JPS5855392A - Manufacture of semiconductor crystal - Google Patents

Manufacture of semiconductor crystal

Info

Publication number
JPS5855392A
JPS5855392A JP15576181A JP15576181A JPS5855392A JP S5855392 A JPS5855392 A JP S5855392A JP 15576181 A JP15576181 A JP 15576181A JP 15576181 A JP15576181 A JP 15576181A JP S5855392 A JPS5855392 A JP S5855392A
Authority
JP
Japan
Prior art keywords
crystal
ampul
inner tube
ampoule
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15576181A
Other languages
Japanese (ja)
Inventor
Kosaku Yamamoto
山本 功作
Hirokazu Fukuda
福田 広和
Yoshito Nishijima
西嶋 由人
Yoshio Kawabata
川端 良雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15576181A priority Critical patent/JPS5855392A/en
Publication of JPS5855392A publication Critical patent/JPS5855392A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain ampuls for well sealing in an easily volatile starting material for use in a Bridgeman method, by filling said material on the bottom of the ampul, overlaying 2 inner tubes on the material, and sealing the ampul by 2 steps. CONSTITUTION:A raw material 12 for manufacture of single crystal, such as a mixture of Rb and Te, is filled in an ampul 11 made of quartz having a tapered end to be sealed, and a first inner tube 12 and a second inner tube 14 each having a flat bottom are overlaid on this material. The ampul 12 is sealed together with the inner tube 14 with a burner 16, while the ampul is evacuated through a cap 15 provided on the opening end of the ampul 11. This is placed in a heating oven 5, the first inner tube 13 is brought into contact with the molten material 12, and the ampul 11 is again sealed together with the tube 13 with the hurner to obtain the ampul 11 sealing in the material 12 without leaving almost any space above the material 12, thus permitting a semiconductor crystals to be manufactured using this ampul.

Description

【発明の詳細な説明】 本発明は半導体結晶の製造方法の改良に関するものであ
り、更に詳細には結晶成長用のアングル中に原材料を密
封するための新しい方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in the manufacturing method of semiconductor crystals, and more particularly to a new method for sealing raw materials in crystal growth angles.

鉛(pb)を含む化合物半導体例えばテIvA/化鉛錫
(Pb1−zsnzTe)の結晶はそのエネルギーギャ
ップが狭く赤外線レーザ素子の材料として用いられてい
る。
Compound semiconductors containing lead (pb), such as TeIvA/lead tin oxide (Pb1-zsnzTe) crystals, have a narrow energy gap and are used as materials for infrared laser elements.

このようなPb1−zSnzTf3の結晶はテルル化鉛
((PI)Te )の結晶を基板としてその上に液相エ
ビタキVヤμ成長方法で形成する方法がとられている。
Such a crystal of Pb1-zSnzTf3 is formed on a crystal of lead telluride ((PI)Te) as a substrate by a liquid phase epitaxial growth method.

そのためPbTeの単結晶を形成してから、該凧結晶を
基板の形に切り出して形成しているが、前記pb’re
の結晶を構成するチルA/(T13)の元素は易蒸発性
でこのような易蒸発性の元素を含む材料を用いて単結晶
を形成する場合、一般にブリッジマン法が用いられてい
る。
Therefore, after forming a single crystal of PbTe, the kite crystal is cut into the shape of a substrate.
The element of chill A/(T13) constituting the crystal is easily evaporated, and when a single crystal is formed using a material containing such an easily evaporated element, the Bridgman method is generally used.

このようなブリッジマン法を用いて前記易蒸発性のTe
を含むpb’reの単結晶を形成する場合、従来の方法
について述べるとまず第1図に示すように先端部が尖っ
て封止された石英製のアンプルl内[PbとTeの結晶
形成用材料2をそれぞれ所定の重量秤量したのち挿入す
る。その後該アンプル内を真空ボンデを用いて排気しな
がらアンプ〃の上端部をバーナ8を用いて封止する。そ
の後第2図に示すようにPt)とTeの結晶形成用材料
を充填したアンプル1を所定の温度分布4を有する加熱
炉5中に挿入して一旦pbとTeの材料を溶融してから
該アンプpを炉内で徐々に矢印Aのように下降させなが
ら尖った先端部より溶融した材料を順次固化せしめてP
bTeの単結晶を得るようにしている。
Using such a Bridgman method, the easily evaporable Te
To form a single crystal of pb're containing The materials 2 are each weighed to a predetermined weight and then inserted. Thereafter, the upper end of the amplifier is sealed using a burner 8 while the inside of the ampoule is evacuated using a vacuum bonder. Thereafter, as shown in FIG. 2, an ampoule 1 filled with materials for forming crystals of Pt) and Te is inserted into a heating furnace 5 having a predetermined temperature distribution 4, and the materials of Pb and Te are once melted. As the amplifier P is gradually lowered in the direction of arrow A in the furnace, the molten material is solidified from the sharp tip of the amplifier P.
An attempt is made to obtain a single crystal of bTe.

しかし上述した従来の方法では、アンプルの上端部をバ
ーナで加熱して封止する際に、充填されているPbとT
eの結晶成長用材料が蒸発して飛散したりする欠点があ
る。
However, in the conventional method described above, when the upper end of the ampoule is heated with a burner and sealed, the filled Pb and T
There is a drawback that the crystal growth material of e. evaporates and scatters.

またアンプルの上端部を封止した後、加熱炉で溶融した
場合、第2図に示すように溶融した材料の液相6の部分
の上の空間部分7に結晶成長用材料のpbとTeが蒸気
となって存在するようKなシ、特にTeの蒸気圧がPb
の蒸気圧の約ioo。
In addition, when the upper end of the ampoule is sealed and then melted in a heating furnace, as shown in FIG. In particular, the vapor pressure of Te is higher than that of Pb, so that it exists as a vapor.
The vapor pressure of about ioo.

倍もあるため、溶融した結晶成長用材料からTeがPb
より余分に蒸発して、溶融し九結晶成長用材料の液相の
組成が所望の組成と異なり、このためこの液相より成長
したPbTeの結晶が所望の組成よりずれるといった欠
点を生じる。
Since Te is twice as large as Pb in the molten crystal growth material,
The composition of the liquid phase of the nine-crystal growth material that is evaporated and melted is different from the desired composition, resulting in a drawback that the PbTe crystal grown from this liquid phase deviates from the desired composition.

本発明は上述した欠点を除去するよう原材料の密封工程
を改良した半導体結晶の製造方法の拠供を目的とするも
のである。
The object of the present invention is to provide a method for manufacturing semiconductor crystals in which the raw material sealing process is improved so as to eliminate the above-mentioned drawbacks.

かかる目的を達成するための半導体結晶の製造方法は、
先端部を封止したアンプN中に半導体結晶の形成用材料
を充填したのち、該アンプμ内を排気しながら該アンプ
ルの池端部を封止し、更に該アンプ〜を加熱炉内に挿入
して結晶の形成用材料を加熱溶融後、ア1:ンプ〜の先
端部より順次溶融した材料を固化せしめて単結晶とする
半導体結晶の製造方法において、前記アンプル中に結晶
の形成用材料を充填してから、その土に第1の内管を設
置し、更に該第1の内管上に第2の内管を積み重ねてか
らアンプ〜の内部を排気しながら、第2の内管と共にア
ンプルを溶融して封止後、該アンプルを加熱炉中に挿入
して前記結晶の形成材料を加熱溶融するとともに第1の
内管を該結晶の溶融した液面まで落下させたのち、第1
の内管と共に再びアンプルを溶融封止して単結晶形成用
の密封アンプルを得るよう圧したことを特徴とするもの
である。
A method for manufacturing semiconductor crystals to achieve this purpose is as follows:
After filling the amplifier N with its tip sealed with a material for forming a semiconductor crystal, the end of the ampoule is sealed while evacuating the inside of the amplifier μ, and the amplifier ~ is further inserted into a heating furnace. In the method for manufacturing a semiconductor crystal, the material for forming the crystal is heated and melted in the ampoule, and then the molten material is solidified to form a single crystal from the tip of the ampoule. Then, install the first inner tube in the soil, stack the second inner tube on top of the first inner tube, and then remove the ampoule together with the second inner tube while evacuating the inside of the amplifier. After melting and sealing the ampoule, the ampoule is inserted into a heating furnace to heat and melt the material forming the crystal, and the first inner tube is dropped to the liquid level where the crystal is molten.
The ampoule is melt-sealed again together with the inner tube of the ampoule, and pressure is applied to obtain a sealed ampoule for forming a single crystal.

以下図面を用いて本発明の一実施例につき詳細に説明す
る。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第8図より第7図までは本発明の半導体結晶の製造方法
の一実施例を工程順に説明した図である。
FIG. 8 to FIG. 7 are diagrams explaining one embodiment of the method for manufacturing a semiconductor crystal of the present invention in the order of steps.

まず第8図に示す先端が尖ってかつ封止されている石英
製のアンプ/L/11中に単結晶形成材料12としての
pbとTeをそれぞれ所定重量秤量してから充填する。
First, predetermined weights of PB and Te as the single crystal forming material 12 are weighed and then filled into a sealed quartz amplifier/L/11 shown in FIG. 8, which has a sharp tip and is sealed.

その後該アンプpの内壁に内接して平底の第1の内管1
8を単結晶形成材料に平底の部分が接触するようKして
設置する。その後該第1の内管18上に平底でかつアン
プ/L’LLの内壁に接するような第2の内管14を積
み重ねて設置し九のちアンプル上に設置したキャップ1
6を介して該アンプμ内を真空ポンプ(図示せず)にて
排気しながら第2の内管14の周囲の部−分をガヌバー
ナ16にて加熱して第2の内管と共にアンプyttを溶
融して封止する。このようにすれば加熱時においてアン
プル中の材料の成分が蒸発するのが防げる。
Thereafter, a flat-bottomed first inner tube 1 is inscribed in the inner wall of the amplifier p.
8 is placed so that the flat bottom part is in contact with the single crystal forming material. Thereafter, the second inner tube 14 having a flat bottom and in contact with the inner wall of the amplifier/L'LL was stacked and installed on the first inner tube 18, and the cap 1 was then placed on the ampoule.
While evacuating the inside of the amplifier μ with a vacuum pump (not shown) via the tube 6, the surrounding area of the second inner tube 14 is heated with the Ganubhana 16, and the amplifier ytt is heated together with the second inner tube. Melt and seal. This prevents the components of the material in the ampoule from evaporating during heating.

このようにして形成された状態を第4図に示す。The state formed in this manner is shown in FIG.

その後第2図および第6図に示すように該アンプルを第
2図の4のような温度勾配をもつ加熱炉6中に挿入し、
一旦結晶材料12を溶融してからアンプ〃を炉中へ徐々
に降下させて第6図に示すようにアンプμの先端部よシ
flI!l!Aシた結晶材料12を固化させる。このよ
うにすれば結晶材料が溶融している時点で第1の内管1
Bが溶融した液面まで落下し、溶融後固化した結晶材料
の表面に書着するようKなシ結晶材料の上部の空間部分
が殆んど無くなる。また、第6図の状態で保持すれば、
上部空間に蒸気の形で存在する結晶材料も下方の固体表
面に同化析出してくる。その後第6図に示すようにガス
バーナ16を用いて第1の内管lBと共にアンプルを加
熱溶融して封止して、第7図に示すような密封構体を得
る。
Thereafter, as shown in FIGS. 2 and 6, the ampoule is inserted into a heating furnace 6 having a temperature gradient as indicated by 4 in FIG.
Once the crystal material 12 is melted, the amplifier 〃 is gradually lowered into the furnace, and the tip of the amplifier μ is removed as shown in FIG. l! The solidified crystal material 12 is solidified. In this way, when the crystal material is melted, the first inner tube 1
B falls to the molten liquid level and is written on the surface of the crystal material which has solidified after melting, so that the space above the K crystal material almost disappears. Also, if it is held in the state shown in Figure 6,
The crystalline material present in vapor form in the upper space is also assimilated and precipitated on the solid surface below. Thereafter, as shown in FIG. 6, the ampoule and the first inner tube IB are heated and melted using a gas burner 16 to seal them, thereby obtaining a sealed structure as shown in FIG. 7.

このようにすれば固化し九結晶材料に近接して第1の内
管IBがアンプIvl IK設置され結晶材料の上部空
間が殆んど存在しない状部で結晶材料がアンプμ内に装
填されることになる。
In this way, the first inner tube IB is installed in the amplifier Ivl IK close to the crystal material, and the crystal material is loaded into the amplifier μ in a state where there is almost no space above the crystal material. It turns out.

その後該アンプルを第2図、第6図に示した加熱炉中に
再び挿入して一旦結晶材料を溶融した後、該アンプルを
炉内に徐々に降下させてアンプルの先端部上り結晶を固
化せしめて単結晶を得るようにする。
Thereafter, the ampoule was reinserted into the heating furnace shown in FIGS. 2 and 6 to once melt the crystal material, and then the ampoule was gradually lowered into the furnace to solidify the crystals rising at the tip of the ampoule. to obtain a single crystal.

このようにすればアンプル内で結晶材料の上部空間が殆
んど無いので、結晶材料の加熱時に易蒸発成分が空間部
に蒸発してそのため溶融した結晶材料の組成が変動する
のが除去され、またバーナを用いてアンプpを溶融して
封止する際にもアンプμ内で結晶材料の上の上部空間が
殆んど無いので結晶材料が加熱されて易蒸発成分が逃散
するのが除去され組成の安定した高信頼度の半導体結晶
が得られる利点を生じる。
In this way, since there is almost no space above the crystalline material in the ampoule, it is possible to eliminate easily evaporable components from evaporating into the space when the crystalline material is heated, thereby eliminating fluctuations in the composition of the molten crystalline material. Furthermore, when the amplifier p is melted and sealed using a burner, there is almost no space above the crystal material inside the amplifier μ, so the crystal material is heated and easily evaporated components are prevented from escaping. The advantage is that a highly reliable semiconductor crystal with a stable composition can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の単結晶の製造方法を示す図、第2図は単
結晶の製造装置の概略図、第8図より第7図までは本発
明の単結晶の製造方法の一実施例の工程を示す図である
。 図において、L、11はアンプル、2.12は結晶形成
材料、8,16はガスバーナ、4は温度分布、6は加熱
炉、6は液相、7は上部空間、18は第1の内管、!4
は第2の内管、16はキャップを示す。 第1図 第2図 第3図 第4図 第5図
FIG. 1 is a diagram showing a conventional single crystal manufacturing method, FIG. 2 is a schematic diagram of a single crystal manufacturing apparatus, and FIGS. 8 to 7 show an embodiment of the single crystal manufacturing method of the present invention. It is a figure showing a process. In the figure, L, 11 is an ampoule, 2.12 is a crystal forming material, 8, 16 are gas burners, 4 is a temperature distribution, 6 is a heating furnace, 6 is a liquid phase, 7 is an upper space, 18 is a first inner tube ,! 4
indicates the second inner tube, and 16 indicates the cap. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 先端部を封止したアングル中に半導体結晶の形成用材料
を充填したのち、該アンプル内を排気しながら該アンプ
ルの曲端部を封止し、更に該アンプルを加熱炉内に挿入
して結晶の形成用材料を加熱溶融後、アンプμの先端部
より順次溶融した材料を固化せしめて単結晶とする半導
体結晶の製造方法において、前記アングル中に結晶の形
成用材料を充填してから、その上に第1の内管を設置し
、更に該第1の内管上に第2の内管を積み重ねてからア
ングルの内部を排気しながら、第2の内管と共にアンプ
ルを溶融して封止後、該アンプルを加熱炉中に挿入して
前記結晶の形成材料を加熱溶融するとともに第1の内管
を該結晶の溶融した液面まで落下させたのち、第1の内
管と共に再びアンプμを溶融封止して単結晶形成用の密
封アンプルを得るようにしたことを特徴とする半導体結
晶の製造方法。
After filling an angle with a sealed tip with a material for forming a semiconductor crystal, the curved end of the ampoule is sealed while evacuating the inside of the ampoule, and the ampoule is then inserted into a heating furnace to form a crystal. In the method for manufacturing a semiconductor crystal in which the material for forming the crystal is heated and melted and then the melted material is sequentially solidified from the tip of the amplifier μ to form a single crystal, the material for forming the crystal is filled into the angle, and then the material for forming the crystal is filled into the angle. Place a first inner tube on top, stack a second inner tube on top of the first inner tube, and then melt and seal the ampoule together with the second inner tube while evacuating the inside of the angle. Thereafter, the ampoule is inserted into a heating furnace to heat and melt the material forming the crystal, and the first inner tube is dropped to the surface of the molten crystal. A method for manufacturing a semiconductor crystal, characterized in that a sealed ampoule for forming a single crystal is obtained by melt-sealing.
JP15576181A 1981-09-29 1981-09-29 Manufacture of semiconductor crystal Pending JPS5855392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15576181A JPS5855392A (en) 1981-09-29 1981-09-29 Manufacture of semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15576181A JPS5855392A (en) 1981-09-29 1981-09-29 Manufacture of semiconductor crystal

Publications (1)

Publication Number Publication Date
JPS5855392A true JPS5855392A (en) 1983-04-01

Family

ID=15612826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15576181A Pending JPS5855392A (en) 1981-09-29 1981-09-29 Manufacture of semiconductor crystal

Country Status (1)

Country Link
JP (1) JPS5855392A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287479A (en) * 1985-10-14 1987-04-21 Hitachi Cable Ltd Vacuum seal-cutting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287479A (en) * 1985-10-14 1987-04-21 Hitachi Cable Ltd Vacuum seal-cutting
JPH0526757B2 (en) * 1985-10-14 1993-04-19 Hitachi Cable

Similar Documents

Publication Publication Date Title
JP6913430B2 (en) Quartz tube and equipment for crystal growth by VB / VGF method
JPS5855392A (en) Manufacture of semiconductor crystal
US4185081A (en) Procedure for the synthesis of stoichiometric proportioned indium phosphide
JPS5983915A (en) Method of growing poly crystal and single crystal of volatile compound
US20020192929A1 (en) Method for growing a solid type II-VI semiconductor material
JP2734205B2 (en) Single crystal growth method by zone melting method
Bruder et al. Seeded vapour growth of cadmium telluride using focused radiation heating
JP2001114588A (en) Crystal growth device and method for producing single crystal
JPS58151391A (en) Ampoule for producing semiconductor crystal
JPS58135195A (en) Ampule for growing semiconductor crystal
JPH0473285B2 (en)
JPS5913697A (en) Liquid phase epitaxial growth device
JP3125681B2 (en) Method for growing ZnSe single crystal
JPS58213700A (en) Heat-treating method for compound semiconductor crystal
JPS6011294A (en) Method for growing single crystal
JPS63274691A (en) Method and device for growing single crystal
JPS58157140A (en) Manufacture of semiconductor crystal
JPS61281095A (en) Ampule for crystal growth
Holland Combined distillation and normal freezing to purify elements of groups II and VI
JP2536201B2 (en) Method for manufacturing compound semiconductor crystal
JPS60204700A (en) Preparation of single crystal
JPS63144527A (en) Formation of source material
JPH0735318B2 (en) <II>-<VI> Group compound single crystal growth boat
JPH03257034A (en) Liquid phase epitaxial growth system
JPS63310787A (en) Crystal growing method of semiconductor compound