JPS5855030A - Separation of isotope - Google Patents

Separation of isotope

Info

Publication number
JPS5855030A
JPS5855030A JP56145662A JP14566281A JPS5855030A JP S5855030 A JPS5855030 A JP S5855030A JP 56145662 A JP56145662 A JP 56145662A JP 14566281 A JP14566281 A JP 14566281A JP S5855030 A JPS5855030 A JP S5855030A
Authority
JP
Japan
Prior art keywords
isotope
absorbent
ion
solution
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56145662A
Other languages
Japanese (ja)
Other versions
JPH0253087B2 (en
Inventor
ヨセフ・カビカル
カルエル・スタンベルグ
ヨセフ・カツツア−
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ceske Vysoke Uceni Tech
CHIESUKE BUISOOKE UCHIEENI TEKUNIIKE BUI PURAATSUE
Original Assignee
Ceske Vysoke Uceni Tech
CHIESUKE BUISOOKE UCHIEENI TEKUNIIKE BUI PURAATSUE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU74699/81A priority Critical patent/AU547079B2/en
Priority to GB08126409A priority patent/GB2104797B/en
Priority to IT23812/81A priority patent/IT1138580B/en
Priority to DE19813135540 priority patent/DE3135540A1/en
Priority to FR8117190A priority patent/FR2512354B1/en
Application filed by Ceske Vysoke Uceni Tech, CHIESUKE BUISOOKE UCHIEENI TEKUNIIKE BUI PURAATSUE filed Critical Ceske Vysoke Uceni Tech
Priority to JP56145662A priority patent/JPS5855030A/en
Priority to CA000386288A priority patent/CA1185074A/en
Priority to DD81234551A priority patent/DD210517A3/en
Publication of JPS5855030A publication Critical patent/JPS5855030A/en
Publication of JPH0253087B2 publication Critical patent/JPH0253087B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/28Separation by chemical exchange
    • B01D59/30Separation by chemical exchange by ion exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/22Separation by extracting
    • B01D59/26Separation by extracting by sorption, i.e. absorption, adsorption, persorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/28Separation by chemical exchange
    • B01D59/32Separation by chemical exchange by exchange between fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/36Separation by biological methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明の対象は、二相系、例えば固相一液相、液相一液
相、固相−気相の形で同位体を分離する方法であって、
同位体の各相への分配が、相の組成即ちその構造的及び
物質的性質の選択によってコントロール可能で6カ、さ
らに、同位体及び配位子の濃度の選択によって、温度、
光照射、流体 −力学的・ヤラメータの選択によって、
そして相を接触゛させる時間の長さの選択によってコン
トロール可能であるとの知見に基づ(方法で6′る0例
えば、ウラン、リチウム・、及、び音素O同位体を、水
性溶液及び非水性溶液から(必要であればその気体混合
物から)、本発明による方法によ゛りて、固体吸収剤又
は液体抽出剤と接触させて、高い効率で分離することが
可能である。原理−的に化学的分離法の問題である。 
 −・ ・ 従乗公開及び使用されて偽る同位体分離の化学的j方法
は−(2例えばLaakorlm B、 N、 and
 @aw、 。
DETAILED DESCRIPTION OF THE INVENTION The subject of the invention is a method for separating isotopes in the form of a two-phase system, for example solid phase-liquid phase, liquid phase-liquid phase, solid phase-gas phase, comprising:
The distribution of isotopes into each phase can be controlled by selection of the phase composition, that is, its structural and material properties,6 and by selection of isotope and ligand concentrations, temperature,
By selecting light irradiation, fluid-mechanical/yarameter,
and based on the knowledge that the phase can be controlled by selection of the length of time that the phases are allowed to contact (for example, uranium, lithium, and It is possible to separate with high efficiency from aqueous solutions (and if necessary from gaseous mixtures thereof) by the method according to the invention in contact with solid absorbents or liquid extractants.Principle This is a problem with chemical separation methods.
-・・Chemical methods of isotope separation that are used to expose and use falsification (2 e.g. Laakorlm B, N, and
@aw, .

び−peehl Kklmll  e baIIId 
XLIV、A5.761  =7′al11975年”
、  Careaam  d@ J、and l0IF
・ sR@port AAgC/LIB/III!l−
273、1970年を参照)、同位体交換反応に基づい
でオ、)、その平衡定数(即ち、通例は要素分離係数)
は関係する同位体の゛負量に依存して約1.0001〜
1.01の範囲で変わり、その下限の値は重い元素(例
えばウラン)の同位体に関係する。最近都では、ウラン
の同位体を固体吸収剤及び液体抽出剤で分離することに
多くO注意゛が払われている。すなゎち、西独国の特許
及び特許出願(例えば、0082235603゜197
31: 008284951)S 、 1973年: 
DO82623891,1977年)、仏画特許(例え
ば、第1@00437号、11NiJI年)、及びルー
マニア国の公表雑誌(例えば、P@mtaム、 *Ca
lusarwA、、  Is*t@p@nprax1m
  13  *  AS  e214−216  +1
977年;  五bld  11  、  A12. 
422−426゜1975年)を引用する仁とが可能で
ある。
Bi-peehl Kklmll e baIIId
XLIV, A5.761 = 7'al11975"
, Caream d@J, and l0IF
・sR@port AAgC/LIB/III! l-
273, 1970), based on isotope exchange reactions), whose equilibrium constant (i.e., usually the element separation factor)
is about 1.0001 to
It varies in the range 1.01, the lower value being related to the isotope of the heavy element (eg uranium). Recently, much attention has been paid to separating uranium isotopes using solid absorbents and liquid extractants. In other words, West German patents and patent applications (e.g. 0082235603゜197
31: 008284951) S, 1973:
DO82623891, 1977), French painting patents (e.g. No. 1@00437, 11NiJI), and Romanian publications (e.g. P@mtam, *Ca
lusarwA,, Is*t@p@nprax1m
13 * AS e214-216 +1
977; 5bld 11, A12.
422-426゜1975).

式: %式% 〔式中、ローマ数字(1,1)祉相を表わす、〕の形の
同位体交60過程のための東件を確保する努力が、すべ
てO公開された方法に共通の特徴である。
Efforts to secure a condition for isotope exchange processes of the form % Formula % (in which the Roman numerals (1,1) represent the phase) are common to all O published methods. It is a characteristic.

それにもかかわら′ず、イオン交換法及びクロマトグラ
フ法を使用した場合には約1.00009よル高い分離
係数を再現可能に這成することは成功しなかったという
事実のために、ウラン(Vl)同位体の分−に向かう初
期の仕事は成功しなかりた。これが、ウランがいろいろ
な原子価状態〔即ちUGV)〜U (Vl)及びUO[
)〜tr (N) )で存在する系に注意が払われるよ
うになり九理由である。これらの系では電子交換反応が
同時に起こプ、その反応では常にウランのよ如高い原子
価状態により軽い同位体が濃縮する。さらに、錯化反応
及びウランの原子価状態の一つに選択的な、適当な種類
の吸収剤(必要であれば抽出剤)を用iることによる同
位体効果に関連して、実質的に高められた分離の効率が
実際に達成された・公表されたデータ(例えば、M、 
8@ko e T、 Mlyake、 K、 Inad
ae Nuel。
Nevertheless, uranium (Vl ) Early work toward isotopic fractions was not successful. This explains why uranium exists in various valence states [i.e. UGV) ~ U (Vl) and UO [
) ~ tr (N) ) This is the reason why attention has been paid to the system that exists. In these systems, electron exchange reactions occur simultaneously, and the reactions always enrich lighter isotopes due to the higher valence states of uranium. Furthermore, in connection with complexation reactions and isotopic effects by using a suitable type of absorbent (and if necessary extractant) selective for one of the valence states of uranium, substantially Increased separation efficiency has been achieved in practice/published data (e.g. M,
8@koe T, Mlyake, K, Inad
ae Nuel.

TI@hnolog750 、178−186.198
0年;R@port INFICC/DICP/WQ 
2/31 、On theTh@@kml@al   
、  K@onom監@al  and  8af*B
ardInformations  of  th@ 
D1ff*r拳nt  InrlehomntTke*
km1quts 、 1979年3月1s日)から、要
素分離係数の値をこの処理の経済的利用の下限といわれ
ている約1.001に移行させるのに成功したことは明
らかである0例えば、ウラン同位体の分離の操作基準に
用いられる、気体拡散処理の要素分離係数は約1.00
27である。従って、得られた結果は既に経済的にそし
て技術的に利益のあるものであるといえる。にもかかわ
らず操業的利用は明白であるわけではなく、それは主と
して要素分離係数の限られた値のためであシ、その限ら
れた値が多数の段、多量の濃縮ウランのホールドア。
TI@hnolog750, 178-186.198
0 year; R@port INFICC/DICP/WQ
2/31, On theTh@@kml@al
, K@onom supervisor @al and 8af*B
ardInformations of th@
D1ff*rFist InrlehomntTke*
km1quts, March 1s, 1979), it is clear that we succeeded in shifting the value of the element separation factor to about 1.001, which is said to be the lower limit of the economic use of this process. The element separation coefficient of gas diffusion processing, which is used as an operational standard for body separation, is approximately 1.00.
It is 27. Therefore, the obtained results can already be said to be economically and technically advantageous. Nevertheless, operational utilization is not obvious, mainly due to the limited value of the element separation factor, which requires a large number of stages and a large amount of enriched uranium.

!、及び処理の安定状態に到達するのに必要な比較的に
長い時間を持つ装置を製作することを余儀なくさせるこ
とと関連している。ウランの酸化還元処理を多数回繰り
返す必要性は、関係している酸化還元剤(必要であれば
同一にその反応のエネルギー)の実質的外要件と関連し
ている。
! , and necessitating the construction of equipment with a relatively long time required to reach a steady state of the process. The necessity of repeating the redox treatment of uranium many times is associated with the substantial extraneous requirements of the redox agent involved (and, if necessary, the energy of the reaction as well).

これらの欠陥は、本発@による同位体の新しい分離方法
であって、二相系における濃度の同位体効果を利用する
コントロールせる分配の手法に基づく方法によって除去
される0本発明による方法は、第−相が10”Mから飽
和濃度までの濃度の同位体及び配位子の水性溶液若しく
は非水性溶液であるか、又は同位体成分の気体混合物若
しくは同位体と不活性ガスとの気体混合物であり、かつ
分離される同位体が出発混合物(又は必要であれば溶液
)中に1.10〜1 、10 0モル比であシ;第二相
が、スチレンジビニルペンぜンイオン交換剤のような固
体吸収剛着しくは低級雁責の菌糸体に基づく生物吸収剤
及びセルロースに基づく吸収剤であるか、又は(必要で
あればテア0ン、シリカゲル及びセルロースのようtk
4ヤリャで保持した)トリノチルホス78−ト及びトリ
オクチルアミンのような抽出剤であ夛;前記の二相系が
収着及び(又は)脱着KtIPける(必要であれば抽出
及び(又は)再抽出における)非線形の等温平衡(eq
ulllbrlum 1sotk@rm)を示すことが
有利でToシ;そして、炭酸イオン、硫酸イオン、チタ
ン酸イオン、塩化物イオン及びエチレンジアミン四酢酸
イオンのよう表記位子ての同位体の錯化によって、又は
力kdldPシル基及び水酸基並びに亜燐酸、窒素及び
硫黄に基づく基のようなケレート化官能基を持つ吸収剤
及び抽出剤を用いることKよって、及び(又は)、暗所
にで若しくは25刈02〜10’amの波長を持つ光の
下で、さらには、両相の接触時間を1O−2〜10’秒
に、温度を102〜10’i[に、攪拌の回転数を1O
−2〜10’回転毎秒に、カラム装置における流速を1
04〜10−’m/sに、そして吸収剤の粒子径を10
−’〜l O−’mK選択して、そしてさらには、同位
体成分の脱着若しくは再抽出のために、炭酸ナトリウム
、硝酸アンモニウム、塩化ナトリウム、硫酸ナトリウム
、硫酸、硝酸及び塩酸のような化合物、さらにチタン酸
イオン、エチレンジアセン四酢駿イオン及びイソブチレ
ートイオンのような錯体形成配位子を含んでいる化合物
の溶液を、単独で若しくは10””Mから飽和溶液まで
のII!鎖度の混合物として用いて、前記二相を接触せ
しめると、−相から他の一相への同位体の移動速度が等
しくはなく、そして同位体交換の抑制(r@tar4a
tiom)が起きる;ことで成シ立りている。
These defects are removed by a new method for separating isotopes according to the present invention, which is based on a method of controlled partitioning that takes advantage of isotope effects on concentration in a two-phase system. The second phase is an aqueous or non-aqueous solution of the isotope and ligand at a concentration from 10"M to saturation, or a gaseous mixture of the isotopic components or a gaseous mixture of the isotope and an inert gas. and the isotopes to be separated are in the starting mixture (or solution if necessary) in a molar ratio of 1.10 to 1.100; the second phase is Solid absorbents or mycelium-based bioabsorbents and cellulose-based absorbents (if necessary, such as tarane, silica gel and cellulose)
The above two-phase system can be used for sorption and/or desorption of KtIP (extraction and/or re-extraction if necessary). ) nonlinear isothermal equilibrium (eq
and by complexation of isotopes such as carbonate, sulfate, titanate, chloride and ethylenediaminetetraacetate; By using absorbents and extractants with chelating functional groups such as syl and hydroxyl groups and groups based on phosphorous, nitrogen and sulfur, and/or in the dark or at 25 minutes. Furthermore, under light with a wavelength of am, the contact time of both phases was 1O-2 to 10' seconds, the temperature was 102 to 10'i[, and the rotational speed of stirring was 10
-2 to 10' revolutions per second, reduce the flow rate in the column apparatus to 1
04 to 10-' m/s, and the particle size of the absorbent to 10
-'~l O-'mK and also for desorption or re-extraction of isotopic components, compounds such as sodium carbonate, ammonium nitrate, sodium chloride, sodium sulfate, sulfuric acid, nitric acid and hydrochloric acid; Solutions of compounds containing complexing ligands such as titanate ions, ethylenediacenetetraacetic acid ions, and isobutyrate ions, either alone or from 10''M to saturated solutions II! When used as a mixture of chain degrees and the two phases are brought into contact, the rates of isotope transfer from the -phase to the other phase are unequal and the suppression of isotope exchange (r@tar4a
tiom) occurs; that is what makes it happen.

本発明による方法においては、2s5.Q/D及びi!
38UCVoのような同位体成分と硝酸イオン、硫酸イ
オン及び炭酸イオンのような配位子との水性溶液でTo
−)て、その総濃度が104〜lCMでToシ、かつ出
発混合物における溶解同位体2s″U及び2311Uは
1 : !500〜1:tooの峰ル比であるものを、
例えば使用することが可能である。スチレン−ジビニル
ベンぜン共重合体に基づくイオン交換剤又はP。
In the method according to the invention, 2s5. Q/D and i!
To in an aqueous solution of isotopic components such as 38UCVo and ligands such as nitrate, sulfate and carbonate ions.
-), the total concentration of which is 10~1CM, and the dissolved isotopes 2s''U and 2311U in the starting mixture have a peak ratio of 1:!500~1:too,
For example, it is possible to use Ion exchange agent or P based on styrene-divinylbenzene copolymer.

Ckrysegemma* 14()低級1IVIIL
の菌糸体に基づく吸収剤を固体吸収剤として使用する仁
とが可能である。暗所KTh%Aで又は250〜650
m−の波長の光の下で操作し、さらに攪拌の回転速度を
0.800〜12.00回転毎秒とし、ま九カラムでの
流速を10 〜10  m/mとし、1G−’〜1G−
’mの粒子径の固体吸収剤を用い、温度を273〜37
3にとし、そして相の接触時間の長さを10”〜1G’
秒に選択することができる。10 〜1.!iM O濃
度を有する、塩化ナトリウム十炭酸ナトリウム、若しく
は炭酸す) IJウム、又は塩酸の溶液を脱着に使用す
ることが可能である。
Ckrysegemma* 14 () Lower 1IVIL
It is possible to use absorbents based on mycelium as solid absorbents. In the dark KTh%A or 250-650
The operation was carried out under light with a wavelength of 1 G-' to 1 G-', and the stirring rotational speed was 0.800 to 12.00 revolutions per second, and the flow rate in the column was 10 to 10 m/m.
Using a solid absorbent with a particle size of 'm, the temperature was 273-37
3, and the length of phase contact time is 10"~1G'
can be selected in seconds. 10 ~1. ! Solutions of sodium chloride, sodium decacarbonate, or hydrochloric acid, with a concentration of iMO, can be used for desorption.

本発明による方法は同位体交換反応において従来達成さ
れたものよ1夷質的に高い分離係数で特徴付けられる。
The process according to the invention is characterized by a substantially higher separation factor than previously achieved in isotope exchange reactions.

要素分離係数の最大値はウラン同位体の収着(所望なら
ば同様に脱着)の過程において1.02〜1.10間で
変わる。ウラン(Vl)溶液並びに収着f!fi(次は
必要であれば脱看過&)の高い選択性を持つが速すぎな
い反応速度を持つ固体吸収剤を用いると特に有利である
0本発明に依る同位体分離方法の経済的及び技術的重畳
性は相当なものである。実質的に高められた要素分離係
数値を示す、即ち、ウラン同位体の分−におiで、1−
1.5のオーI−で分離線段数の減少、はぼ同じオーダ
ーでの装置内濃縮ウランのホールドア、デの抑制及び安
定状態の達成に必要な時間の短縮化を示す、6価のウラ
ンの溶液で操作することが可能であル、その原子価を変
える必要はなくt喪従来操業的に採用され九濃縮段階で
のように濃縮前にウランなUiF4  に変える必要は
ない。もう一つの重要な点は本方法で発生する個渇せる
ウランは投入U材料として使用することが可能で!bシ
、実際にこの廃棄物にシける  U同位体の含有量は半
分に減少する。
The maximum value of the element separation factor varies between 1.02 and 1.10 in the process of sorption (and also desorption, if desired) of uranium isotopes. Uranium (Vl) solution as well as sorption f! Economic and technical aspects of the isotope separation process according to the invention, where it is particularly advantageous to use a solid absorbent with a high selectivity of fi (then de-passing & if necessary), but with a reaction rate that is not too fast. The overlapping characteristics are considerable. It shows a substantially increased elemental separation factor value, i.e., 1- for the uranium isotope fraction i.
Hexavalent uranium shows a reduction in the number of separation lines at an OI of 1.5, a hold door for enriched uranium in the device on roughly the same order of magnitude, a reduction in the time required to achieve stable conditions, and It is possible to operate with a solution of uranium, without changing its valency, and there is no need to convert it to uranium, UiF4, before enrichment, as is the case in conventional operationally employed nine enrichment steps. Another important point is that the depleted uranium generated by this method can be used as input U material! b) In fact, the content of U isotopes in this waste is reduced by half.

同位体分離の(即ち収着の例における)新しい方法はさ
らに下記のように説明することが可能である: (a)  同位体の水性溶液、例えば255 U (y
l)+2!l翳静であって一つの同位体の濃度が他の一
つの濃度よシも少なくとも0.5〜1のオーダー高い溶
液に、固体吸収剤又は液体抽出剤を接触せしめると、両
者の同位体の収着が同時に起ヒシ、にもかかわらず、各
同位体の収着速度はこの過程の推進力、即ち平衡からの
相対的なズレ及び物質移動係数の値に比例する。同位体
成分収着の仁の一般的に異なる速度は、同位体交換の御
旬で東件付けられるが(下記(g)参照)、濃度の同位
体効果と呼ばれる効果の性質である。収着速度は例えば
関係式:%式% 〔式中、 Rは、一つの相から他の相への同位体移動のそれぞれの
収着(必要であれば脱着)の速度を表わし、 K、、に、は、物質移動係数であシ、そしてΔ1.Δ。
The new method of isotope separation (i.e. in the example of sorption) can be further explained as follows: (a) An aqueous solution of the isotope, e.g. 255 U (y
l)+2! When a solid absorbent or liquid extractant is brought into contact with a static solution in which the concentration of one isotope is at least 0.5 to 1 order of magnitude higher than that of the other, the concentration of both isotopes is Even though sorption occurs simultaneously, the rate of sorption of each isotope is proportional to the driving forces of this process, ie, the relative deviation from equilibrium and the value of the mass transfer coefficient. The generally different rates of sorption of isotopic components, often associated with isotopic exchange (see (g) below), are the nature of an effect called the isotopic effect on concentration. The sorption rate can be expressed, for example, by the relation: % [where R represents the rate of sorption (and desorption, if necessary) of each isotope transfer from one phase to the other, K, . is the mass transfer coefficient, and Δ1. Δ.

は、過程の推進力、相@q′及び′″Cにおけるそれぞ
れの1IIIIL勾配を表わす。〕で表現することが可
能である。
represent the driving forces of the process, the respective 1IIIL gradients in the phases @q' and '''C.].

(b)  一つの相(ここでは水性の相)から他の相へ
の同位体移動の推進力は、一方では両相における同位体
の初期濃度の関数であシ、他方では同位体濃度の変化(
この変化は収着の過程で起きる)の領域における等温平
衡(・qn11凰brムwsm 1soth@rrn)
の形に依存する。
(b) The driving force for isotope transfer from one phase (here the aqueous phase) to the other is a function of the initial concentration of the isotope in both phases, on the one hand, and the change in isotope concentration, on the other hand. (
This change occurs during the process of sorption) isothermal equilibrium in the region of
Depends on the shape of.

(e)  溶液における同位体濃度及び収着処理の限定
の仕方に関連して、撮度変化の領域において、可能なら
単一の同位体く対応する、等温平衡(equlllbr
lmm 1sO4h@rm)の部分の可能な限シ異表る
傾斜を示すような収着剤を選択することが有利である。
(e) Corresponding isothermal equilibration, preferably for a single isotope, in the region of change in intensity, related to the isotope concentration in solution and the manner in which the sorption process is limited.
It is advantageous to select a sorbent which exhibits as much as possible a gradient in the fraction of lmm 1sO4h@rm).

低い濃度の同位体に対応する等温平衡収着(equll
lbrlmm morptlon 1soth@rm)
の部分が約102〜10sの傾斜を有し、そして高い濃
度の同位体に対応する部分が約10の傾斜を有すること
が有利であるようである。
Isothermal equilibrium sorption (equll) corresponding to low concentrations of isotopes
lbrlmm morptlon 1soth@rm)
It appears to be advantageous for the part of 10 to have a slope of about 102-10s and the part corresponding to the high concentration of isotope to have a slope of about 10.

(d)  吸収剤の選択は吸収剤単独の特性には限界が
あるので、溶液の組成を溶剤の特性に調節することが同
様に可能である。この意味で、同位体比を初期の値に保
持して、例えば希釈することによる、さらには錯化剤を
含む別の成分を添加して溶液組成を調整することによる
、同位体の絶対濃度の変化を考慮に入れる。
(d) The choice of absorbent is limited by the properties of the absorbent alone, so it is likewise possible to adjust the composition of the solution to the properties of the solvent. In this sense, the isotope ratios are kept at their initial values and the absolute concentration of the isotopes can be adjusted, for example by dilution or even by adjusting the solution composition by adding further components, including complexing agents. Take changes into account.

(・) 物質移動係数は、一方で社溶液組成(同位体濃
度)及び吸収剤(必要であれば抽出剤)の種類の関数で
Toり、他方では温度及び流体力学的・臂うメータ、攪
拌速度、流速、吸収剤の粒子寸法など、の関数であり;
濃度依存が最重要なものの一つであるために、これらの
物質移動係数は一般的に各同位体について異なる値を持
つけれども、その絶対値社主として吸収剤の種類で決ま
る0発明者ら轄物質移動係数が10 −10  毎秒に
あるような徴収剤で操作することが有利であることを見
−出した。
(・) The mass transfer coefficient is a function of the solution composition (isotope concentration) and the type of absorbent (extractant, if necessary) on the one hand, and on the other hand it is a function of the temperature and hydrodynamic meter, stirring, etc. It is a function of velocity, flow rate, absorbent particle size, etc.;
Since concentration dependence is one of the most important, these mass transfer coefficients generally have different values for each isotope, but their absolute value depends primarily on the type of absorbent. We have found it advantageous to operate with a collection agent whose transfer coefficient is 10 -10 per second.

(f)  例えば、所調生物吸歇剤(チ、コ国発明者証
第155833号及びチェ;国発明者証−・・号及び第
・・・1号(pvts67−75及びPV 588−7
6)参jl)、さらにスチレン−ジビニルベンゼン共重
合体に基づくイオン交換剤、単独又はテフロン、セルロ
ース、シリカゲルなどのキャリヤで支持された抽出剤を
、上述の平衡及び速度特性の吸収剤として使用すること
が可能である。
(f) For example, prescribed bioresorptive agents (Children's Inventor Certificate No. 155833 and Czech Republic Inventor Certificate No. 155833 and Chez;
6) In addition, ion exchangers based on styrene-divinylbenzene copolymers, alone or supported on carriers such as Teflon, cellulose, silica gel, etc., are used as absorbents with the above-mentioned equilibrium and kinetic properties. Is possible.

−同位体の収着(必要であれば抽出)と同時に、実際的
に直ぐに同位体交換が起ζp始め、この同位体交換がい
ろいろな収着速度から結果する単一同位体の収着量の相
違を抑制する。同位体交換の過程(その速度はよ)高い
濃度の同位体の収着速度とはぼ等しい)の否定的効果は
、抑制しようと欲するならば、一方では収着剤の種類及
び溶液組成の選択及び遍轟な選択によって、他方では低
い温度及び限られた光照射の下で操作することによりて
、補償することができる。同位体交換の妨害は一方の@
における同位体成分の錯化によっても同様に達成するこ
とが可能で6〕、それは溶液に適蟲な配位子を添加する
ことによ為か、又は錯形成官能基を持つ収着剤(必要で
あれば抽出剤)を用iることによるかのいずれかを意味
する。
- Simultaneously with the sorption (and if necessary extraction) of the isotope, an isotope exchange begins to take place practically immediately, and this isotope exchange results in a change in the amount of sorption of a single isotope resulting from different sorption rates. Suppress differences. The negative effects of the isotope exchange process (the rate of which is approximately equal to the sorption rate of isotopes at high concentrations) can be suppressed on the one hand by the selection of the sorbent type and the solution composition. Compensation can be made on the one hand by extensive selection and on the other hand by operating at low temperatures and limited light irradiation. Interfering with isotope exchange is one @
This can also be achieved by complexing the isotopic components in the solution [6], either by adding suitable ligands to the solution or by adding sorbents with complexing functional groups (as required). If it is, it means either by using an extractant) or by using an extractant.

(h)  同位体の収着速度について例として述べた上
述のことと同じ仁とは、脱着(所望であれば再抽出)の
速度及び同位体交換に伴う速度についても原理的に真実
である。
(h) The same statements made above by way of example regarding isotope sorption rates are also in principle true regarding the rates of desorption (and re-extraction if desired) and the rates associated with isotope exchange.

以下余白 」IL 水和酸化チタンOM)で活性化し、膨潤しそしてに基づ
く吸収剤>21を、光を轟てないようにして293KO
al1mにて攪拌速[S回転毎秒で混合しながら、−3
,5に11111L九〇、OIMO硝酸ウラニル溶i[
60mと接触させた・初期溶111における”’U :
 ””U llI位体比ハ0.725 X 10”” 
”t”1りた(天然のウランから調製した化合物を堆扱
った)・収着反応の過程において液相O試料を取シ出し
、その試料においてウランの全濃度を試剤arssna
mo lを用いる分光分析法で測定し、  U:2!1
8U同位体比をムld@rmaston −Ml Ir
omass社mod*13Qの質量分析器で測定した。
The following margins are activated with hydrated titanium oxide (IL), swelled and based on an absorbent >21, which makes the light impermeable to 293KO.
While mixing at al1m at stirring speed [S rotations per second, -3
, 5 to 11111L90, OIMO uranyl nitrate solution i [
"'U" in initial melt 111 in contact with 60m:
""UllI topic ratio 0.725 x 10""
In the process of sorption reaction, a liquid phase O sample was taken out, and the total concentration of uranium in the sample was measured using the reagent arssna.
Measured by spectroscopic analysis using mol U: 2!1
8U isotope ratio Muld@rmaston -Ml Ir
Measurement was performed using an Omass mod*13Q mass spectrometer.

得られた結果に基づいて分離係数の値を時間の関数とし
て計算し九二                以下余
白RM@)   OQjX10’  1.2XlO’ 
 2JXlO’総ウラン員置輌 O刀1    G、0
G6  0.0053 01)046分離係数   1
.000 0.997  0.976  0.9933
.6X10’7.2X10’ 14.4X10’000
42 0.0037. 0.00351.024  1
.630  1.005分離係数は吸収剤における!1
5U:238U同位体比o、q−一おけゐ同じ同、!体
比に、対する比率として定義される。、 弊 、         、 昼光の下で実験を行な一?たことを除いて例1.に鼾け
ると同じ処理を実施し、液相における総つラン一度及び
同位体比の時間弯些を測定した・得られた結−に基づい
て分離係声、O時間4依存を計算し時間(秒)    
0   0JXIG31.2X10”  2.4X10
”分離係数   1,000 0.980  0.98
0  0.9973.6XIG” 7.2X10314
,4X10”0.0042  DJ)039  0.0
0371.01@   1.02G   1.025例
3 を形の商標Amb@rllt@I B −120なる強
酸性陽イオン交換器を用いたことを除いて、例1におけ
ると同じ処理を実施し、液相における全ウラン渋皮及び
同位体比の時間変化を測定した・得られた結果から分離
係数の時間依存を計算した二以下余白 時間(秒)   0    03X10s   O,6
X10’分離係数  1.000  0.997   
 1.0251.8X10’ 3.6XIO’   l
0JXIG30.0003  QOOO20,0021
,00?    1.00G     1.001jエ ウラン4X10  M/Iの容量までウランで飽和させ
、膨潤及び遠心処理し丸、商標QstmorbMY 6
15なる吸収剤5#を、光照射の下、温度293Kにて
、攪拌速度5回転毎秒で攪拌しながら5、IM −NI
Ct+ 0− Z M −Na2COsの溶液2011
1と接触せしめた*!1llk尚初における吸収剤Oつ
2ン崗位体比は0.725XICであった。収着操作の
過程で液相試料を取シ出し、そこにおける総ウラン濃度
及び2“U : 2Isag同位体比を測定した。
Based on the obtained results, calculate the value of the separation factor as a function of time and calculate the value of the separation factor as a function of time.
2JXlO' Total uranium personnel storage vehicle O sword 1 G, 0
G6 0.0053 01)046 Separation factor 1
.. 000 0.997 0.976 0.9933
.. 6X10'7.2X10'14.4X10'000
42 0.0037. 0.00351.024 1
.. 630 1.005 separation factor in absorbent! 1
5U:238U isotope ratio o, q-1, same! Defined as the ratio to the body ratio. Why don't you do the experiment under daylight? Example 1 except that We carried out the same process as before and measured the time curve of the total run and isotope ratio in the liquid phase.Based on the obtained results, we calculated the separation stress and O time 4 dependence and calculated the time ( seconds)
0 0JXIG31.2X10" 2.4X10
”Separation coefficient 1,000 0.980 0.98
0 0.9973.6XIG" 7.2X10314
,4X10”0.0042 DJ)039 0.0
0371.01@1.02G 1.025Example 3 The same treatment as in Example 1 was carried out, except that a strongly acidic cation exchanger with the trademark Amb@rllt@IB-120 was used, and the liquid We measured the temporal changes in total uranium astringency and isotope ratio in the phase. From the obtained results, we calculated the time dependence of the separation coefficient.Less than 2 Margin time (seconds) 0 03X10s O,6
X10' separation coefficient 1.000 0.997
1.0251.8X10'3.6XIO' l
0JXIG30.0003 QOOO20,0021
,00? 1.00G 1.001j Euran 4X10 saturated with uranium to a volume of M/I, swollen and centrifuged round, trademark Qstmorb MY 6
5, IM-NI of absorbent #15 was stirred at a temperature of 293 K under light irradiation at a stirring speed of 5 revolutions per second.
Ct+ 0- Z M -Solution of Na2COs 2011
I made contact with 1*! The absorbent O and 2 phase ratio at the beginning of 11k was 0.725XIC. During the course of the sorption operation, a liquid phase sample was taken out, and the total uranium concentration and 2"U:2Isag isotope ratio therein were measured.

分離係数の時間依存をその結果から計算した:時間@)
    O0JXIO30,9XlOs分離係$   
 1.000  0.984    1.0331.8
X1G”  3.6X10’   l0JXIO’4.
3X1G”” 4jX1ff”   !L2X10″″
51.04!5   1.0!!6    1.031
例5 光照射なしで実験を行な−)えことを除いて例4におけ
ると同じ処理を実施し、液相における総ウランlll1
l!及び同位体比の時間変化を測定した0分離係数の時
間依存を得られ九結果から計算した。
The time dependence of the separation factor was calculated from the results: Time @)
O0JXIO30,9XlOs Separation Section $
1.000 0.984 1.0331.8
X1G"3.6X10'l0JXIO'4.
3X1G""4jX1ff"!L2X10""
51.04!5 1.0! ! 6 1.031
Example 5 The same treatment as in Example 4 was carried out with the exception that the experiment was carried out without light irradiation and the total uranium in the liquid phase
l! The time dependence of the zero separation coefficient was obtained by measuring the time change of the isotope ratio and calculated from the results.

時間(秒)    0    0JXIO’   0.
9XlO’分離係数   1.000  1.0511
   1.0384.4X10””  4.1lX10
”−’■ H十形で、膨潤しそして遠心処理した、商標0stso
rb MV615なる吸収剤(P、@hrysog@m
um@41101の菌糸体に基づく吸収剤)21を、昼
光照射の下、温度293Kにて、回転速度5回転毎秒で
攪拌しながら、0.OIMO硝酸ウラニル溶液5011
1と接触せしめた。出発溶液における U:2jSIU
同位体比は0.7!5XIOで6りた。3時間後2つの
相を分離し、第2段階で溶液を新鮮な前記と同じ吸収剤
2Iと再び3時間にわたシ接触せしめた。全体として4
回Oこうした収着段階を遂行し九・ars@naso 
I試剤を用いる分光分析法で液相における総ウラン濃度
を各段の後に測定し、そしてムld@rmastem 
−Mlar@mass社mod@130の質量分析器を
用いて吸収剤相における255U: 21S11U 同
位体比を最終段O1lに測定した・その結果から一つの
段の要素分離係数を計算した・結果は1.020であっ
た。
Time (seconds) 0 0JXIO' 0.
9XlO' separation coefficient 1.000 1.0511
1.0384.4X10"" 4.1lX10
"-'■ H-decade, swollen and centrifuged, trademark 0stso
rb MV615 absorbent (P, @hrysog@m
um@41101 mycelium-based absorbent) 21 was heated under daylight irradiation at a temperature of 293 K with stirring at a rotational speed of 5 revolutions per second. OIMO uranyl nitrate solution 5011
I was brought into contact with 1. U in starting solution: 2jSIU
The isotope ratio was 0.7!5XIO, which was 6. After 3 hours the two phases were separated and in a second step the solution was brought into contact again with fresh, same absorbent 2I for 3 hours. Overall 4
To carry out these sorption steps, ars@naso
The total uranium concentration in the liquid phase was determined after each step by spectrometry using the I reagent and
-The 255U:21S11U isotope ratio in the absorbent phase was measured in the final stage O1l using a Mlar@mass mod@130 mass spectrometer.From the results, the element separation coefficient of one stage was calculated.The result was 1. It was .020.

分離係数は吸収剤における2315g : 238U同
位体比の液相一本明細書の例では相の接触の3時間後の
−における同じ同位体比に対する比率として定義される
The separation factor is defined as the ratio of the 2315g:238U isotope ratio in the absorbent to the same isotope ratio in the liquid phase - in our example, after 3 hours of contact of the phases.

j工 酸化チタン(IV)で活性化した商標0atssrd 
MY615 なる吸収剤を用いたことを除いて例1にお
けると同じ処理を行なって、4Ilの収着段階を遂行、
した、1段の要素分離係数を結果から計算した。
Trademark 0atssrd activated with titanium(IV) oxide
The same procedure as in Example 1 was carried out to carry out the sorption step of 4Il, except that an absorbent named MY615 was used.
The one-stage element separation coefficient was calculated from the results.

1.025が得られた。1.025 was obtained.

例8 0stsord MY s/sなる吸収剤5#を、昼光
照射の下、温度293KKて、回転速度5回転毎秒で攪
拌しながら、1M −NaCL + O,Z M −H
a zcOsの溶液20dと接触せしめえ、実験当初の
吸収剤K オff ルli’ij位体1t ”’U :
 25Jg ti o、 7°25 X Iff”でめ
りた・1時間後2つの相を分゛離し、吸収剤に上記の組
成物の新しい溶液を添加した。全部で4回のこうした脱
着段階を遂行した。各段階の後で溶液の総ウラン濃度を
測定し、吸収剤相における同位体比235g : 25
BUは最終段の後で測定した。
Example 8 Absorbent 5# of 0stsord MY s/s was mixed with 1M -NaCL + O, Z M -H under daylight irradiation at a temperature of 293KK and with stirring at a rotational speed of 5 revolutions per second.
Contact with a solution 20d of a zcOs, and place the absorbent K at the beginning of the experiment at the position 1t ”'U:
After one hour the two phases were separated and a fresh solution of the above composition was added to the absorbent. A total of four such desorption steps were carried out. The total uranium concentration of the solution was measured after each step and the isotope ratio in the absorbent phase was 235g:25.
BU was measured after the final stage.

一段の要素分離係数を結果から計算した。A single-stage element separation factor was calculated from the results.

1、150が鐸られた。1,150 were fired.

例9 0.1M−巌酸ナトリウムflIiIlを脱着に使用し
たことを除いて例3におけると同じ処理を行なって、4
回の脱着段階を遂行した。一段の要素分離係数を結果か
ら計算した。
Example 9 The same procedure as in Example 3 was carried out except that 0.1M sodium sulfate flIiIl was used for desorption, and 4
The desorption stage was carried out twice. A single-stage element separation factor was calculated from the results.

1.120が得られた拳 以下余か 勉ユ」 0、1 M−塩al溶液奪脱着用に使用したことを除い
て例3におけると同じ処理を行表い、4回の脱着段−を
遂行した。7段の1M素分離係数を結果から計算した。
The same procedure as in Example 3 was carried out, except that a 0.1 M salt solution was used for desorption, and four desorption stages were carried out. carried out. The 7-stage 1M elementary separation coefficient was calculated from the results.

  。  .

・、980が得られた。., 980 were obtained.

例11 塩基の形の9.1Mのトリーn−オクテルアずン溶液2
0.0mを、温g2f13Kにて夾験室用振盪機で攪拌
しながら、0.01 M−TJo、804+01M−N
a21!04.の溶液100.0mと接触せ1めた。出
発#i[(DM位体jt ”’U ! ””Ua O,
725X 10−” ”t”あ−1)九(天然のウラン
から調製した化合物を取扱った)。抽出の過程で水性相
の試料を取シ出し、その相において、試剤arssnm
s+o Iを用いる分光分析法でウランの一總amを測
定し、そ、してムlltrmastem−Ml@r*a
iaas社11m・dnL3Gなる質量分析器を用いて
同位体比を一定した。その結果から特開の関係としての
分離係数の値を計算した。
Example 11 9.1M tri-n-octerazun solution in base form 2
While stirring 0.0m with a laboratory shaker at a temperature of g2f13K, 0.01M-TJo, 804+01M-N
a21!04. was brought into contact with 100.0 m of a solution of Departure #i [(DM position jt "'U!""Ua O,
725
A batch of uranium is measured by spectroscopy using s+o I, and then Mlltrmastem-Ml@r*a
The isotope ratio was fixed using an IAAS 11m dnL3G mass spectrometer. From the results, we calculated the value of the separation coefficient as the relationship of the patent application.

−以下余白 時間(秒)    OIs    3060   12
0    2400 0.0063  α0071   0.0071コント
ロールせる分配法の原mは、さらに一般的に、複数相関
で濃度が異なるか又は移動速度が異なるかいずれかの成
分0分−に、すなわち収着の(必要ならば脱着O)速度
が一つの成分について異なる場合の成分分−に′8用す
る仁とが可能である。同位体の混合物のほか、貴土類、
さらKaZrw Hf 、 22’Ra w Ilmそ
の他同様なものなど類似の4I性を有する物質の分−が
これに関係する。
-Margin time (seconds) OIs 3060 12
0 2400 0.0063 α0071 0.0071 The principle of the partitioning method that controls, more generally, is for components that either have different concentrations or different migration speeds in multiple correlations, i.e., the sorption ( If necessary, it is possible to use desorption for a component if the desorption rate is different for one component. In addition to mixtures of isotopes, rare earths,
Also relevant are substances with similar 4I properties such as KaZrwHf, 22'RawIlm, and the like.

半導体、原子核反応及び分析的M*の純物質の調製が、
同様に、本方法によ05て1有利に実機可能で6゛° 
                  鳳下余自手続補
正書C自発) 昭和57年 1月tz日 特許庁長官 島 1)春樹 殿 1、事件の表示 昭和56年 特許順  第145662号2、発明の名
称 同位体の分離方法 3、補正をする者 事件との関係  特許出願人 名 称 チェスケ ビソケ ウ竜エ テ9=ケク プラ
( 4、代理人 5、補正の対象 明細書の「発明の詳細な説明」の欄 6、補正の内容 (1)  明細書第14頁第S及び6行目の記載「濃度
の変化(この変化は収着の過程で起きる)の領域C:お
ける等温平衡(*q11111bri11m 1aot
h@rm)Jをr濃度が変化するにの変化は収着の過程
で起きる)領域における平衡曲線C収着剤中の一位体濃
度を溶液中の同位体濃度1:Hシてグラフに表わした曲
線。以下同じ)1:補正する。
Preparation of pure substances for semiconductors, nuclear reactions and analytical M*
Similarly, with this method, it is possible to use a practical machine with an advantage of 0.6゛°.
1) Haruki Tono 1, Indication of the case 1982 Patent Order No. 145662 2, Name of the invention Method for separating isotopes 3, Relationship with the case of the person making the amendment Patent applicant name: Cheske Bisoke Uryu Te9 = Keku Pra (4. Agent 5, "Detailed description of the invention" column 6 of the specification subject to the amendment, Contents of the amendment ( 1) Statement on page 14, line S and 6 of the specification: “Isothermal equilibrium in region C of concentration change (this change occurs during the sorption process) (*q11111bri11m 1aot
Graph the monotope concentration in the sorbent with the isotope concentration 1:H in the solution. The curve shown. Same hereafter) 1: Correct.

(2)  明細書第14頁$110及び11100記載
「等温平衡(@quilibrlum  l5oth@
rm 1の部分」を「平衡曲線jに補正する。
(2) “Isothermal equilibrium (@quilibrlum l5oth@
Correct the part of rm 1 to the equilibrium curve j.

(31明細書第14頁第13及び14行目の記載「低い
濃度の同位体に対応する勢温平衡収着(@quillb
rium 1orbtion 1soth@rm)の」
をr収着゛の平衡曲線における低い鰻変の同位体に対応
する」に補正する。
(Statement on page 14, lines 13 and 14 of the 31 Specification: “Sothermal equilibrium sorption corresponding to low concentration isotopes (@quillb
rium 1orbtion 1soth@rm)
is corrected to ``corresponding to the isotope of low variation in the equilibrium curve of r sorption''.

(4)明細書lll5買第17及び18行目の記載「・
・・・・・号及び第・・・・・・号」をr第18447
1号及び111189198号1:補正する。
(4) Statement on lines 17 and 18 of the statement llll5 purchase “・
...No. and No...." as r No. 18447
No. 1 and No. 111189198 No. 1: Correction.

Claims (1)

【特許請求の範囲】 !、二相系における員変の同位体効果を利用する、コン
ト■−ルされ九分配の手法による同位体の分離方法にお
いて、 第−相は、10  Mないし飽和の線層を有する配位子
及び同位体の水性若しくは非水性溶液であるか、又は同
位体成分の気体混金物若しくは同位体及び不活性気体の
気体混合物であり、かつ分離される同位体は出発溶液若
しくは混合物において1:i0’〜1:10−’のモル
比で6シ;第二相は、スチルペ21ンイオン交換剤のよ
うな固体吸収剤若しくは低級@@0*糸体に基づく生物
吸収剤及びセAロースに基づく吸収剤であるか、又は単
体若しくはテフロン、シリカダル及びセルロースのよう
なキャリヤに支持された、トリノチルホスフェート及び
トリオクチルアミンのような抽出剤であり: 前記二相系が吸着及び(ifL<は)脱着、又紘抽出及
び(又は)再抽出にクーでl1lIIII形0等温平衡
(sqwllll*rI11allastk@rsm)
を示すことが有刹酢蒙イオンOような配位子による錯化
によりて、又は、力h#キシル基、水酸基差びに亜燐酸
、窯素及び硫黄に基づ(aOような中レート化富能基を
持つ徴収剤及び抽出剤を用−るととにようて、そして(
又#i)暗所若しく ti !S X 1G”〜1G’
msの波長の光の下で、さらに、両相の接触時間の長@
f;10−” 〜1G’秒K、I1度tlG” 〜10
”ICIC。 攪拌速度を10 〜is a転毎秒に、カラム装置にお
ける流速をlO1〜10−’−に、そして吸収剤の粒子
径を101〜1G−”saK選択し、さらに、同位体成
分の脱着着しくは再抽出の良込に、炭酸ナトリウム、硫
酸ナトリウム、硝酸及び塩酸のような化合物、さらには
チタン酸イオン、エチレンジアンン西酢酸イオンのよう
な錯体形成配位子であって単独若しく轄1GM′&いし
飽和濃度の総濃、fの混合物であるもののような化合物
の溶液を用いて、操作することによって、前記両相を接
触さ誓・先後、同位体成分の一相から他相への移動速度
Fi尋しくなく、そして同位体交換の抑制が起きる; ことを含んでなそことを特徴とする方法。 2、前記水性溶液において同位体成分として”5U(V
Dlj’ ”’[J(Vl) ’に用イ、配位子、!−
1,’(硝酸イすン、ii酸、イオ、ン及び(又は)炭
酸イオンを用い、かつその総鎖度が10″″ffi〜1
0− ’ Mである、特許請求の範囲第1項記載の方法
。 3、#記の分離される同位体が出発混合物において、1
 : 500〜1 : 100O%A比”t”6!、−
角の菌糸−に基づく吸収剤、又はスチレンージビ7−六
ベンぜン共重合体に1炉(強酸性のイオン交換剤を用い
る特許請求の範8第1JJ記載の方法。 5、#1記の両相接触時間の長さを10’〜1G’秒に
選択する、特許請求の範l!I第ill記載の方法。 6、前記操作t−250〜650m−の波長の光の下で
実施する、特許請求の範8第1項記載の方法。 7゜前記操作を、O,SO〜12.0回転毎秒の攪拌速
度、及び1O−4〜10  rmの粒子径の吸収剤を用
いて10−4〜10−’m/秒のカラム装置内流速で実
施する、特許請求の範囲第1項記載の方法@8、前記操
作を273〜373にの温度で実施する、特許請求の範
囲第1項記載の方法。 9、 前記脱着X線再抽出に、1o−1〜15Mの濃度
を有する、塩化ナトリウム十炭酸ナトリウムの溶液又は
塩酸溶液を用いる、特許請求の範囲第1項記載の方法。
[Claims]! In a controlled isotope separation method using isotopic effects of member changes in a two-phase system, the first phase consists of a ligand having a linear layer of 10 M or more and an aqueous or non-aqueous solution of the isotope, or a gaseous mixture of the isotopic components or a gaseous mixture of the isotope and an inert gas, and the isotopes to be separated are in the starting solution or mixture from 1:i0' to 6 in a molar ratio of 1:10-'; the second phase is a solid absorbent such as a stilpene ion exchanger or a low grade thread-based bioabsorbent and a cellulose-based absorbent. or extractants such as trinotyl phosphate and trioctylamine, either alone or supported on carriers such as Teflon, silica dal and cellulose; l1lIII form 0 isothermal equilibration (sqwllll*rI11alllastk@rsm) in Ku for Hiro extraction and/or re-extraction
can be shown by complexation with ligands such as acetic acid ion O, or by complexation with ligands such as acetate ion O, or by complexation with complexes based on xyl groups, hydroxyl groups, and phosphorous, silica, and sulfur (such as aO). By using a collecting agent and an extracting agent having a functional group, and (
Also #i) Dark place or ti! S X 1G"~1G'
Under light with a wavelength of ms, the long contact time of both phases @
f; 10-" ~ 1G' seconds K, I1 degrees tlG" ~ 10
"ICIC. The stirring speed was selected to be 10 to 10 rotations per second, the flow rate in the column device was 1 to 10", and the particle size of the absorbent was selected to be 10 to 1 G. For addition or re-extraction, compounds such as sodium carbonate, sodium sulfate, nitric acid and hydrochloric acid, as well as complex-forming ligands such as titanate ion, ethylenediane-acetate ion, alone or By operating a solution of a compound such as one that is a mixture of a total concentration of 1GM'& saturated concentration, f, the two phases are brought into contact. A method characterized in that the rate of migration to Fi is unusual and suppression of isotope exchange occurs; 2. In the aqueous solution, “5U (V
Dlj'``'[J(Vl)', Ligand, !-
1,' (using ion nitrate, ii acid, ion, and/or carbonate ion, and the total chain degree is 10''ffi ~ 1
0-'M. 3. The isotope marked # to be separated is present in the starting mixture as 1
: 500~1 : 1000% A ratio "t" 6! ,−
The method according to claim 8, No. 1 JJ, using an absorbent based on horn mycelia, or a styrene-zibi-7-hexabenzene copolymer (a strongly acidic ion exchange agent). 6. The method according to claim 1, wherein the phase contact time is selected to be between 10' and 1 G' seconds. 6. The operation is carried out under light with a wavelength of between 250 and 650 m. 7. The method according to claim 8, wherein the operation is carried out at a stirring rate of 10-4 with an agitation speed of 0,SO to 12.0 revolutions per second and an absorbent with a particle size of 10-4 to 10 rm. Process according to claim 1, carried out at a flow rate in the column apparatus of ~10-' m/sec, wherein said operation is carried out at a temperature of 273 to 373 °C. 9. The method according to claim 1, wherein a sodium chloride sodium decacarbonate solution or a hydrochloric acid solution having a concentration of 10-1 to 15M is used for the desorption X-ray re-extraction.
JP56145662A 1981-08-28 1981-09-17 Separation of isotope Granted JPS5855030A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU74699/81A AU547079B2 (en) 1981-08-28 1981-08-28 Isotope separation process
GB08126409A GB2104797B (en) 1981-08-28 1981-08-29 A process for the separation of isotopes
IT23812/81A IT1138580B (en) 1981-08-28 1981-09-04 PROCESS FOR THE SEPARATION OF ISOTOPES WITH THE METHOD OF REGULATED DISTRIBUTION USING IN PARTICULAR THE ISOTOPIC CONCENTRATION EFFECT
DE19813135540 DE3135540A1 (en) 1981-08-28 1981-09-08 Isotope separation by the controlled distribution method utilising in particular the isotope concentration effect
FR8117190A FR2512354B1 (en) 1981-08-28 1981-09-10 PROCESS FOR THE SEPARATION OF ISOTOPES BY A CONTROLLED DISTRIBUTION, ESPECIALLY USING AN ISOTOPIC CONCENTRATION EFFECT
JP56145662A JPS5855030A (en) 1981-08-28 1981-09-17 Separation of isotope
CA000386288A CA1185074A (en) 1981-08-28 1981-09-21 Separation of isotopes by controlled distribution
DD81234551A DD210517A3 (en) 1981-08-28 1981-11-02 PROCESS FOR ISOTOPE SEPARATION THROUGH CONTROLLABLE SEPARATION METHODS USING A SPECIFIC BALANCE CONCENTRATION EFFECT

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
AU74699/81A AU547079B2 (en) 1981-08-28 1981-08-28 Isotope separation process
GB08126409A GB2104797B (en) 1981-08-28 1981-08-29 A process for the separation of isotopes
IT23812/81A IT1138580B (en) 1981-08-28 1981-09-04 PROCESS FOR THE SEPARATION OF ISOTOPES WITH THE METHOD OF REGULATED DISTRIBUTION USING IN PARTICULAR THE ISOTOPIC CONCENTRATION EFFECT
DE19813135540 DE3135540A1 (en) 1981-08-28 1981-09-08 Isotope separation by the controlled distribution method utilising in particular the isotope concentration effect
FR8117190A FR2512354B1 (en) 1981-08-28 1981-09-10 PROCESS FOR THE SEPARATION OF ISOTOPES BY A CONTROLLED DISTRIBUTION, ESPECIALLY USING AN ISOTOPIC CONCENTRATION EFFECT
JP56145662A JPS5855030A (en) 1981-08-28 1981-09-17 Separation of isotope
CA000386288A CA1185074A (en) 1981-08-28 1981-09-21 Separation of isotopes by controlled distribution
DD81234551A DD210517A3 (en) 1981-08-28 1981-11-02 PROCESS FOR ISOTOPE SEPARATION THROUGH CONTROLLABLE SEPARATION METHODS USING A SPECIFIC BALANCE CONCENTRATION EFFECT

Publications (2)

Publication Number Publication Date
JPS5855030A true JPS5855030A (en) 1983-04-01
JPH0253087B2 JPH0253087B2 (en) 1990-11-15

Family

ID=27570105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56145662A Granted JPS5855030A (en) 1981-08-28 1981-09-17 Separation of isotope

Country Status (8)

Country Link
JP (1) JPS5855030A (en)
AU (1) AU547079B2 (en)
CA (1) CA1185074A (en)
DD (1) DD210517A3 (en)
DE (1) DE3135540A1 (en)
FR (1) FR2512354B1 (en)
GB (1) GB2104797B (en)
IT (1) IT1138580B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105540705A (en) * 2016-01-19 2016-05-04 东华大学 Method and device for preparing solid adsorbent via thermocatalysis of high-concentration nonylphenol polyoxyethylene ether wastewater

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584183A (en) * 1983-12-21 1986-04-22 Westinghouse Electric Corp. Process for separating zirconium isotopes
US4767513A (en) * 1987-03-10 1988-08-30 Westinghouse Electric Corp. Zirconium isotope separation process
US5130001A (en) * 1990-12-03 1992-07-14 Westinghouse Electric Corp. Uranium isotope separation by continuous anion exchange chromatography
CN105561790B (en) * 2015-12-23 2017-07-18 中国科学院上海高等研究院 Benzo-aza crown ether compound separates the application of lithium isotope

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236590A (en) * 1975-09-15 1977-03-19 Us Government Method of carrying uranyl ions on cation exchange resins

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1514094A (en) * 1966-02-15 1968-02-23 Aquitaine Petrole Isotope enrichment production and measurement process
JPS5122596B2 (en) * 1972-10-05 1976-07-10
JPS5949052B2 (en) * 1977-09-14 1984-11-30 旭化成株式会社 Isotope separation device
JPS562834A (en) * 1979-06-22 1981-01-13 Asahi Chem Ind Co Ltd New separation of isotope

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236590A (en) * 1975-09-15 1977-03-19 Us Government Method of carrying uranyl ions on cation exchange resins

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105540705A (en) * 2016-01-19 2016-05-04 东华大学 Method and device for preparing solid adsorbent via thermocatalysis of high-concentration nonylphenol polyoxyethylene ether wastewater
CN105540705B (en) * 2016-01-19 2018-02-16 东华大学 A kind of high concentration NPE waste water thermocatalytic prepares the method and its device of solid adsorbent

Also Published As

Publication number Publication date
IT8123812A0 (en) 1981-09-04
DD210517A3 (en) 1984-06-13
IT1138580B (en) 1986-09-17
CA1185074A (en) 1985-04-09
GB2104797B (en) 1985-11-13
AU7469981A (en) 1983-03-03
AU547079B2 (en) 1985-10-03
JPH0253087B2 (en) 1990-11-15
FR2512354A1 (en) 1983-03-11
FR2512354B1 (en) 1986-05-02
GB2104797A (en) 1983-03-16
DE3135540A1 (en) 1983-06-09

Similar Documents

Publication Publication Date Title
Faris et al. Anion Exchange Resin Separation of the Rare Earths, Yttrium, and Scandium in Nitric Acid-Methanol Mixtures.
Korkisch Modern methods for the separation of rarer metal ions
Nelson et al. Ion exchange procedures: I. Cation exchange in concentration HCl and HClO4 solutions
DeGeiso et al. Chelation Ion Exchange Properties of a Salicylic Acid-Formaldehyde Polymer.
Kressin et al. The Quantitative Separation of Plutonium from Various Ions by Anion Exchange.
Moore Liquid-liquid Extraction with High-molecular-weight Amines
Prabhakaran et al. Selective extraction of U (VI) over Th (IV) from acidic streams using di-bis (2-ethylhexyl) malonamide anchored chloromethylated polymeric matrix
Ritchie Chromatography in geology
Abdel Raouf et al. Kinetics and thermodynamics of the sorption of uranium and thorium ions from nitric acid solutions onto a TBP-impregnated sorbent
Schwarz et al. Self-Exchange Measurements in a Chelating Ion-Exchange Resin1
JPS5855030A (en) Separation of isotope
El-Shahawi et al. Kinetics, thermodynamic and chromatographic behaviour of the uranyl ions sorption from aqueous thiocyanate media onto polyurethane foams
Warshawsky et al. Impregnated Resins: Metal‐Ion Complexing Agents Incorporated Physically In Polymeric Matrices
Kosyakov et al. Separation of transplutonium and rare-earth elements by extraction with HDEHP from DTPA solutions
Zolotov et al. Application of extraction methods for the determin of small amounts of metals
Yousef Recovery of uranium (VI) from sulfate leach liquor using modified duolite
Townshend et al. Precipitation of major constituents for trace preconcentration: potential and problems
Varshney et al. Synthesis, composition, and ion-exchange behavior of thermally stable Zr (IV) and Ti (IV) arsenophosphates: separation of metal ions
Pickering The effect of hydrolysed aluminium species in fluoride ion determinations
Venkatesan et al. Kinetics of uranium extraction by macroporous bifunctional phosphinic acid resin
Zolotov et al. New methods for preconcentration and determination of heavy metals in natural water
AKIBA et al. Equilibria and kinetics of uranium extraction with 5, 8-diethyl-7-hydroxydodecan-6-one oxime in various solvents
Wells Inorganic chromatography
Carter et al. CCXLVIII.—The system ferric oxide–phosphoric acid–water. A new phosphate
Jain et al. Selective separation of copper (II) on a cobalt hexacyanoferrate (III) ion-exchange column