0456955B2 (en)
Logan A rationale for fusion economies based on inherent safety
US3753856A (en) Core clamping system for a nuclear reactor
USH722H (en) Nuclear reactor fuel with radially varying enrichment
US20230071843A1 (en) Fuel assembly and core of fast reactor
Cahalan et al. Integral fast reactor safety features
US20200343006A1 (en) Fuel Element, Fuel Assembly, and Core
JP2839516B2 (en) Boiling water reactor fuel assembly
JPH11101888A (en) Fuel assembly and core of reactor
GB1373677A (en) Refuelling of nuclear reactors
JPS6350679B2 (en)
ES291691U (en) Auxiliary control rod for nuclear reactors.
JPS63217293A (en) Fast breeder reactor
Cameron et al. The Light-Water-Moderated Reactor
JP3314382B2 (en) Fuel assembly
JPH067182B2 (en) Fuel assembly
JP2020153758A (en) Core of small-sized fast reactor