JPS61198043A - Static magnetic field variation detecting method for mr-ct device - Google Patents

Static magnetic field variation detecting method for mr-ct device

Info

Publication number
JPS61198043A
JPS61198043A JP60040099A JP4009985A JPS61198043A JP S61198043 A JPS61198043 A JP S61198043A JP 60040099 A JP60040099 A JP 60040099A JP 4009985 A JP4009985 A JP 4009985A JP S61198043 A JPS61198043 A JP S61198043A
Authority
JP
Japan
Prior art keywords
magnetic field
static magnetic
image
static
pulse sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60040099A
Other languages
Japanese (ja)
Inventor
Kiyoshi Imahori
今堀 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP60040099A priority Critical patent/JPS61198043A/en
Publication of JPS61198043A publication Critical patent/JPS61198043A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56563Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of the main magnetic field B0, e.g. temporal variation of the magnitude or spatial inhomogeneity of B0

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To detect the dislocation of a static magnetic field by collecting a data by the first and the second pulse sequence for superposing the inclined magnetic field of the uniaxial direction and an inclined magnetic field of the direction opposite to said direction, onto the static magnetic field, respectively, and deriving its correlation. CONSTITUTION:An MR-CT device for generating an image by utilizing a nuclear magnetic resonance phenomenon of a body to be inspected is constituted so that the body to be inspected is placed in a magnetic field formed by a static magnetic field coil 1 and GZ, GY and GX coils 2-4, and an FID signal and an echo signal which are generated are received by an antenna 5, processed by a computer 28, and displayed as an image. In this case, the data is collected by two pulse sequences for superposing an inclined magnetic field of the uniaxial direction and an inclined magnetic field of the direction opposite to said direction, onto the static magnetic field, respectively, and from its correlation, a variation from a reference value of the static magnetic field is derived, and the static magnetic field coil 1 is controlled. Accordingly, a picture quality can be improved by eliminating a dislocation and a distortion of an image.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、MR−CT型装置静磁界変動検出方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for detecting static magnetic field fluctuations in an MR-CT type device.

従来の技術 MR−CT型装置、強力な静磁界中に置かれた被検体(
人体)の核磁気共鳴(NMR)現象を利用して内部組織
の種々のパラメータに対応してイメージを作り出すもの
である。共鳴周波数は磁界に比例するので、静磁界に対
して傾斜磁界を重畳し、NMR信号の周波数スペクトル
を求めることによって空間分布情報が得られる。イメー
ジング技術の1つとして、たとえばスピンワーブ法が知
られている(特開昭54−158988)。MR−CT
型装置静磁界の強度および均一度はこの空間分布情報の
精度に直接影響を与える。
Conventional technology MR-CT type equipment, the object to be examined placed in a strong static magnetic field (
It uses the nuclear magnetic resonance (NMR) phenomenon of the human body to create images corresponding to various parameters of internal tissues. Since the resonance frequency is proportional to the magnetic field, spatial distribution information can be obtained by superimposing a gradient magnetic field on the static magnetic field and determining the frequency spectrum of the NMR signal. For example, the spinwave method is known as one of the imaging techniques (Japanese Patent Application Laid-open No. 158988-1988). MR-CT
The strength and uniformity of the static magnetic field of the molding device directly affects the accuracy of this spatial distribution information.

発明が解決しようとする問題点 ところで、従来では、MR−CT型装置静磁界の強度お
よび均一度は据付時に調整されているが、静磁界強度は
マグネット温度の影響を受は変動しやすい。静磁界の変
動は画像の歪み、ぼけ等を生じ画質に重大な影響を与え
る。
Problems to be Solved by the Invention Incidentally, conventionally, the strength and uniformity of the static magnetic field of an MR-CT type device are adjusted at the time of installation, but the static magnetic field strength tends to fluctuate due to the influence of magnet temperature. Fluctuations in the static magnetic field cause image distortion, blur, etc., and seriously affect image quality.

この発明は、撮像前などにおいて、随時、簡単に静磁界
の変動を検出する方法を提供することを目的とする。
An object of the present invention is to provide a method for easily detecting fluctuations in a static magnetic field at any time, such as before imaging.

問題点を解決するための手段 この発明のMR−CT装置の静磁界変動検出方法では、
静磁界に1軸方向の傾M磁界を重畳させながらデータ収
集する第1のパルスシーケンスと、静磁界に上記l軸方
向に関して反対方向の傾斜磁界を重畳させながらデータ
収集する第2のパルスシーケンスとが実行され、これら
第1.第2のパルスシーケンスで得たデータの相関関係
より静磁界の基準値からの変動を検出する。
Means for Solving the Problems In the method for detecting static magnetic field fluctuations in an MR-CT apparatus of the present invention,
A first pulse sequence for collecting data while superimposing a gradient M field in a uniaxial direction on a static magnetic field, and a second pulse sequence for collecting data while superimposing a gradient magnetic field in an opposite direction with respect to the l-axis direction on a static magnetic field. are executed, and these first. Fluctuations in the static magnetic field from the reference value are detected from the correlation of data obtained in the second pulse sequence.

作    用 静磁界が基準値からずれていると、第1のパルスシーケ
ンスで得た周波数情報と第2のパルスシーケンスで得た
周波数情報はともに、その静磁界のずれに対応する周波
数だけ同じようにずれることになる。そこで、いずれか
一方の周波数情報を基準値の静磁界に対応する中心周波
数に関して反転し他方と比較するなどの両者の相関をと
れば、直ちに静磁界のずれを知ることができる。
If the acting static magnetic field deviates from the reference value, both the frequency information obtained with the first pulse sequence and the frequency information obtained with the second pulse sequence will be the same by the frequency corresponding to the deviation of the static magnetic field. It will shift. Therefore, by inverting the frequency information of one of them with respect to the center frequency corresponding to the reference value of the static magnetic field and comparing it with the other, the correlation between the two can be established, so that the shift in the static magnetic field can be immediately known.

実施例 第3図はMR−CT装置の概要を示すものである。この
図で静磁界コイル1、Gz(Z方向傾斜磁界)コイル2
、GV(Y方向傾斜磁界)コイル3、Gx(X方向傾斜
磁界)コイル4に電源11〜14よりそれぞれ励磁電流
が供給される。x。
Embodiment FIG. 3 shows an outline of an MR-CT apparatus. In this figure, static magnetic field coil 1, Gz (Z direction gradient magnetic field) coil 2
, GV (Y-direction gradient magnetic field) coil 3, and Gx (X-direction gradient magnetic field) coil 4 are supplied with excitation currents from power sources 11 to 14, respectively. x.

Y、Zの各方向は84図に示す通り1人体の体軸方向を
Zとし、X、Yの各方向はX−Y平面がZ軸に直角な平
面をなす方向とする。被検体である人体はこれら各コイ
ル1〜4によって形成される磁界中に置かれ、人体の周
囲にアンテナコイル5が配置される。
As shown in FIG. 84, the Y and Z directions are defined as Z, which corresponds to the body axis direction of one human body, and the X and Y directions are directions in which the X-Y plane forms a plane perpendicular to the Z axis. A human body, which is a subject, is placed in a magnetic field formed by each of these coils 1 to 4, and an antenna coil 5 is placed around the human body.

制御コンピュータ21は、後述の本発明方法で検出した
静磁界変動にもとづき静磁界電源11を制御するととも
に、スピンワープ法などの所定のパルスシーケンスを実
行するため波形発生回路22を制御する。波形発生回路
22から発生する波形によって傾斜磁界電源12〜14
およびRFF幅器・高周波電源23が所定のシーケンス
に沿って制御される。RF増増幅器嵩高周波電源23ら
発生するRFパルスはスイッチ回路24を経てアンテナ
コイル5に送られ、人体に180°パルスや90°パル
スなどが与えられる。
The control computer 21 controls the static magnetic field power source 11 based on static magnetic field fluctuations detected by the method of the present invention, which will be described later, and also controls the waveform generation circuit 22 to execute a predetermined pulse sequence such as the spin warp method. The gradient magnetic field power supplies 12 to 14 are generated by the waveform generated from the waveform generation circuit 22.
And the RFF amplifier/high frequency power supply 23 is controlled according to a predetermined sequence. The RF pulse generated by the RF amplifier bulky high frequency power supply 23 is sent to the antenna coil 5 via the switch circuit 24, and a 180° pulse, a 90° pulse, etc. are applied to the human body.

人体からのFID (自由銹導減衰)信号やスピンエコ
ー信号はアンテナコイル5で受信され、これらNMR信
号は切り換えられたスイッチ回路24によりRFF幅器
25に送られ、さらに位相弁別検波回路26およびイン
ターフェイス27を経、この過程でA/Dサンプリング
されてディジタルデータにされ、主コンピユータ28に
取り込まれる。主コンピユータ28とイメージプロセッ
サ29によって高速フーリエ変換を主体とするデータ処
理が行なわれて画像が作られ、ディスプレイ装置で表示
される。
FID (free induction damping) signals and spin echo signals from the human body are received by the antenna coil 5, and these NMR signals are sent to the RFF amplifier 25 by the switched switch circuit 24, and further sent to the phase discriminative detection circuit 26 and the interface. 27, and in this process, it is A/D sampled and converted into digital data, which is then taken into the main computer 28. A main computer 28 and an image processor 29 perform data processing mainly using fast Fourier transform to create an image, which is displayed on a display device.

スピンワープ法などの2次元フーリエ変換法(フーリエ
拳ン゛イマトグラフィ)やン゛イマトグラフィ(投影復
元法)により第4図のX−Y平面に関する断層像を得る
場合、第1図のパルスシーケンス(1)のように、90
°パルスの後発生するFID信号をA/Dサンプリング
するときにGx(X方向傾斜磁界)を与えて、X−Y平
面上の対象のX軸への投影データを得る。 Gy、 G
z(Y、Z方向傾斜磁界)については省略しているが、
Gzは選択照射法によりx−Y平面に対応するZ方向の
狭い範囲を励起するためRFパルスとともに与えられ、
GVはスピンワープ法(あるいは2次元フーリエ変換法
)においてY方向の位相エンコーディングを行なうため
に与えられる。
When obtaining a tomographic image on the X-Y plane shown in Fig. 4 using a two-dimensional Fourier transform method (Fourier fist imatography) such as the spin warp method or a projection restoration method, the pulse sequence shown in Fig. 1 is used. As in (1), 90
When performing A/D sampling of the FID signal generated after the ° pulse, Gx (X-direction gradient magnetic field) is applied to obtain projection data on the X-axis of the object on the X-Y plane. Gy, G
Although z (Y, Z direction gradient magnetic field) is omitted,
Gz is given along with an RF pulse to excite a narrow range in the Z direction corresponding to the x-Y plane by selective irradiation method,
GV is given to perform phase encoding in the Y direction in the spin warp method (or two-dimensional Fourier transform method).

静磁界変動を測定するためには、このような第1図のパ
ルスシーケンス(りに加えて第1図のパルスシーケンス
(2)が実行される。このパルスシーケンス(2)はパ
ルスシーケンス(1)とX方向傾斜磁界Gxの向きが正
反対になっているだけで他のパラメータは全く同じであ
る。
In order to measure static magnetic field fluctuations, in addition to the pulse sequence shown in Fig. 1, pulse sequence (2) shown in Fig. 1 is executed. This pulse sequence (2) is the same as the pulse sequence (1). The other parameters are exactly the same except that the direction of the X-direction gradient magnetic field Gx is exactly opposite.

ここで、静磁界とX方向傾斜磁界Gxとの合成の様子を
見ると第2図のAのようになる。静磁界は第4図のよう
にZ方向に向きその強さが予め設定された基準値Haで
あるとする− Xs、X2は設定されている関心領域の
X方向の境界であり。
Here, if we look at the combination of the static magnetic field and the X-direction gradient magnetic field Gx, it will be as shown in A in FIG. Assume that the static magnetic field is oriented in the Z direction and its strength is a preset reference value Ha as shown in FIG. 4 - Xs and X2 are the boundaries of the set region of interest in the X direction.

Xoはその中点である。X方向傾斜磁界Gxの勾配をh
o / (X2  Xl)7!l:すれば、パルスシー
ケンス(1)においてはX方向の各位置での合成磁界強
度は第2図Aの実線のようになる。したがって収集され
たデータをフーリエ変換して周波数情報を得ればそれは
第2図Bの上のようになる。
Xo is the midpoint. The gradient of the X-direction gradient magnetic field Gx is h
o / (X2 Xl)7! l: Then, in pulse sequence (1), the combined magnetic field strength at each position in the X direction becomes as shown by the solid line in FIG. 2A. Therefore, if the collected data is Fourier transformed to obtain frequency information, it will be as shown in the upper part of FIG. 2B.

foはHaによって決まる周波数であり、ft−fo 
=fo−f□はhOによって決まる。パルスシーケンス
(2)でデータを収集すると、そのときの合成磁界強度
は第2図Aの破線のようになるから、周波数情報は第2
図Bの下のようになる。この場合、両パルスシーケンス
で得た周波数情報(第2図Bの上と下)の関係は、パル
スシーケンス(2)の情報(第2図Bの下)を周波数f
Oで左右反転するとパルスシーケンス(1)の情報(第
2図Bの上)と全く同じになるという関係である。
fo is the frequency determined by Ha, ft-fo
=fo−f□ is determined by hO. When data is collected using pulse sequence (2), the combined magnetic field strength at that time is as shown by the broken line in Figure 2A, so the frequency information is
It will look like the bottom of Figure B. In this case, the relationship between the frequency information (top and bottom of Figure 2B) obtained with both pulse sequences is that the information of pulse sequence (2) (bottom of Figure 2B) is
The relationship is such that when the left and right sides are reversed at O, the information becomes exactly the same as the information of pulse sequence (1) (upper part of FIG. 2B).

ところが静磁界が変動してその強度が基準値HoからH
o’にずれたとすると、このような関係は成立しない。
However, the static magnetic field fluctuates and its strength changes from the reference value Ho to H.
If it deviates to o', such a relationship will not hold.

この場合、パルスシーケンス(1)では、合成磁界強度
は第2図Cの実線のように。
In this case, in pulse sequence (1), the combined magnetic field strength is as shown by the solid line in FIG. 2C.

周波数情報は第2図りの上のようになり、パルスシーケ
ンス(2)では1合成磁界強度は第2図Cの破線のよう
に、周波数情報は第2図りの下のようになる。したがっ
て、もはや、第2図りの下のような周波数情報をfOを
中心に左右反転しても、第2図りの上のような周波数情
報とは一致しない。そこで、第2図りの下の情報を反転
したものと上の反転しない情報との相互相関関数を計算
し、その最大値となる周波数の値からfo’を求めれば
、fo’−foからHa’−Ha 、すなわち静磁界の
変動量が分る。
The frequency information is as shown in the upper part of the second diagram, and in pulse sequence (2), one composite magnetic field strength is as shown by the broken line in FIG. 2C, and the frequency information is as shown in the lower part of the second diagram. Therefore, even if the frequency information shown at the bottom of the second diagram is horizontally inverted around fO, it no longer matches the frequency information shown at the top of the second diagram. Therefore, if we calculate the cross-correlation function between the inverted information at the bottom of the second diagram and the non-inverted information at the top, and find fo' from the frequency value that becomes the maximum value, we can calculate Ha' from fo' - fo. -Ha, that is, the amount of variation in the static magnetic field can be found.

したがって、この検出された変動量に応じて静磁界電源
11を制御することにより静磁界を補正することができ
る。
Therefore, the static magnetic field can be corrected by controlling the static magnetic field power supply 11 according to the detected amount of variation.

なお、上記では静磁界の変動を補正するようにしたが、
1回のスキャンで1ラインデータを収集するときに、上
記のようにして検出された静磁界の変動量により、この
各ラインの位置を補正するようにしてもよい。
In addition, in the above, the fluctuation of the static magnetic field was corrected, but
When one line of data is collected in one scan, the position of each line may be corrected based on the amount of variation in the static magnetic field detected as described above.

また、スピンワープ法では、Y方向の傾斜磁界Gyの向
きが第1ラインと第nライン(nはライン(ビュー)数
)、第2ラインと第(n −1)ライン、・・・、でそ
れぞれ正反対になるから、それらを基にスキャン中の静
磁界変動を求めることもできる。
In addition, in the spin warp method, the orientation of the gradient magnetic field Gy in the Y direction is the first line and the nth line (n is the number of lines (views)), the second line and the (n-1)th line, etc. Since they are opposite to each other, it is also possible to determine static magnetic field fluctuations during scanning based on them.

さらに、実際のスキャンの直前、直後に上記のようなパ
ルスシーケンス(1) 、 (2)による方法で静磁界
変動を求め、その変動がある範囲内ならばそのまま画像
を構成し、範囲外ならデータの並び換えを行なって(こ
の場合データ量は半減するカリ画像を作ることもできる
Furthermore, immediately before and after the actual scan, static magnetic field fluctuations are determined using the methods described in pulse sequences (1) and (2), and if the fluctuations are within the range, the image is constructed as is, and if the fluctuations are outside the range, the data is It is also possible to rearrange the images (in this case, the amount of data is halved) to create a Kali image.

発明の効果 この発明によれば、簡単に静磁界の変動を検出すること
ができ、静磁界が基準値からずれたままで撮像を行なっ
た場合の画像のずれや歪みやぼけを防止できる。
Effects of the Invention According to the present invention, fluctuations in the static magnetic field can be easily detected, and image shift, distortion, and blurring can be prevented when imaging is performed while the static magnetic field remains deviated from a reference value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を説明するためのタイムチ
ャート、第2図は合成磁界強度と周波数情報との関係を
説明するためのもので、第2図A、CはX軸での合成磁
界強度分布のグラフ、第2図B、Dは周波数情報の周波
数域での位置を示す図、第3図はMR−CT装置の概要
を示すブロック図、第4図は人体に対する各方向を説明
するための模式図である。 1・・・静磁界コイル 2・・・Z方向傾斜磁界コイル 3・・・Y方向傾斜磁界コイル 4・・・X方向傾斜磁界コイル 5・・・アンテナコイル
Fig. 1 is a time chart for explaining one embodiment of the present invention, Fig. 2 is for explaining the relationship between composite magnetic field strength and frequency information, and Fig. 2 A and C are time charts for explaining an embodiment of the present invention. A graph of the composite magnetic field strength distribution, Figures 2B and D are diagrams showing the position of frequency information in the frequency range, Figure 3 is a block diagram showing an overview of the MR-CT device, and Figure 4 is a diagram showing each direction with respect to the human body. It is a schematic diagram for explanation. 1... Static magnetic field coil 2... Z direction gradient magnetic field coil 3... Y direction gradient magnetic field coil 4... X direction gradient magnetic field coil 5... Antenna coil

Claims (1)

【特許請求の範囲】[Claims] (1)静磁界に1軸方向の傾斜磁界を重畳させながらデ
ータ収集する第1のパルスシーケンスと、静磁界に上記
1軸方向に関して反対方向の傾斜磁界を重畳させながら
データ収集する第2のパルスシーケンスとを有し、これ
ら第1、第2のパルスシーケンスで得たデータの相関関
係より静磁界の基準値からの変動を検出することを特徴
とするMR−CT装置の静磁界変動検出方法。
(1) A first pulse sequence that collects data while superimposing a gradient magnetic field in one axis direction on the static magnetic field, and a second pulse sequence that collects data while superimposing a gradient magnetic field in the opposite direction with respect to the one-axis direction on the static magnetic field. A method for detecting static magnetic field fluctuations in an MR-CT apparatus, comprising: detecting fluctuations in a static magnetic field from a reference value from a correlation between data obtained in the first and second pulse sequences.
JP60040099A 1985-02-28 1985-02-28 Static magnetic field variation detecting method for mr-ct device Pending JPS61198043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60040099A JPS61198043A (en) 1985-02-28 1985-02-28 Static magnetic field variation detecting method for mr-ct device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60040099A JPS61198043A (en) 1985-02-28 1985-02-28 Static magnetic field variation detecting method for mr-ct device

Publications (1)

Publication Number Publication Date
JPS61198043A true JPS61198043A (en) 1986-09-02

Family

ID=12571415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60040099A Pending JPS61198043A (en) 1985-02-28 1985-02-28 Static magnetic field variation detecting method for mr-ct device

Country Status (1)

Country Link
JP (1) JPS61198043A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116216A (en) * 2004-10-25 2006-05-11 Toshiba Corp Magnetic resonance imaging apparatus and image correcting evaluation method
CN105806928A (en) * 2016-03-04 2016-07-27 中国海洋石油总公司 Nuclear magnetic effect analysis method for static magnetic field

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116216A (en) * 2004-10-25 2006-05-11 Toshiba Corp Magnetic resonance imaging apparatus and image correcting evaluation method
JP4625677B2 (en) * 2004-10-25 2011-02-02 株式会社東芝 Magnetic resonance imaging apparatus and image correction evaluation method
CN105806928A (en) * 2016-03-04 2016-07-27 中国海洋石油总公司 Nuclear magnetic effect analysis method for static magnetic field
CN105806928B (en) * 2016-03-04 2019-02-26 中国海洋石油集团有限公司 A kind of magnetostatic field nuclear-magnetism effect analysis method

Similar Documents

Publication Publication Date Title
JP3431203B2 (en) Method of shimming magnetic field in examination space
US4672320A (en) Imaging apparatus and method using nuclear magnetic resonance
US6700376B2 (en) Method and apparatus for correcting static magnetic field using a pair of magnetic fields which are the same or different from each other in intensity and direction
JPWO2004004563A1 (en) Magnetic resonance imaging apparatus and eddy current compensation deriving method
JPH0236260B2 (en)
US5195524A (en) Flow imaging method by means of an MRI apparatus and apparatus for realizing same
EP0204320B1 (en) Magnetic resonance imaging method
US4791369A (en) Method of measuring magnetic field error of an NMR imaging apparatus and of correcting distortion caused by the error
EP0124108B1 (en) Correction circuit for a static magnetic field of an nmr apparatus and nmr apparatus for utilizing the same
JP4138258B2 (en) Magnetic resonance imaging system
US4710715A (en) Method of mapping magnetic field strength and tipping pulse accuracy of an NMR imager
JPH01254156A (en) Body motion correction imaging system
JPH0454448B2 (en)
JPS61198043A (en) Static magnetic field variation detecting method for mr-ct device
JP3018076B2 (en) Inspection equipment using nuclear magnetic resonance
JPH01221153A (en) Mri device
JP2607466B2 (en) Inspection equipment using nuclear magnetic resonance
JP2813980B2 (en) Nuclear magnetic resonance equipment
JPH049414B2 (en)
JPH08215167A (en) Space magnetic field distribution-masuring method and space magnetic field distribution-measuring device
JPH0244219B2 (en)
JPH08191820A (en) Minor axis magnetic resonance imaging apparatus
JPS60149953A (en) Nmr imaging apparatus
JP2602226B2 (en) Nuclear magnetic resonance imaging equipment
JPS6219744A (en) Nuclear magnetism resonance imaging system