JPS5855741A - Inspecting device using nuclear magnetic resonance - Google Patents

Inspecting device using nuclear magnetic resonance

Info

Publication number
JPS5855741A
JPS5855741A JP56153408A JP15340881A JPS5855741A JP S5855741 A JPS5855741 A JP S5855741A JP 56153408 A JP56153408 A JP 56153408A JP 15340881 A JP15340881 A JP 15340881A JP S5855741 A JPS5855741 A JP S5855741A
Authority
JP
Japan
Prior art keywords
magnetic field
reference samples
signal
magnetic resonance
nuclear magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56153408A
Other languages
Japanese (ja)
Inventor
Etsuji Yamamoto
山本 悦治
Kensuke Sekihara
謙介 関原
Hideki Kono
秀樹 河野
Shinji Yamamoto
真司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56153408A priority Critical patent/JPS5855741A/en
Publication of JPS5855741A publication Critical patent/JPS5855741A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/58Calibration of imaging systems, e.g. using test probes, Phantoms; Calibration objects or fiducial markers such as active or passive RF coils surrounding an MR active material

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To correct the degradation in resproduced pictures occuring in magnetic field drifts completely and to obtain picture of good quality by placing plural reference samples around an object to be examined, and reconstituting the picture by using the signals from the respective reference samples as references for positions. CONSTITUTION:Coils 24, 17-19, 13 for generating static magnetic fields, inclined magnetic fields and high frequency magnetic fields, a coil 13 which detects the nuclear magnetic resonance signal from an object 21, and a signal processing unit 16 which constitutes pictures according to the results of operations by operating the detection signals of the coils are provided. Reference samples 26- 28 are placed around the object 21, and the pictures are reconstituted by using the signals from the respective reference samples as references for positions.

Description

【発明の詳細な説明】 本発明は核磁気共鳴を用−た検査装置に関し、特に検査
時間中の磁場ドリフトに起因する再生像の劣化を補正す
るようにした核磁気共鳴を用いた検査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an inspection apparatus using nuclear magnetic resonance, and more particularly to an inspection apparatus using nuclear magnetic resonance that corrects deterioration of a reproduced image caused by magnetic field drift during the inspection time. .

従来、人体などの内部構造を中破壊的に検査する方法と
しては、X線0〒や超音波撮像装置が広く利用されて来
て−る。 近年、これに更に核磁気共鳴現象を利用し同
様の検査を行う試みが成功し、xmo”rや超音波撮像
装置では得られなかった情報を取得で自ることが明らか
になって来た。
Conventionally, X-ray beams and ultrasonic imaging devices have been widely used as methods for semi-destructively inspecting internal structures of human bodies and the like. In recent years, attempts to perform similar tests using nuclear magnetic resonance phenomena have been successful, and it has become clear that information that could not be obtained with XMO'R or ultrasonic imaging devices can be obtained.

核磁気共鳴を用−た検査装置(以下単に「検査装置」と
−う)にお−て社、検査対象物体からの信号を該物体各
部に対応させて、分離・識別する必要がある。 通常は
検査対象物体に傾斜磁場を印加し、物体各部の置かれた
静磁場を異ならせ、これにより各部の共鳴周波数を異な
らせることで位置の情報を得ている。
In an inspection apparatus using nuclear magnetic resonance (hereinafter simply referred to as an "inspection apparatus"), it is necessary to separate and identify signals from an object to be inspected in correspondence with each part of the object. Normally, positional information is obtained by applying a gradient magnetic field to the object to be inspected, varying the static magnetic field placed on each part of the object, and thereby varying the resonance frequency of each part.

第1図はそのW7L理を説明するためのもので、検査対
象物体1中の部分2,3だけを考えると、この部分から
の信号社傾斜磁場Gのもとで、共鳴曲線4.5として分
離されるので共鳴周波数の相違に−よ〉識別することが
で吉る・傾斜磁場Gの印加方向を種々変え、同様な共鳴
曲線すなわち射影を得ることによ1)SXIIIO’l
’と全く同様のアルゴリズムを用−て対象物体中の核ス
ピンの濃度分布ある−は緩和時間分布を再構成すること
ができる・ところで、核スピンの共鳴周波数fは静磁場
H0゜傾斜磁場Gを用いて f−r(H0+GX)/(2K)−・・(1)と表すこ
とができる。こζで、γは核磁気回転比であり核スピン
に固有の値である。またXけ核スピンの置かれている座
標を表している。静磁場H6祉周囲の温度変化、電源変
動あるいけ外部磁場の変動等により時間とともに変動す
る(磁場ドリフト)ことがあり、静磁場H6の変動によ
り前記(1)式で表される共鳴周波数fが変動する。こ
の変動量をΔfとすると、変動後においても同じ周波数
に着目したとき、その信号成分は ΔX−Δf・2π/(Gγ) たけずれた部分からの信号になる。従って、このように
して得られた射影を再松成するとボケを含む画像となる
という問題が生ずる。
Figure 1 is for explaining the W7L principle. Considering only parts 2 and 3 of the object to be inspected 1, under the signal gradient magnetic field G from this part, the resonance curve 4.5 Since they are separated, it is possible to identify the difference in resonance frequency by varying the direction of application of the gradient magnetic field G and obtaining similar resonance curves, that is, projections.1) SXIIIO'l
'The concentration distribution of nuclear spins in the target object can be used to reconstruct the relaxation time distribution using an algorithm exactly similar to can be expressed as f-r(H0+GX)/(2K)--(1). Here, γ is the nuclear gyromagnetic ratio and is a value specific to nuclear spin. It also represents the coordinates where the X-nucleus spin is located. The static magnetic field H6 may fluctuate over time (magnetic field drift) due to ambient temperature changes, power supply fluctuations, external magnetic field fluctuations, etc. Due to fluctuations in the static magnetic field H6, the resonant frequency f expressed by the above equation (1) fluctuate. If this amount of variation is Δf, then when focusing on the same frequency even after the variation, the signal component will be a signal from a portion shifted by ΔX−Δf·2π/(Gγ). Therefore, if the projections obtained in this manner are re-articulated, a problem arises in that the image contains blur.

本発明は上記事情に鑑みてなされたもので、その目的と
するところは、従来の検査装置における上述の如き問題
を解消し、磁場ドリフトに起因する再生像の劣化を補正
するようにした検査装置を提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to solve the above-mentioned problems in conventional inspection devices, and to provide an inspection device that corrects the deterioration of reproduced images caused by magnetic field drift. Our goal is to provide the following.

本発明の上記目的は、静磁場、傾斜磁場および高周波磁
場の各磁場発生手段と、検査対象慶らの核磁気共鳴信号
を検出する信号検出手段と、前記検出信号の演算を行う
計算機および該計算機による演算結果の出力手段を有す
る検査装置において、前記検査対象の周囲に複数の基準
試料を置−て、該基準試料からの信号を位置の基準とし
て像再構成を行うようにした検査装置によって達成され
る。
The above-mentioned object of the present invention is to provide magnetic field generating means for a static magnetic field, a gradient magnetic field, and a high-frequency magnetic field, a signal detecting means for detecting a nuclear magnetic resonance signal of a test subject, a computer for calculating the detected signal, and the computer. Achieved by an inspection apparatus having a means for outputting the calculation results according to the method, in which a plurality of reference samples are placed around the inspection target, and image reconstruction is performed using signals from the reference samples as a position reference. be done.

以下、本発明の実施例を図面に基づ−て詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

fl12図は本発明の一実施例である検査装置の構成を
示すものである。 図において、24け静磁場発生用コ
イル、21tj検査の対象物体(この場合は人体)、1
3は高周波磁場発生用コイル、17.18.19Fiそ
れぞれx、y、z方向の傾斜磁場発生用コイルである。
FIG. fl12 shows the configuration of an inspection device that is an embodiment of the present invention. In the figure, 24 static magnetic field generating coils, 21 objects to be inspected (in this case, a human body), 1
3 is a coil for generating a high frequency magnetic field, and 17, 18, and 19Fi are coils for generating gradient magnetic fields in the x, y, and z directions, respectively.

高周波パルス発生器11の出力は電力増幅器12で増幅
され前記高周波磁場発生用コイル13を励振する。該)
イル13は同時に受信用コイルを兼ねており、信号成分
は増幅1114を通り検波i 15で検波後、信号処理
装置16で画像に変換される。
The output of the high frequency pulse generator 11 is amplified by a power amplifier 12 and excites the high frequency magnetic field generating coil 13. applicable)
The coil 13 also serves as a receiving coil, and the signal component passes through an amplifier 1114, is detected by a detector i 15, and is converted into an image by a signal processing device 16.

傾斜磁場の発生は前記コイルIT 、18.19で行−
これらのコイルは電源20により駆動される。
The gradient magnetic field is generated by the coil IT, 18.19.
These coils are driven by a power source 20.

検査対象である人体21はペッド22上に置かれ、支持
台23上を移動する。 静磁場は前記コイ−A/24で
発生させ、該コイル24は電源25により駆動される。
A human body 21 to be examined is placed on a ped 22 and moved on a support base 23. A static magnetic field is generated by the coil A/24, which is driven by a power source 25.

第3図は本発明の要点である基準試料の配置を示す図で
ある。 図にお埴て、21は対象物体であり、26,2
7.28は基準試料である。
FIG. 3 is a diagram showing the arrangement of a reference sample, which is the main point of the present invention. As shown in the figure, 21 is the target object, 26, 2
7.28 is a reference sample.

3個の基準試料26.27.28+1、該基準試料から
の信号と対象物体21からの信号とが重ならな−ように
、3個を対象物体2]に外接する円ムに更に外接する正
六角形Bの頂点に1つおきに配置しである。
Three reference samples 26, 27, 28+1, and a regular hexagon that further circumscribes the circle that circumscribes the three reference samples 26, 27, 28+1, and the target object 2 so that the signals from the reference samples and the signals from the target object 21 do not overlap. They are placed every other corner of the square B.

上述の如く構成された試料に、傾斜磁場G1.G。A gradient magnetic field G1. G.

を印加したときの射影が、同じく第3図に示されている
。矢印は傾斜磁場の向きを表している。
The projection when applying is also shown in FIG. The arrows represent the direction of the gradient magnetic field.

傾斜磁場G0  を印加したときの射影(至)から、基
準試料26の共鳴*l[ti29となり、傾斜磁場G。
From the projection when the gradient magnetic field G0 is applied, the resonance *l[ti29 of the reference sample 26 is obtained, and the gradient magnetic field G.

を印加したときの射影(ト)から、基準試料27の共鳴
曲線Fi30となる如く分離・出力される。
The resonance curve Fi30 of the reference sample 27 is separated and output from the projection (g) when .

検査中に何らかの原因で静磁場■。がドリフトした場合
を考える。 静磁場H0がΔ■だけ大きくなったものと
すると、この場合の射影社第3図に破線(至)で示され
た如く、 Δf−1ΔB/2に だけ平行移動した形になる。このとき、基準試料26の
共鳴向IIIも31に示される如くずれた位置に移る。
Static magnetic field ■ for some reason during the examination. Consider the case where the drift occurs. If the static magnetic field H0 is increased by Δ■, it will be translated in parallel by Δf-1ΔB/2, as shown by the broken line (to) in Figure 3 of Keioisha in this case. At this time, the resonance direction III of the reference sample 26 also shifts to a shifted position as shown at 31.

そζで、基準試料26の共鳴向6131の正しい位置(
29で示される位置)とのずれからΔfを求めることに
より対象物体の射影についても容易に補正を行うことが
できる。
At that ζ, the correct position of the resonance direction 6131 of the reference sample 26 (
By determining Δf from the deviation from the position shown by 29, the projection of the target object can also be easily corrected.

基準試料の選択および傭正方法にっ≠て、以下具体的に
説明する。
The selection of the reference sample and the calibration method will be specifically explained below.

第5図左上方に示した座標系XYを考え、傾斜磁場Gが
X軸となす角度をαとする。また、対象物体21の中心
0が傾斜磁場の中心であるーすなわち、前記0点におい
て H0+C)1.”−Ho が常に成立する。−ものとする。この場合、0くα≦π
/3においては基準試料27を、π/3≦α≦2π/3
 においては基準試料26を、また2π/3≦α≦πに
おいては基準試料28を選択して基準試料とすれは、対
象物体21とは完全に分離した基準信号を得ることがで
きる。ここで、基準信号の生ずる周波数fr  は、前
記正六角影Bに外接する円Cの半径をRとすると次のよ
うに表すことができる。すなわち、 0くα≦π/3 
ではtrw−to−,5−R−cog (−g−α)π
/3≦α≦2π/3 では t −t + −R・ 008 (百−α)r ・ 2
に そして2に/3≦α≦πでは f = f −−1−aos (塁π−α)r ・ 2
π    6 と表される。ここで、f、は前記0点の共鳴周波数であ
る。
Considering the coordinate system XY shown in the upper left corner of FIG. 5, let α be the angle that the gradient magnetic field G makes with the X axis. Also, the center 0 of the target object 21 is the center of the gradient magnetic field - that is, at the 0 point H0+C)1. ”-Ho always holds true. In this case, 0 α≦π
/3, the reference sample 27 is π/3≦α≦2π/3
By selecting the reference sample 26 as the reference sample when 2π/3≦α≦π and selecting the reference sample 28 as the reference sample when 2π/3≦α≦π, a reference signal completely separated from the target object 21 can be obtained. Here, the frequency fr at which the reference signal is generated can be expressed as follows, assuming that the radius of the circle C circumscribing the regular hexagonal shadow B is R. That is, 0 α≦π/3
Then trw-to-,5-R-cog (-g-α)π
/3≦α≦2π/3 then t −t + −R・008 (100−α)r・2
and for 2/3≦α≦π, f = f −−1−aos (base π − α) r ・ 2
It is expressed as π 6 . Here, f is the resonance frequency at the zero point.

上述の如く、基準試料26.27.28の位置が固定さ
れてψるならば、傾斜磁場を印加する方向により基準信
号が生ずる位置が決まるので、これにより信号の補正を
行うことができる。 傾斜磁場がX軸となす角αは、互
いに直交する傾斜磁場をG、?G、  としたとき g
 −tan  (GY/GK )で表される。また、傾
斜磁場の大きさは常に一定髄G、である仁とが必要であ
るが、これはGy−G@ts1n a Gx■Qoao11g で与えることにより達成できる。
As described above, if the positions of the reference samples 26, 27, and 28 are fixed and ψ, the position where the reference signal is generated is determined by the direction in which the gradient magnetic field is applied, so that the signal can be corrected. The angle α between the gradient magnetic fields and the X-axis is G, ? G, when g
-tan (GY/GK). Further, the magnitude of the gradient magnetic field must always be constant G, which can be achieved by giving Gy-G@ts1na Gx Qoao11g.

第4図は第2図から、傾斜磁場発生部と信号検出処理部
とを抜き出したもの、である。 信号処理袋ff116
から電源2oへ角度αを指定すると、これに応じてコイ
/’−17,18に電流が供給される。
FIG. 4 shows a gradient magnetic field generation section and a signal detection processing section extracted from FIG. 2. Signal processing bag ff116
When the angle α is specified from the angle α to the power source 2o, current is supplied to the carp /'-17 and 18 accordingly.

また、信号処理装置16け前記角度αを基に、増幅器1
4.検波器15を通った信号に磁場ドリフトによって生
じた射影の移動分を補正して像再構成を行う。
Also, based on the angle α of the signal processing device 16, the amplifier 1
4. Image reconstruction is performed by correcting the projection movement caused by magnetic field drift in the signal that has passed through the detector 15.

館6図は信号処理袋[16の処理過程を示すものである
。 該処理過程においては、前記検波された信号を取シ
込みこれを7−リエ変換した後、第3図に示した如き基
準信号31を求めて周波数移動分△fを算出する。これ
に基づき射影を△fたけ平行移動し、その結果を用いて
像再構成を行う。
Figure 6 shows the processing process of the signal processing bag [16]. In this processing process, the detected signal is received and subjected to 7-lier transform, and then a reference signal 31 as shown in FIG. 3 is obtained and the frequency shift Δf is calculated. Based on this, the projection is translated by Δf, and the result is used to reconstruct the image.

上記実施例に↓jいては、3@の基準試料を用いた場合
を例にとって説明したが、基準試料の数はこれに限るも
のではない。 またn個の基準試料を用−る場合には、
該試料を2n角形の頂点に1つおきに配置し、傾斜磁場
の印加方向に応じて基準試料を切鰺換えれば良い0もち
ろん、基準試料は前記211角形の頂点に厳密に配置す
る必要はなく、送受信コイルの杉状等に応じて適宜変更
が可能なことは言うまでもない。
Although ↓j in the above embodiment has been explained by taking as an example the case where 3 @ reference samples are used, the number of reference samples is not limited to this. Also, when using n reference samples,
The samples can be placed at every other vertex of the 2n-gon, and the reference samples can be changed depending on the direction of application of the gradient magnetic field.Of course, the reference samples do not need to be placed strictly at the vertices of the 211-gon. , it goes without saying that changes can be made as appropriate depending on the cedar shape of the transmitter/receiver coil, etc.

以上述べた如く、本発明によれば、静磁場、傾斜磁場お
よび高周波磁場の各磁場発生手段と、検査対象からの核
磁気共鳴信号を検出する信号検出手段と、前記検出信号
の演算を行う計算機および該計算機による演算結果の出
力手段を有する検査装置において、前記検査対象の周囲
に複数の基準試料を置いて、該基準試料からの信号を位
置の基準として像再構成を行うようにしたので、磁場ド
リフトに起因する再生像の劣化を完全に補圧し、良質の
画像を得ることを可能とした検査装置を実現できるとい
う顕著な効果を賽するものである。
As described above, according to the present invention, magnetic field generating means for a static magnetic field, a gradient magnetic field, and a high-frequency magnetic field, a signal detecting means for detecting a nuclear magnetic resonance signal from an examination object, and a computer for calculating the detected signal are provided. In the inspection apparatus having means for outputting calculation results by the computer, a plurality of reference samples are placed around the inspection target, and image reconstruction is performed using signals from the reference samples as a position reference. This has the remarkable effect of realizing an inspection device that can completely compensate for the deterioration of reproduced images caused by magnetic field drift and obtain high-quality images.

【図面の簡単な説明】[Brief explanation of drawings]

第1図社傾斜磁場と共鳴曲線との関係を示す図、第2図
は本発明の実施例装置の構成を示す図、第ン。 3図は対象物体−と基準試料との配置状況および射影の
補止方法を説明するための図、第4図は第2Vに示した
構成、のうち傾斜磁場発生および信号処理に関する部分
を示す図、第5図は信号処理装置の動作を示す図である
。 13:高周波磁場発生用コイル、16:信号処理装置、
IT、18,19:傾斜磁場発生用コイル、21:対象
物体、24:静磁場発生用コイル、26.2)、28:
基準試料。 特許出願人 株式会社 日立製作b「 第1図 第3図 第4図
Figure 1 is a diagram showing the relationship between a gradient magnetic field and a resonance curve, and Figure 2 is a diagram showing the configuration of an apparatus according to an embodiment of the present invention. Figure 3 is a diagram for explaining the arrangement of the target object and the reference sample and the projection correction method, and Figure 4 is a diagram showing the part related to gradient magnetic field generation and signal processing of the configuration shown in Figure 2V. , FIG. 5 is a diagram showing the operation of the signal processing device. 13: High frequency magnetic field generation coil, 16: Signal processing device,
IT, 18, 19: Gradient magnetic field generation coil, 21: Target object, 24: Static magnetic field generation coil, 26.2), 28:
Reference sample. Patent applicant: Hitachi Seisakusho Co., Ltd. Figure 1 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 静磁場、傾斜磁場および高周波磁場の各磁場発生手段と
、検査対象からの核磁気共鳴信号を検出する信号検出手
段と、前記検出信号の演算を行う計算機および該計算機
による演算結果の出力手段を有する核磁気共鳴を用いた
検査装置にお−て、を行うようにしたことを特徴とする
核磁気共鳴を用いた検査装置。
It has magnetic field generating means for a static magnetic field, a gradient magnetic field, and a high-frequency magnetic field, a signal detecting means for detecting a nuclear magnetic resonance signal from an object to be examined, a computer for calculating the detection signal, and a means for outputting the calculation results by the computer. An inspection device using nuclear magnetic resonance, characterized in that the inspection device uses nuclear magnetic resonance.
JP56153408A 1981-09-28 1981-09-28 Inspecting device using nuclear magnetic resonance Pending JPS5855741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56153408A JPS5855741A (en) 1981-09-28 1981-09-28 Inspecting device using nuclear magnetic resonance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56153408A JPS5855741A (en) 1981-09-28 1981-09-28 Inspecting device using nuclear magnetic resonance

Publications (1)

Publication Number Publication Date
JPS5855741A true JPS5855741A (en) 1983-04-02

Family

ID=15561831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56153408A Pending JPS5855741A (en) 1981-09-28 1981-09-28 Inspecting device using nuclear magnetic resonance

Country Status (1)

Country Link
JP (1) JPS5855741A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190643A (en) * 1983-04-14 1984-10-29 Hitachi Ltd Inspecting apparatus utilizing nuclear magnetic resonance
JPS60222043A (en) * 1984-04-20 1985-11-06 横河電機株式会社 Diagnostic apparatus by nuclear magnetic resonance
JPS60242845A (en) * 1984-05-18 1985-12-02 横河電機株式会社 Processing of nuclear magnetic resonance data

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576348A (en) * 1980-06-13 1982-01-13 Toshiba Corp Nuclear magnetic resonator
JPS5766346A (en) * 1980-10-11 1982-04-22 Sanyo Electric Co Ltd Resonance method for nucleus magnetism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576348A (en) * 1980-06-13 1982-01-13 Toshiba Corp Nuclear magnetic resonator
JPS5766346A (en) * 1980-10-11 1982-04-22 Sanyo Electric Co Ltd Resonance method for nucleus magnetism

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190643A (en) * 1983-04-14 1984-10-29 Hitachi Ltd Inspecting apparatus utilizing nuclear magnetic resonance
JPH0448451B2 (en) * 1983-04-14 1992-08-06 Hitachi Ltd
JPS60222043A (en) * 1984-04-20 1985-11-06 横河電機株式会社 Diagnostic apparatus by nuclear magnetic resonance
US4684889A (en) * 1984-04-20 1987-08-04 Yokogawa Hokushin Electric Corporation NMR apparatus compensated for primary field changes
JPS60242845A (en) * 1984-05-18 1985-12-02 横河電機株式会社 Processing of nuclear magnetic resonance data
JPH0311224B2 (en) * 1984-05-18 1991-02-15 Yokokawa Denki Kk

Similar Documents

Publication Publication Date Title
US4672320A (en) Imaging apparatus and method using nuclear magnetic resonance
JPH0370965B2 (en)
US20160054415A1 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP2007517571A (en) Magnetic resonance imaging method and apparatus using real-time magnetic field mapping
JPH0747023B2 (en) Inspection device using nuclear magnetic resonance
JPH03292934A (en) Inspection using nuclear magnetic resonance
JPS5855741A (en) Inspecting device using nuclear magnetic resonance
JP3921369B2 (en) Inspection apparatus using nuclear magnetic resonance and method for adjusting gradient magnetic field waveform
JPS6148752A (en) Inspecting device using nuclear magnetic resonance
JPH03224538A (en) Mri device provided with process for correcting primary magnetostatic field ununiformity and executing measurement
JPS6267433A (en) Nmr imaging apparatus
JPH0785737B2 (en) Inspection device using nuclear magnetic resonance
JPS6250650A (en) Inspection method using nuclear magnetic resonance
JPS58140628A (en) Inspecting device using nuclear magnetic resonance
JPH11290289A (en) Examination instrument using nuclear magnetic resonance
JPS60146139A (en) Examination apparatus using nuclear magnetic resonance
JPS61272643A (en) Nuclear magnetic resonance imaging system
JP2602226B2 (en) Nuclear magnetic resonance imaging equipment
JPS61198043A (en) Static magnetic field variation detecting method for mr-ct device
JP2000023938A (en) Mr imaging instrument
JPS63230156A (en) Examination method using nuclear magnetic resonance
JPS6219744A (en) Nuclear magnetism resonance imaging system
JP3173097B2 (en) Inspection device using nuclear magnetic resonance
JP2647066B2 (en) Inspection equipment using nuclear magnetic resonance
JPH0453537B2 (en)